
Interacção 2010

 2D Game Editor On-line
A Cloud Computing Perspective on Game Edition
Bruno Miguel Cardoso

CITI-DI/FCT/UNL,
Departamento de Informática

Universidade de Évora
Rua Romão Ramalho 59

7000-671 ÉVORA, PORTUGAL

Teresa Romão
CITI, Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica, PORTUGAL

+351 266 745373
b.m.pinto.cardoso@gmail.com

+351 212948536
tir@di.fct.unl.pt

Abstract
The present article aims to describe the efforts taken in order to create a generic computing solution for the most
recurrent problems, usually found in the production of two dimensional, sprite-based videogames, running on
mobile platforms. The developed system is a web application that fits within the scope of the recent cloud-
computing paradigm and, therefore, enjoys all of its advantages in terms of accessibility, application
maintainability and scalability. In addition to the functional issues, the system is also explained in terms of its
software architecture, since it was planned and implemented in the perspective of attaining an easy to maintain
application that is both scalable and adaptable. Additionally, an algorithm is also proposed, seeking to find an
optimized solution to the problem of space distribution for several rectangular areas, with no overlapping and no
dimensional restrictions, neither on the final arrangement nor on the arranged areas.

Keywords
Game edition, web based solution, scalability, software engineering, collaborative work.

1. INTRODUCTION

Facing a growing activity in the last thirty years, the
market of electronic entertainment – of which
videogames are the most preeminent representatives –
moved, just in 2007, over 41 billion dollars across the
whole world. This value far surpasses the ones presented,
for the same period, by the movie industry [Alves2008].
However, the production of videogames that match
current market standards can be a daunting task, since it
may require expertise in several artistic and technological
fields, especially when the new title is intended to run on
advanced consoles or personal computers.

Still, there is a particular kind of videogame whose
production is much less demanding and still enjoys a
wide acceptance by the consumers: the casual games.
Being much smaller (in every aspect) than a traditional
title, this kind of game also has much simpler rules and,
thus, requires a far less dedicated gamer profile. This
contributes, of course, to widening the range of its
potential consumers – in fact, they have a possible user in
just about anyone who wishes to spend some time
entertaining themselves. Furthermore, these already
widened use scenarios can still be extended if the game is
targeted to run on mobile platforms. That way, a possible
use context can be identified in every place where such a
platform is able to operate. Summarizing this point, not

only a casual game can be used by almost anyone, they
can also be used almost everywhere.

However, although being simpler to create and distribute,
the production of a new casual title may still require the
same specialized skills that the more traditional and
advanced videogames do – only perhaps not so deeply.
Even though it’s possible for a single professional to have
all of the necessary skills, such is not, indeed, a realistic
premise. It’s far more common – and, perhaps, even
preferable – to invest in multidisciplinarity and enlist a
team of various professionals, skilled in each of the
required fields of knowledge. Clearly, this will bring an
extra effort to be made, in order to combine their distinct
works (e.g. art, written texts, sound) into really useful,
programmatically accessible resources.

Also, there is a peculiarity in general videogame
development that may promote more constraints to its
production. In a nutshell, the game has a concept that
must not be lost during its development. This concept
defines the user experience, general gameplay and
provides a detailed overview on how the game should
perform once implemented. Being such a comprehensive
and abstract idea, the game concept may also include
subjective impressions and other not so easily
transmittable aspects. The responsibility of maintaining
the development processes oriented to this concept

193

Aveiro, 13, 14 e 15 de Outubro de 2010

 usually falls upon one professional, the game designer,
who must be, before anything else, a creative and
resourceful person with some technological and artistic
perceptiveness. Then, in order to create a game that is
true to its concept, another of the game designer’s duties
refers to coordinating those heterogeneous teams, where
its members may have their own professionally-specific
technological languages (that can even be, to some
extent, quite hermetic). Since a significant part of the
designer’s tasks consist in transmitting the game
concept’s ideas to the development team, it follows that
the threat posed by the occurrence of communication
misunderstandings can be exceptionally dangerous to the
project itself.

To reduce the possibility of human error emerging from
the natural language’s intrinsic subjectivity, a recurring
solution is frequently adopted: the usage of game editing
applications. These systems offer, through interactive
and friendly user interfaces, the possibility to
parameterize certain game properties that further tune the
game player’s experience. Such kind of solution can be
found both in amateur and professional game
productions, since they all have the same basic
requirements. However, mainly due to resource
availability, there are notable differences between the
two. While industrial editors use to be larger, internally
developed, desktop applications that provide support to a
wide range of tasks, the editors used in amateur
productions tend to be smaller, single-tasked applications
that are developed by other amateur producers, who,
then, distribute them freely over the web. Being larger
applications, the industrial editors also have more effort
applied to their development and, as so, they are not
lightly replaced or discarded. Instead, every time a new
and sufficiently valid production requirement arises, they
are likely to be subject of maintenance interventions, with
the purpose of adding, altering or removing existing
functionalities. Such maintenance procedures can be
achieved by creating software patches or, more often, by
tampering directly with the editor’s source code. Either
way, the needs that motivate these “ad-hoc” interventions
can have some degree of urgency which may force the
maintainers to disregard the (eventually) existing code
architecture and methodologies. This will end up in
posing difficulties to future maintenance tasks.

Besides from programmatic disadvantages that this “ad-
hoc” development methodology is likely to impart, the
application’s user interface also gets prejudiced. In fact,
specific widgets that once have been assigned to operate
on specific areas of an interface, may now find
themselves competing with lately developed controls that
offer whole new functionalities. Such occurrences are
hardly positive for already experienced users, even in the
unlikely case that the developers had the time to carefully
plan the alteration, and may ultimately lead to software
abandon [Cardoso08].
On the other hand, because the free editors used in
amateur productions are independent applications, the
production lines that use them will have to include efforts

to merge their different outputs and to make sure they
integrate, as intended, into the developing game.

There are several such applications on the web, each one
being specially oriented to assist in a specific task.
Particularly for sprite based videogames, a most useful
functionality relates to sprite packing. This means
aggregating the images that compose a sprite’s
animations, the frames, into new, bigger images, the
atlases, in an optimized – but not necessarily optimal –
way. In fact, the frames usually come from the artists
who create them arranged in larger images, known as
strips. These strips are rather raw resources and, seeing as
they have a lot of unused space between the frames, they
are too much “unwieldy” to be used in the final product.
Indeed, since these large images would have to be loaded
into memory, using them directly would inevitably result
in increasing a game’s memory requirements. So, a sprite
packer typically operates by receiving the already cut
frames, making an arrangement out of them and
exporting both the produced atlas and the necessary
metadata references that allow external agents (e.g. the
game engine) to univocally refer to a specific frame
within the atlases larger scope.

However, these free sprite packers fall short of being
truly supportive applications, because they do just that -
pack the frames passed in as input - while neglecting that
there are other frame related tasks to accomplish (e.g. cut
them out of the strips or parameterize the sequences that
are, in fact, the animations themselves). Some examples
of these free editors, programmed in various languages,
would be the Packer1, from the 2D Slick Game Library,
and the Image Packer2.Even though these applications are
freely distributed over the Internet, they are not true web
applications; instead, they are small programs that must
be downloaded and locally executed on the client
machine. As previously stated, none of them allows for
anything else than packing the frames and some do not
even have anything but rather rudimentary atlas
composing algorithms.

With the intention of simplifying the implementation of
such algorithms, the developers often place on the users
the responsibility of making some very important
decisions, like the final dimensions of the produced atlas.
This may have significant impacts on the application’s
real utility and even contribute to degrade its
performance since not only direct user intervention will
be required, but also it makes way for poor dimensional
choices that may imply large amounts of unused area.

2. THE 2D GAME EDITOR ON-LINE

The system proposed in this paper, named 2D Game
Editor On-line (2DGE-O), consists of a web application
intended to provide support for the most recurrent tasks
found in two dimensional, sprite based videogame
production. These tasks include: strip loading; selective
cutting of the frames embedded on a loaded strip;
aligning the sequences of frames that compose a sprite’s

1 http://slick.cokeandcode.com/
2 http://www.pascalgamedevelopment.com/forum/index.php

194

Interacção 2010

animations and exporting the manipulated information to
standard formats, such as XML and .png atlases. To
further enhance the exporting process, an algorithm has
been perfected to automatically create optimized atlases.
One of the system’s key features lies on its strong end
user orientation and, to this end, much attention was
devoted to its user interface. The system is implemented
with a mix of technologies, like PHP and MySQL on the
server side and, on the client’s end, DHTML, Java
Applets and AJAX for asynchronous communications
with the server. Fig. 1 shows the frame cutting Applet (on
the right, below the “Strip blaze” label), embedded on the
system’s general web interface.

Fig. 1- 2D Game Editor On-line interface overview.

An essential difference that conceptually distinguishes
this solution from the ones described in section 1 lies in
its way of integrating the multitude of tasks, necessary to
produce a videogame, into a single concept, the project.
This integrative perspective closely resembles the one
that is traditionally found on industrial game editors.

2.1 Game Edition in Cloud Computing Paradigm

The 2DGE-O is a web application that, according to the
NIST’s definition of Cloud Computing [Mell09], adheres
to the Software as a Service Model. This means that the
user does not control or manage the underlying cloud
infrastructure, and it offers all of its functionalities with
the sole requisition of a thin client interface - in this case,
a regular browser and some of its common resources, like
the JVM3, cookies and JavaScript enabled. This allows
for a game development team to be geographically
dispersed and still be able to collaborate on the same
game projects. In another perspective, that of the
developer’s, the main advantage that emanate from
basing such a system on the web, is the possibility of
focusing the maintenance efforts on just one copy of the
application – precisely the one that is installed on the
production server. Any modifications performed on this
server’s deployed 2DGE-O instance will instantly be
made available for all of its users.

2.2 The System’s Internal Architecture

Noting the enormous product variety on modern
videogame’s market, one can infer that is impracticable
to create an editor that attends to all of this industry’s
requirements. Then, to cope with this impossibility,

3 Java Virtual Machine.

another objective of the 2DGE-O is to provide the basis
for future functional module development. In this sense,
there was a necessity for programming methodologies
that contributed to maintaining the code as human
readable as possible, while defining clearly the
procedures to follow when creating new components.
Such sort of problem is not new in the scope of software
engineering. In fact, these requirements are so commonly
encountered, that they have given origin to more than one
solution meant to solve them, generically referred to as
“architectural patterns”. This concept is defined as an
“ idea that was useful in a specific practical context and
that is likely to prove useful in others” [Fowler96].

There are several architectural patterns that enforce code
methodologies and, at the same time, keep a close
attention to the user interface and its respective
mechanics. The most representative would be the Model-
View-Controller (MVC). In spite of having been first
proposed to be applied on SmallTalk environments
[Krasner88], this pattern was the most adequate to the
2DGE-O characteristics. The MVC imposes, as stated in
[Buschmann96], the separation of an application’s code
in triads made of three functional components, according
to the responsibilities they assume in the system’s
functionalities: the Model is responsible for the data and
provides the methods to operate on it; the View renders
the corresponding model’s information to the user and,
lastly, the Controller reacts to and makes decisions based
on user input. The user interface (or parts of it) is formed
by View-Controller pairs. Such pairs can be connected
directly to another triad’s Model, if the necessary
methods are already implemented in it. This way, in order
to create a new functional module and expect it to
integrate smoothly into the already existing interface, the
programmer must implement only – in the best case – a
new View-Controller pair and associate it with an already
existing Model. Of course, if there is no Model that
already performs the actions required by the new pair,
then a new one will have to be implemented. Such well
defined procedures contribute greatly to maintain the
2DGE-O’s code legible and organized after such
alterations are completed.

2.3 The Atlas Composing Algorithm

The usage of texture atlases in games can bring many
advantages to their performance and this is especially
true when the game is intended to run on low resourced
platforms, such as mobile phones. They allow saving
memory that would, otherwise, have to be allocated to
very consuming tasks, like image swapping. Since a
game might have several sprites rendered simultaneously
on screen, these operations can turn into considerable
nuisances.

An algorithm, proposed by [Scott], configures an
interesting option to solve the problem of packing a
number of rectangular areas (the original proposal
considers these as being lightmaps) into a fairly
optimized image. To this end, it represents a two-
dimensional empty area (the atlas) as a binary tree that
registers growth whenever new images are added and

195

Aveiro, 13, 14 e 15 de Outubro de 2010

 arranged. Nonetheless, there are some issues with the
described approach that drastically detracts from it,
namely, it assumes the final atlas dimensions to be
known a priori or, at least, an upper bound for them. This
is not a very practical solution, since the users will end up
searching for a satisfactory result through a generate and
test (or trial and error) methodology. To avoid this, it’s
necessary to find a way to provide more autonomy to the
algorithm.

We found a solution by supplying an empty rectangular
area of unlimited dimensions and define it as the base
upon which the arrangement will be made. Inside it,
another rectangular boundary will be kept in memory,
first with dimensions set to 0 and then, as more frames
are added, it will be iteratively enlarged to accommodate
them. This area is referred to as the “frontier”. The key
feature of the algorithm lies in an heuristic approach that
provides guidance every time this frontier needs to
expand. Many approaches were attempted, but the most
satisfactory results have been achieved when using a
special scalar measure, �, that, for any rectangular area,

� =
������� ����

	�
��� ����
. It’s trivial to deduce that, for any given

rectangle, 0 < � ≤ 1, and that � = 1 only when the area
is a perfect square. The algorithm starts by calculating the
average � for the whole population of frames that will be
arranged. Then, it proceeds to successively inserting the
frames and, whenever one is encountered that cannot be
arranged inside the current frontier, the algorithm will
expand its borders, choosing the resize that grants the
closer proximity between the frontier’s own � and the
frame population´s average �.

3. USER TESTS

The user tests were performed in two sessions, with the
same testing group composed of five users, whose
average age was about 35 years and all have worked with
IT for a period of 2 to 14 years. One of them was an
amateur game designer. These sessions followed a
previously planned script that included the main tasks an
editor is required to perform, such as uploading strips, cut
its frames and building a few animations with them.

In the appointed tasks, the user’s feedback was mostly
positive, consistent and very focused on the
functionalities offered by the application. The user
interface revealed itself both as easy to use and easy to
learn. Apart from the positive comments about the
system’s functionalities and on how they were
implemented, there was a significant interest on the space
allocation algorithm and its potential application to
problems outside the context of videogame production (a
possible example would be the reduction of website
images download time).

There were, however, some invaluable remarks made by
the users that contributed to further improve the system’s
interaction with the end-users. As an example, one of the
registered observations suggested further refinement of
the included zooming tool, so that it may provide more
in-depth support to the tasks of frame selection and
cutting.

4. CONCLUSIONS AND FUTURE WORK

The 2D Game Editor On-line results of an innovative
approach to a recurrent problem, i.e. the cloud-computing
paradigm’s answer to the game edition’s requirements.
Put simply, the system is a web application, accessed
through common browsers, which allows for remote
collaboration between geographically dispersed teams.
Also, because the source code is solely located on the
server, the client-server model eases the efforts
associated to application maintenance. This way, when
necessary to alter the current version, the maintainers can
intervene directly on the server, while keeping the clients
unaware, or unaffected, by the operations.

Because of the MVC pattern applied to the system’s
architecture, the system ends up being highly scalable,
functionally flexible and maintainable.

The user’s feedback during the tests was very positive.
However, despite the fact that the 2DGE-O gives full
support to sprite manipulation tasks, there are a number
of improvements to be done on the already implemented
functionalities, which will greatly add to the system’s
usability and performance. As an example, the atlas
composition algorithm could be further optimized if
allowed to operate with rotation. This way, before
deciding to expand the current atlas’s frontiers, the
algorithm should attempt to reinsert the same frame, after
a 90º rotation. As future work, there will also be
implemented a undo/redo functionality that allows users
to revert their work to previous states, as well as the user
suggested refinements to the zooming tool (referenced on
section 3). Additional user test to evaluate the system’s
usability and performance will also be performed.

5. REFERENCES

[Alves2008] Alves, L. Estado da Arte dos games no
Brasil: trilhando caminhos. Proceedings of ZON Digital
Games 2008, 6-7 Nov, 2008, Porto, Portugal, 9-18.

[Buschmann96] Buschmann, F. et al., Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley
& Sons Ltd, West Sussex, England, 1996.

[Cardoso08] Cardoso, B. and Romão, T. Um Caso
Prático de Reabilitação de um Editor de Jogos Móveis
Utilizando o Paradigma Model-View-Controller.
Proceedings of Interacção 2008, Évora, Portugal, 109-
144.

[Fowler96] Fowler, M. Analysis Patterns: Reusable
Object Models. Addison-Wesley, Boston, EUA, 1996.

[Krasner88] Krasner, G. E. and Pope, T., A cookbook for
using the model-view-controller user interface
paradigm in SmallTalk. JOOP, 1(3), Aug, 1988, 26-49.

[Mell09] Mell, P. Grance, T. 2009. The NIST Definition
of Cloud Computing. National Institute of Standards
and Technology Website.

http://csrc.nist.gov/groups/SNS/cloud-computing

[Scott] Scott, J. Packing Lightmaps. Website accessed
on May 10, 2010.
http://www.blackpawn.com/texts/lightmaps/default.html

196

