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Abstract 
Automatic generation of game levels improves replayability and also allows content adaptation. One important 

aspect to take into account in the creation of any videogame is difficulty, in particular when it is possible to 

adapt content. However, defining difficulty is not a straight subject. In this paper we propose a metric for game 

difficulty in platform levels, mostly based on users’ losing probability for each obstacle. This metric can be fur-

ther used in automated processes that generate levels for this type of games, helping the process to recognize 

whether a level is suitable or not for a certain player. We also present some examples of the usage of this metric 

in commercial games.   
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1. INTRODUCTION 
Procedural generation of content is one active area in 

Computer Graphics with some common associations to 

other areas such as Artificial Intelligence and Human-

Computer Interaction. In this paper we direct our main 

focus to the automated procedural generation of levels for 

platform games, aiming the contributions to understand-

ing the related concept of difficulty. Considering a sys-

tem that automatically generates platform levels, estimat-

ing and quantifying difficulty is useful because it im-

proves the knowledge about the output. 

The designation of platform games is used to describe a 

particular type of videogames where the user controls an 

avatar that has to accomplish a set of challenges. These 

typically consist of jumps between elements which are 

referred as platforms. Some popular examples of this 

type of games are: Super Mario Bros, Sonic – The 

Hedgehog and Little Big Planet. Screenshots of these 

three games are provided in Figure 1. 

The main difference in generating automatically platform 

levels in comparison with other automated graphical gen-

erations, such as buildings, trees or even terrain, is that  

 

 

 

 

 

 

 

 

the final result represents a challenge with a certain diffi-

culty, and a minor change can affect it with indefinite 

proportions. For instance, one platform moved slightly 

from its original place in a well balanced level can make 

it impossible to finish. Therefore, the main question that 

arises is: How do we measure difficulty in a platform 

level? 

In order to answer the previous question, we propose a 

method to measure difficulty in a platform level, which 

we stated that can be considered as a relation to the prob-

ability of failure. Inside this topic our main contributions 

are: 

� A study on the main questions related to difficulty in 

platform games. 

� A proposal for a method to measure difficulty in 

platform game levels, relying on success probability. 

� A practical usage of the difficulty proposed principle 

on some levels of existing commercial applications. 

In the next section we will explain some of the major 

motivations behind difficulty measurements in the topic 

of automated generation of videogame content.  

 

 

 

 

 

 

 

 

    

Figure 1 – Screenshots of the games Super Mario Bros. (A), Little Big Planet (B) and Sonic – The hedgehog (C) 
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2. WHY MEASURE DIFFICULTY? 
As stated in the previous section, this study consists in 

improving the knowledge about difficulty in platform 

games, which can represent a step forward in processes 

that automatically generate this kind of levels. There are 

several possible approaches for platform level generation, 

but only a few have been made effective, as we will see 

in a later stage of this document, in section 5, where the 

related work is presented with more detail.   

To better understand the problem, we can consider a sys-

tem that generates levels on-the-fly where the user can 

play. For the sake of ease we can also consider by now 

that the system validates physical restrictions and thus 

produces always valid levels. This means that the user 

will always have a chance to succeed, depending only on 

his/her skills. However, even in these conditions, there is 

no way to ensure that the challenge is appropriate for the 

user because all levels are treated equally. This leads us 

to the need of matching users’ skills to provided chal-

lenges, which should have an appropriate dimension of 

difficulty. As a result, it is required that generated levels 

have a certain difficulty value. In the next section we will 

look at the most common situations that are present in 

most platform games in order to understand where the 

difficulty lies and hence measuring it. In section 4 we 

will also present some examples to show that several 

common game situations can be fitted in our reference 

situations. 

3. DIFFICULTY IN PLATFORM GAMES 

3.1 Understanding difficulty in a whole level 
We presented the problem of measuring difficulty on 

platform game levels and its importance for automated 

procedural generation, in particular for content adapta-

tion. In this section we will try to answer the following 

question: What makes a level difficult? 

In order to understand where difficulty lies, our main 

examples will consider the more trivial cases for platform 

levels and their possible adaptations, covering the com-

mon structures that this type of games have, as proposed 

by Compton and Mateas [Compton06]. Levels are de-

fined with one start point and one end point in a bi-

dimensional geometry. Some levels may have certain 

objects that harm the player’s avatar causing him to lose. 

These will be represented as spikes, which are common 

objects in this type of games. In addition, there are two 

main considerations to take into account regarding to the 

user experience, which are the following: 

� The users are aware of the task they are doing, which 

means that every challenge is directly identifiable, as 

proposed by typical usability heuristics such as those 

presented by Desurvire et al. [Desurvire04]. 

� Trivial tasks, such as moving from one place to an-

other in a single platform or climbing up a ladder, 

are not relevant in difficulty measurements.  

With those principles we will consider the five different 

cases represented in Figure 2, which can be briefly de-

scribed as follows:  

A. A straight way where it is impossible to fail. Since 

the user knows what to do he/she will not run blindly 

against the left wall. 

B. An impossible level because the end point is physi-

cally unreachable. 

C. An almost impossible level with the end point being 

almost physically inaccessible. 

D. One level with a single jump that the user must ac-

complish to reach the end point. Failure attempting 

the jump will cause the player to lose. 

E. A level where the user needs to jump from one block 

to another but if he/she fails he/she will be able to try 

again after passing through another obstacle that may 

cause him to lose. The stairs represented in this case 

simply mean that climbing to the first platform is a 

trivial action that every user can do without difficul-

ties. 

 

Figure 2 – Five examples of common  

situations in platform games 

The first case is a generalization to represent the easiest 

level that can exist. Due to the subjective nature of the 

topic this cannot be proven but common sense seems to 

be enough for this situation. The question here can be 

reversed and be thought with the following question: Can 

we design an easier level than this? In fact, the task re-

quired to complete the referred challenge can be de-

scribed as a single action, where there is no possible way 

of losing. Simplifying the problem, it is plausible to say 

that this first example is easy because the probability of 

losing is zero. Completing this level consists on doing 

one simple task with a probability value that can be con-

sidered one. A simple graphical representation is avail-

able in Figure 3. 

 

Figure 3 – State chart for example level 1 

The second example tries to create a contradiction with 

the conclusion that we can retrieve from the first exam-

ple. In this case, the probability of losing is again zero, 

because there are no elements to harm the player’s avatar. 

However, winning probability is also zero because the 

user needs to jump to an unreachable place. The same 

problem will occur if we think of an adaptation of the 

first example in which the start and end positions are too 
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far apart that there is no user with enough patience to 

complete the challenge. This leads us to another aspect to 

take into account that is the probability of renouncing. 

Considering the psychological approaches to this subject, 

the user will resign playing if he/she is bored or frus-

trated. Boredom will occur in a situation as the adaptation 

of the first example, with an almost infinite distance be-

tween start and end points. Frustration will occur in situa-

tions as the second example, where the user in presented 

with an impossible task. The idea of a good game is to 

keep the user in-between those two states, in a state that 

is designated as flow [Csikszentmihaly91]. The state 

chart in Figure 4 is a possible representation of the de-

scribed situation.  

 

Figure 4 – State chart for example level 2 

In the third example we keep the user again in a harmless 

level with one single jump that has to be accomplished. 

The main difference is that in this case the full probabil-

ity is divided in success and giving up. A state chart is 

provided in Figure 5 to represent this situation, consider-

ing P(j�) the probability of success in the first obstacle, 

in this case a jump, and P(r) a general resign probability 

for the user after failing one challenge. If we consider an 

impossible jump, it is possible to state that this case and 

the correspondent diagram will result in the previous 

situation. In the next subsection we will explore the asso-

ciated calculations that can be extracted. 

Player 

renounced

Level

Started

Level

Completed
P(j1)

Retry?1-P(j1)

1-P(r)

P(r)

 

Figure 5 – State chart for example level 3 

The fourth example adds the existence of harm, which 

cause the player to fail immediately. Considering that the 

distances between the start and the end point are small, 

we can consider that the user will not forfeit because the 

level consists in one single task. So, the probabilities will 

be divided directly in winning and losing, as represented 

in Figure 6. Those probabilities are only linked with the 

difficulty of the jump, which will have a probability of 

success defined by P(j�) as in the previous example. We 

will also approach this problem with some more detail in 

the next subsection. 

 

Figure 6 - State chart for example level 4 

Finally, the fifth example gives us a single jump with no 

direct harm that causes failure but that requires succeed-

ing in another jump in order to retry. The result is a loop 

as in the previous case. The main difference is that, in 

this last example, the retrying loop can be broken either 

by renounce or by failing in the process. This is repre-

sented with the state chart in  Figure 7. 

 Figure 7 – State chart for example level 5 

After the previous examples we can identify two main 

variables that contribute to difficulty in one level: 

� P(r): The probability of renouncing after failing one 

attempt, which we will consider constant in one 

level. This value is directly related to the player’s re-

silience. 

� P(j�): The probability of achieving success in the 

jump or similar challenge with the index i. 

Also, we could identify that there are two main elements 

to consider for the difficulty calculations over one level, 

which are the obstacles where the avatar may directly 

lose and the obstacles that will make the avatar repeat 

other obstacles that may eventually cause renounce or 

failure. 

With these concepts in mind, we will proceed to the next 

subsection to understand how to extract final probability 

values and thus difficulty. 

3.2 Measuring difficulty in a level 
In the previous subsection we represented the most com-

mon situations in platform games and identified that dif-

ficulty is related to the probability of being unsuccess-

fully, which might be caused by failure or resignation. 

The studied situations were represented as state charts in 

which every transition is associated with a probability 

value. Our proposal is to calculate the probability of suc-
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cess and failure that is recursively represented in those 

charts, and thus extract difficulty.  

Calculating probabilities in cases like one, two and four 

are simply a sequence of independent cases of probabili-

ties, thus measuring difficulty can be calculated by mul-

tiplying all the values from the start to the end point. 

Cases like the examples three and five have loops in the 

representation, which makes the calculation less simple. 

For instance, probability of success in example four is the 

probability of making the jump on the first attempt plus 

the probability of making it at the second attempt, if there 

is a second attempt, and so on. This can be expressed 

mathematically with an infinite equation to represent the 

probability of success P(s) as follows: 

P(s) = P(j1) + P(j1′). P(r′). P(j1) + ⋯  +�P(j′). P(r′)��. P(j1) + ...   

This equation can be compressed, resulting in the follow-

ing: 

P(s) = P(j1) ��P(j1′). P(r′)��

�
 

If we think of a whole level, measuring these probabili-

ties with a formal model will require a long set of equa-

tions and the calculation of these series. However, the 

information is more likely to be represented as a state-

chart or a graph rather than in mathematical notation, so 

these calculations might be done with a recursive and 

iterative algorithm that spreads probabilities over the 

nodes until a certain precision is reached. 

Considering the previous representations for the whole 

problem and that we can recursively spread probability 

values through a graph in order to understand what are 

the final probabilities to achieve success and failure in 

one level, it is important to extract the probability values 

for the connections in the graphs, which represent the 

difficulty for isolated jumps or, more generically, isolated 

obstacles. This topic is about to be approached in the next 

subsection.  

3.3 Difficulty for independent obstacles  
In this subsection we propose a method for measuring the 

difficulty for each isolated jump or challenge, which can 

be used to feed the probability graphs presented in the 

last subsection. 

One simple assumption is that a single jump is more dif-

ficult to accomplish if the gap to jump is bigger. This is 

valid for platforms at the same height, but for different 

heights the problem is not that direct. With a physics 

simulator it is possible to identify the multiple alterna-

tives to make a successful jump between two platforms. 

Compton and Mateas [Compton06] already proposed this 

approach but only as a theoretical possibility without 

concretization. In addition, looking at all existing combi-

nations of jumps also gives just a notion on the difficulty 

of a jump by counting the successful and failure cases. 

Some of those cases will be more likely to happen than 

others, because the user keeps correcting the movement 

in the jump. Since transposing physical constraints to a 

difficulty measurer may be a difficult task, especially if 

we are estimating difficulty in an existing game with 

closed source, we propose a faster alternative based on 

the jump characteristics. So, in a jump, at a higher level 

of abstraction, the player is trying to jump from one point 

to another. These points represent the edges of the origin 

and destiny platform. With this in mind, our approach 

consists in launching a projectile from the first point P� 

and measuring a possible margin of error for its trajectory 

relatively to the second point P�. 

Recalling some basic physics, a projectile trajectory can 

be defined by the following set of equations in order of 

time: x(t) = x� + v��. t     and      y(t) = y� + v��. t − �
� a. t� 

Once every jump is relative to the platform from which 

the user is jumping, we can consider the origin point (P�) 

as the reference to simplify the equations. Also, we will 

not consider a throwing angle, so the initial speed can be 

defined as a constant (K�), configurable for different 

games. Finally, these calculations are space oriented and 

the jump duration is not used, so the calculation can be 

resumed as one expression, which is basically a quadratic 

equation intersecting the origin, simply defined by: 

f(x) = K�. x − 1
2 a. x� 

This trajectory can be seen as the biggest possible jump 

the avatar can perform. By intersecting the projectile with 

two lines that are parallel to the Cartesian axis and that 

also intersect the destiny point, we can estimate the pos-

sible deviation to the trajectory that is still a valid jump. 

From now, this deviation will be referred as the error 

margin. In fact, we are identifying two values: the height 

of the player when he/she horizontally reaches the plat-

form (∆y) and the horizontal amplitude of the jump (∆x). 

So, our error margin has values in x and y axis (m� and 

m�) defined by ∆� − x� and ∆� − y�, respectively, with 

P� = (x�, y�). This concept is graphically summarized in 

Figure 8.  

 

Figure 8 – Graphical representation of  

the concept of error margin 

Obtaining m� requires knowing ∆y, which consists on 

calculating f(x�). A negative value means that the plat-

form in unreachable with the reference jump. Here, the 

system has to identify whether the platform is really un-

reachable and thus the error margin is immediately zero 

without any other calculations, or the jump has to be at-

tempted differently (for instance, moving the origin point 
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to the left). For positive values we measure the horizontal 

tolerance by calculating the value of  for which f(x) 
equals y�, which consists in solving a second degree 

equation and selecting the appropriate root. To normalize 

results we consider the error margins as relative values to 

the full distances measured along the axis. In the end we 

multiply both the normalized error margins to define the 

final error margin for the obstacle (&), defined between 

zero and one.  

Empirically, one can perceive that difficulty is related to 

the error margin in a non-linear fashion. As error margin 

decreases it is expectable to have a few failures occasion-

ally occurring, but as the error margin gets lower, more 

and more failures are willing to occur. To reflect this 

principle, we represent the final difficulty value for each 

obstacle based in an exponential function with the fol-

lowing equation for difficulty in the obstacle of index i:  

D(i) = &)*+ 

The constant ,- represents the mapping of the linear 

error margin and the expected exponential distribution 

that can be configured to a certain player profile. In the 

results presented in section 4 we will present some com-

parisons.  

3.4 Dynamic entities 
Our main principles consider a static scenario, which is 

somehow a limitation. Some alternatives and proposals 

for the dynamic question will be addressed in future 

work. However, in this subsection we will present how 

we deal with this problem in our current studies.  

Typically, in a platform game, dynamic objects are mov-

ing platforms and enemy creatures. For the first ones, we 

can consider a gap that separates two platforms and that 

is impossible to jump across the gap. One moveable plat-

form slides from one side of the gap to the other, so the 

user needs to use it as a transport. Considering that the 

user is focused in the task and it is not exploring the sce-

nario in a way that is not intended, this process consists 

in jumping two gaps. The main issue is that the move-

ment of the dynamic platform produces an extra error 

probability. Also, the faster the platform moves, the big-

ger the error might be. So, for situations like this, we ap-

ply the calculations previously presented for normal 

jumps. However, to represent the increase of difficulty 

caused by dynamics, the gap distance to consider is a 

normal jump to the platform at the nearest place plus an 

extra term that is proportional to platform speed and a 

constant. Representing enemies can also be considered as 

jumping implicit gaps. Depending on the enemy’s char-

acteristics (mainly speed and size), we manually define a 

value for P�.  

3.5 Final remarks 
In this section we have presented an approach to measure 

difficulty in platform game levels. For each obstacle we 

defined an error margin to extract an estimated probabil-

ity of succeeding. The whole level can be considered as a 

graph with multiple transitions where the referred prob-

abilities can be applied to obtain a global value. The next 

section presents some results about applying this concept. 

4. CASE STUDY 
In this section we will briefly explain our experiences on 

measuring difficulty in levels of existing commercial 

applications. Our experiments consisted on the following: 

� Mapping existing game levels in a representation 

with only the situations previously presented and 

measuring difficulty in the mapped levels with the 

principles previously presented. 

� Testing levels with real players on the referred lev-

els, measuring their probability of success and com-

paring to the estimated results. 

4.1 Mapping and measuring existing levels 
As we previously referred, we applied our proposed met-

rics to some existing games. The classics are useful be-

cause normally it is possible to find online bitmaps with 

whole level representations. The results of this subsection 

present difficulty measurement in some levels of the 

game Super Mario Bros. 

First, in Table 1 we present the success probability for a 

regular user in some levels of this game measured as we 

proposed in this document. We selected a set of levels 

that share similar objects and obstacles to avoid having 

particular aspects biasing the conclusions, such as the 

existence of bosses, portals or different physical condi-

tions (for instance, some levels are played under water). 

The value T in the table represents the number of times 

the user will retry an unsuccessful jump. 

Level T=1 T=2 T=3 T=∞ 

W1L1 10.8% 32.4% 40.8% 44.6% 

W1L2 3.5% 10.7% 13.7% 15.0 % 

W1L3 .5% .8% .9% 1% 

W2 L1 .22% 3.15% 5.8% 7.4% 

W3 L1 2.4% 15.9% 21.6% 24.0% 

W3 L2 3.6% 13.2% 15.3% 15.7% 

W3 L3 .40% .51% .52% .52% 

Table 1: Measured values in Super Mario Bros. 

One interesting aspect to notice in these results is that, in 

fact, levels tend to have higher difficulty values as the 

game evolves (less probability of success). It is also pos-

sible to notice that different resilience values for the user 

(T) influences the final probability of success. In particu-

lar, a value of 1 represents the less resilient player that 

can exist, which is one that resigns automatically after 

failing one simple jump.  

This particular game, as some others of the genre, organ-

ises the levels in groups named as worlds (in table 1, W 

stands for world and L for level). One can also notice that 

when a new world starts difficulty tends to have a small 

decrease before rising again. This might represent an 

intention of having a resting level after completing a dif-

ficult task, in this case, the last level of the previous 

world. 

Moreover, tuning the exponential coefficient allows ad-

justing the values in proportions to have them to be more 
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reliable for usage as real success probabilities. Lower 

values are more suitable to represent the more skilled 

players, which are very unlikely to lose in small chal-

lenges.  Contrary to this, higher values represent less 

skilled players that have higher failure rates immediately 

as challenges appear. 

In Table 2 we fixed the value of T to 3 and vary the ex-

ponential coefficient. So, each column represents the 

probabilities for players with different skills in the levels 

presented in each row. 

Level Kd=.25 Kd=.33 Kd=.50 

W1L1 40.8% 28.9% 12.6% 

W1L2 13.7% 6.8% 1.4% 

W1L3 .9% .2% .01% 

W2 L1 5.8% 2.0% .2% 

W3 L1 21.6% 13.3% 3.3% 

W3 L2 15.3% 8.2% 2.1% 

W3 L3 .52% .10% .003% 

Table 2: Measured values for difficulty in  

Super Mario Bros. with different Kd Values 

 We proceed now to some tests we ran with a set of play-

ers in the game Little Big Planet. This game was particu-

larly useful because it allows users to create their own 

levels. With this, it was possible to create our own test 

set. We created a small template level with a few jumps 

and adapted it to have different versions with distinct gap 

sizes in order to influence the difficulty. In table 2 we 

present the predicted and the effective probability of suc-

cess for each obstacle. 

Real P(s) 
Pred. P(s) 

Kd=.3 

Pred. P(s) 

Kd=.2 

Pred. P(s) 

Kd=.1 

40,4% 40% 54% 74% 

89,3% 48% 62% 78% 

91,7% 65% 75% 87% 

96,2% 57% 69% 83% 

96,2% 57% 69% 83% 

96,2% 94% 96% 98% 

97,1% 78% 84% 92% 

98,0% 74% 82% 90% 

98,0% 94% 96% 98% 

98,0% 87% 91% 95% 

98,0% 89% 92% 96% 

98,0% 81% 87% 93% 

100,0% 95% 96% 98% 

Table 3: Examples of measured difficulty in the levels 

created for the game Little Big Planet 

Even though we have not yet extracted correlations to the 

obtained values, some relations are detectable. In further 

experiments we intend to apply some categorizations to 

our users, mapped to different values for ,-, in order to 

achieve for accurate values. 

5. RELATED WORK 

5.1 Platform videogames 
Platform games have been studied before by a few au-

thors. There are three main relevant works to refer in the 

context of this article. In fact, those three articles are the 

result of continuous work inside the same research group.  

In the first work, Compton and Mateas [Compton06] 

studied the structure of platform levels, identifying some 

construction parameters to configure platforms. Also, 

they identified that platforms are associated together by 

patterns that represent the actions that the avatar has to do 

in order to pass through a certain section in one level, 

designated as cell. They also identified the main struc-

tures of organising cells in one level, which was particu-

larly helpful in the definition of the examples presented 

in the previous sections of this document. Finally, they 

stated that a system that automatically generates levels 

could be improved by measuring difficulty. As a theo-

retical approach, the authors pointed this analysis as one 

step of the process. In their proposal, one possible ap-

proach for this was to calculate all possible trajectories 

for each jump from one platform to another. With this, 

they wanted to be able to calculate the spatial window to 

a possible successful jump. In some aspects, the concept 

of error margin previously presented in this article repre-

sents a window like this. Also, they wanted to use the 

referred physical calculation to extract the time window 

the player has to make corrections to the movement.  

Later, Smith et al. [Smith08] defined a framework to ana-

lyse platform levels in which concerns to its structure. 

Some important concepts were formalised, resulting in a 

conceptual model to define a generic level. The need of 

classifying difficulty was identified once again but only 

proposed as a future work. Recalling the simplifications 

or abstractions previously considered to deal with dy-

namic objects and enemies, the same approach was con-

sidered by these authors. For instance, they defined a 

platform level as a hierarchy where everything that may 

cause damage to the player is a generic obstacle. This 

means that one gap between two platforms is an obstacle. 

Since in our work we directed our measurements to dis-

tance, our abstraction was built in the other way around, 

by mapping objects into gaps. 

The previously presented concepts lead to an effective 

implementation of a level generator [Smith09]. This im-

plementation starts with a rhythm generator that creates a 

set of actions to be done by the avatar. Those actions are 

then used with a physics system in order to generate a 

valid geometry, which is one that allows the user to repli-

cate the generated actions. A system based on critics 

analyses the generated levels to avoid over generation 

and also to establish a quality threshold. However, the 

geometry that is created is still not analysed with a diffi-

culty perspective. Once again, it was identified the need 

of measuring difficulty for further implementations. Also, 

the authors stated that measuring difficulty can be used 
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inside the critics system. The approach we have pre-

sented allows analysing a level with the condition of hav-

ing the set of actions well identified. Once their proposal 

is rhythm-based, which means that all the level is gener-

ated based on a set of actions, difficulty could be meas-

ured as we proposed. 

Besides the three previous works, there is one particular 

study for platform games that is important to refer, de-

veloped by Pederson et al. [Pedersen09]. Their focus was 

directed to more abstract concepts about user experience. 

In particular, the authors studied the users’ perceptions in 

an adapted version of the game Super Mario Bros. Sev-

eral users played the game with different features to es-

tablish correlations between those features and reported 

emotions. A model was built with the obtained results in 

order to predict fun, challenge and frustration. 

5.2 Difficulty measurements in other genres 
In other genres, difficulty has been used in some more 

concretized manners. Just to give a brief overview of 

that, we will point a few examples.  

Togelius et al. [Togelius07] presented a system to auto-

matically generate racing tracks for a driving simulator. 

To evaluate each track quality for usage as fitness func-

tion in a genetic algorithm, they used artificial drivers, 

mapped to a certain profile, to extract some attributes 

such as timings and speeds.  

A similar approach was used for Pac-Man-like games by 

Togelius and Schmidhuber [Togelius08]. The interesting 

aspect of this work is that the generation process pro-

duces game variants instead of game levels. Again, the 

main principle used was evolutionary computation and 

the measurements of difficulty were accomplished by 

making intelligent agents play the game.  

Finally, another interesting work to refer was developed 

by Pereira et al. [Pereira09]. In this case the objectives 

and approaches are considerably different from the last 

ones. The considered genre was Strategic Multiplayer 

Browser Game, which consists on a slow paced evolution 

system, accessed by players a few times on one day to 

establish some strategies about virtual resource manage-

ment. The system tries to involve the player in an ambi-

ent that fits the user preferences, with a balanced distribu-

tion of resources to avoid repetition. Also, the authors 

refer the importance in handling efficiently the constant 

appearance of new players in the earlier stages of the 

game. 

Naturally, there are several other examples of dynamic 

adjustment of difficulty, in particular on commercial 

games. Nevertheless, the presented cases are particularly 

interesting because they have emphasis on automated 

generation of content. 

5.3 Practical usage of difficulty measures 
As presented in this document, the main importance of 

quantifying difficulty is that it also allows adapting it. 

Adapting difficulty in videogames has the main objective 

of levelling a challenge among intervenients. However, it 

is important to make those adaptations without compro-

mising the core player experience [Hunicke05]. For a 

single player game, adapting difficulty normally consists 

on tuning artificial intelligence behind virtual agents. In 

multiplayer games the key idea is to make the challenge 

higher to expert players and lower to casual player. The 

final goal is that every player has a similar chance of 

winning. Basically, it is the same intent as in some sports 

that use handicap, such as golf. However, that system is 

not always applicable, and in some videogames we can 

make performance analysis in real-time and with that 

adjust difficulty in a more transparent way. One example 

of implementation of this concept is the work proposed 

by Martínez and Mata [Martínez09] in which a Pong 

version is adapted according to players’ skills. The au-

thors considered that, in this game, difficulty is due to the 

paddle size and ball speed. This two attributes are 

adapted during game play to balance the result and level 

the odds of each player. In addition, these values are also 

adapted to make the game challenging enough for both 

players, and not too easy or hard for both. 

6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 
We have proposed a way to measure difficulty in plat-

form games and presented its possible application in real 

games. With basic probability principles, we define the 

flow of action in a level in association with failing prob-

abilities to obtain a final probability of completing a level 

with success. Resilience parameters were also considered 

to reflect the possibility of a user to resign on harder 

challenges. In addition, basic projectile principles al-

lowed a simple estimation of difficulty for each individ-

ual obstacle, which is mapped in a probability value to be 

used in the calculations of the full success probability. 

Our primal experiences show that estimating difficulty 

based on probability gives an effective notion about its 

growth. We have tested our measurement in some exist-

ing games, in particular a few classics in the gaming in-

dustry. As presented previously in section 4, with the 

results obtained in Super Mario Bros., we could verify 

that our approach generally identifies the earlier levels as 

being easier than the later ones. This goes in line with the 

empirical notion of common users and basic design rules. 

One important aspect is that the obtained results don’t 

consider the existence of lives (attempts) and check-

points. So, the probability values presented estimate the 

chance that the user has to complete the whole levels in 

one single try. 

Finally, our tests with users also allowed identifying a 

relationship between the proposed difficulty estimator 

and the real probability of success. Once again, it is no-

ticeable that the difficulty measured can estimate if a 

level is easier or harder, but it does not represent an ef-

fective probability of success in one level. 

6.2 Future Work 
Even though we have identified some of the principles 

where difficulty in platform games is based on, some of 

those need to be analysed with more depth. 

Firstly, we believe that it is important to expand the con-

cept of obstacle. The simplifications used for enemies 
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and dynamics were a sufficient solution for this first ap-

proach, but this is a question that requires other calcula-

tions to be defined with more detail.  

As stated before, the measurements didn’t consider the 

existence of checkpoints and lives that allow the user to 

retry the level. It would be interesting to expand the study 

taking this aspect in account and identifying possible 

differences.  

Also, it would be interesting to consider the existence in 

some levels of the so called bosses, which are particularly 

skilled enemies. For that reason, some levels were not 

analysed.  

Moreover, it is important to make parameter adjustment 

based in real measurements rather than the ad-hoc tuning 

that was used. In particular, the coefficient used can rep-

resent the user skills, hence predicting more accurately 

the user’s probability of success.  

Finally, an interesting way to improve data gathering and 

analysis, in particular on what concerns to difficulty, 

might consist in the creation of a community where play-

ers could freely play automatically generated levels. This 

could improve the results obtained in-game.  
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