
Interacção 2010

 Measuring Difficulty in Platform Videogames

Fausto José Mourato
Departamento de Sistemas e Informática

Escola Superior de Tecnologia
Instituto Politécnico de Setúbal

2910-761 Setúbal
fausto.mourato@estsetubal.ips.pt

Manuel Próspero dos Santos
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

2829-516 Caparica
ps@di.fct.unl.pt

Abstract
Automatic generation of game levels improves replayability and also allows content adaptation. One important

aspect to take into account in the creation of any videogame is difficulty, in particular when it is possible to

adapt content. However, defining difficulty is not a straight subject. In this paper we propose a metric for game

difficulty in platform levels, mostly based on users’ losing probability for each obstacle. This metric can be fur-

ther used in automated processes that generate levels for this type of games, helping the process to recognize

whether a level is suitable or not for a certain player. We also present some examples of the usage of this metric

in commercial games.

Keywords
Human Factors, Platform videogames, difficulty measurement.

1. INTRODUCTION
Procedural generation of content is one active area in

Computer Graphics with some common associations to

other areas such as Artificial Intelligence and Human-

Computer Interaction. In this paper we direct our main

focus to the automated procedural generation of levels for

platform games, aiming the contributions to understand-

ing the related concept of difficulty. Considering a sys-

tem that automatically generates platform levels, estimat-

ing and quantifying difficulty is useful because it im-

proves the knowledge about the output.

The designation of platform games is used to describe a

particular type of videogames where the user controls an

avatar that has to accomplish a set of challenges. These

typically consist of jumps between elements which are

referred as platforms. Some popular examples of this

type of games are: Super Mario Bros, Sonic – The

Hedgehog and Little Big Planet. Screenshots of these

three games are provided in Figure 1.

The main difference in generating automatically platform

levels in comparison with other automated graphical gen-

erations, such as buildings, trees or even terrain, is that

the final result represents a challenge with a certain diffi-

culty, and a minor change can affect it with indefinite

proportions. For instance, one platform moved slightly

from its original place in a well balanced level can make

it impossible to finish. Therefore, the main question that

arises is: How do we measure difficulty in a platform

level?

In order to answer the previous question, we propose a

method to measure difficulty in a platform level, which

we stated that can be considered as a relation to the prob-

ability of failure. Inside this topic our main contributions

are:

� A study on the main questions related to difficulty in

platform games.

� A proposal for a method to measure difficulty in

platform game levels, relying on success probability.

� A practical usage of the difficulty proposed principle

on some levels of existing commercial applications.

In the next section we will explain some of the major

motivations behind difficulty measurements in the topic

of automated generation of videogame content.

Figure 1 – Screenshots of the games Super Mario Bros. (A), Little Big Planet (B) and Sonic – The hedgehog (C)

A B C

173

Aveiro, 13, 14 e 15 de Outubro de 2010

2. WHY MEASURE DIFFICULTY?
As stated in the previous section, this study consists in

improving the knowledge about difficulty in platform

games, which can represent a step forward in processes

that automatically generate this kind of levels. There are

several possible approaches for platform level generation,

but only a few have been made effective, as we will see

in a later stage of this document, in section 5, where the

related work is presented with more detail.

To better understand the problem, we can consider a sys-

tem that generates levels on-the-fly where the user can

play. For the sake of ease we can also consider by now

that the system validates physical restrictions and thus

produces always valid levels. This means that the user

will always have a chance to succeed, depending only on

his/her skills. However, even in these conditions, there is

no way to ensure that the challenge is appropriate for the

user because all levels are treated equally. This leads us

to the need of matching users’ skills to provided chal-

lenges, which should have an appropriate dimension of

difficulty. As a result, it is required that generated levels

have a certain difficulty value. In the next section we will

look at the most common situations that are present in

most platform games in order to understand where the

difficulty lies and hence measuring it. In section 4 we

will also present some examples to show that several

common game situations can be fitted in our reference

situations.

3. DIFFICULTY IN PLATFORM GAMES

3.1 Understanding difficulty in a whole level
We presented the problem of measuring difficulty on

platform game levels and its importance for automated

procedural generation, in particular for content adapta-

tion. In this section we will try to answer the following

question: What makes a level difficult?

In order to understand where difficulty lies, our main

examples will consider the more trivial cases for platform

levels and their possible adaptations, covering the com-

mon structures that this type of games have, as proposed

by Compton and Mateas [Compton06]. Levels are de-

fined with one start point and one end point in a bi-

dimensional geometry. Some levels may have certain

objects that harm the player’s avatar causing him to lose.

These will be represented as spikes, which are common

objects in this type of games. In addition, there are two

main considerations to take into account regarding to the

user experience, which are the following:

� The users are aware of the task they are doing, which

means that every challenge is directly identifiable, as

proposed by typical usability heuristics such as those

presented by Desurvire et al. [Desurvire04].

� Trivial tasks, such as moving from one place to an-

other in a single platform or climbing up a ladder,

are not relevant in difficulty measurements.

With those principles we will consider the five different

cases represented in Figure 2, which can be briefly de-

scribed as follows:

A. A straight way where it is impossible to fail. Since

the user knows what to do he/she will not run blindly

against the left wall.

B. An impossible level because the end point is physi-

cally unreachable.

C. An almost impossible level with the end point being

almost physically inaccessible.

D. One level with a single jump that the user must ac-

complish to reach the end point. Failure attempting

the jump will cause the player to lose.

E. A level where the user needs to jump from one block

to another but if he/she fails he/she will be able to try

again after passing through another obstacle that may

cause him to lose. The stairs represented in this case

simply mean that climbing to the first platform is a

trivial action that every user can do without difficul-

ties.

Figure 2 – Five examples of common

situations in platform games

The first case is a generalization to represent the easiest

level that can exist. Due to the subjective nature of the

topic this cannot be proven but common sense seems to

be enough for this situation. The question here can be

reversed and be thought with the following question: Can

we design an easier level than this? In fact, the task re-

quired to complete the referred challenge can be de-

scribed as a single action, where there is no possible way

of losing. Simplifying the problem, it is plausible to say

that this first example is easy because the probability of

losing is zero. Completing this level consists on doing

one simple task with a probability value that can be con-

sidered one. A simple graphical representation is avail-

able in Figure 3.

Figure 3 – State chart for example level 1

The second example tries to create a contradiction with

the conclusion that we can retrieve from the first exam-

ple. In this case, the probability of losing is again zero,

because there are no elements to harm the player’s avatar.

However, winning probability is also zero because the

user needs to jump to an unreachable place. The same

problem will occur if we think of an adaptation of the

first example in which the start and end positions are too

174

Interacção 2010

far apart that there is no user with enough patience to

complete the challenge. This leads us to another aspect to

take into account that is the probability of renouncing.

Considering the psychological approaches to this subject,

the user will resign playing if he/she is bored or frus-

trated. Boredom will occur in a situation as the adaptation

of the first example, with an almost infinite distance be-

tween start and end points. Frustration will occur in situa-

tions as the second example, where the user in presented

with an impossible task. The idea of a good game is to

keep the user in-between those two states, in a state that

is designated as flow [Csikszentmihaly91]. The state

chart in Figure 4 is a possible representation of the de-

scribed situation.

Figure 4 – State chart for example level 2

In the third example we keep the user again in a harmless

level with one single jump that has to be accomplished.

The main difference is that in this case the full probabil-

ity is divided in success and giving up. A state chart is

provided in Figure 5 to represent this situation, consider-

ing P(j�) the probability of success in the first obstacle,

in this case a jump, and P(r) a general resign probability

for the user after failing one challenge. If we consider an

impossible jump, it is possible to state that this case and

the correspondent diagram will result in the previous

situation. In the next subsection we will explore the asso-

ciated calculations that can be extracted.

Player

renounced

Level

Started

Level

Completed
P(j1)

Retry?1-P(j1)

1-P(r)

P(r)

Figure 5 – State chart for example level 3

The fourth example adds the existence of harm, which

cause the player to fail immediately. Considering that the

distances between the start and the end point are small,

we can consider that the user will not forfeit because the

level consists in one single task. So, the probabilities will

be divided directly in winning and losing, as represented

in Figure 6. Those probabilities are only linked with the

difficulty of the jump, which will have a probability of

success defined by P(j�) as in the previous example. We

will also approach this problem with some more detail in

the next subsection.

Figure 6 - State chart for example level 4

Finally, the fifth example gives us a single jump with no

direct harm that causes failure but that requires succeed-

ing in another jump in order to retry. The result is a loop

as in the previous case. The main difference is that, in

this last example, the retrying loop can be broken either

by renounce or by failing in the process. This is repre-

sented with the state chart in Figure 7.

 Figure 7 – State chart for example level 5

After the previous examples we can identify two main

variables that contribute to difficulty in one level:

� P(r): The probability of renouncing after failing one

attempt, which we will consider constant in one

level. This value is directly related to the player’s re-

silience.

� P(j�): The probability of achieving success in the

jump or similar challenge with the index i.

Also, we could identify that there are two main elements

to consider for the difficulty calculations over one level,

which are the obstacles where the avatar may directly

lose and the obstacles that will make the avatar repeat

other obstacles that may eventually cause renounce or

failure.

With these concepts in mind, we will proceed to the next

subsection to understand how to extract final probability

values and thus difficulty.

3.2 Measuring difficulty in a level
In the previous subsection we represented the most com-

mon situations in platform games and identified that dif-

ficulty is related to the probability of being unsuccess-

fully, which might be caused by failure or resignation.

The studied situations were represented as state charts in

which every transition is associated with a probability

value. Our proposal is to calculate the probability of suc-

175

Aveiro, 13, 14 e 15 de Outubro de 2010

cess and failure that is recursively represented in those

charts, and thus extract difficulty.

Calculating probabilities in cases like one, two and four

are simply a sequence of independent cases of probabili-

ties, thus measuring difficulty can be calculated by mul-

tiplying all the values from the start to the end point.

Cases like the examples three and five have loops in the

representation, which makes the calculation less simple.

For instance, probability of success in example four is the

probability of making the jump on the first attempt plus

the probability of making it at the second attempt, if there

is a second attempt, and so on. This can be expressed

mathematically with an infinite equation to represent the

probability of success P(s) as follows:

P(s) = P(j1) + P(j1′). P(r′). P(j1) + ⋯ +�P(j′). P(r′)��. P(j1) + ...

This equation can be compressed, resulting in the follow-

ing:

P(s) = P(j1) ��P(j1′). P(r′)��

�

If we think of a whole level, measuring these probabili-

ties with a formal model will require a long set of equa-

tions and the calculation of these series. However, the

information is more likely to be represented as a state-

chart or a graph rather than in mathematical notation, so

these calculations might be done with a recursive and

iterative algorithm that spreads probabilities over the

nodes until a certain precision is reached.

Considering the previous representations for the whole

problem and that we can recursively spread probability

values through a graph in order to understand what are

the final probabilities to achieve success and failure in

one level, it is important to extract the probability values

for the connections in the graphs, which represent the

difficulty for isolated jumps or, more generically, isolated

obstacles. This topic is about to be approached in the next

subsection.

3.3 Difficulty for independent obstacles
In this subsection we propose a method for measuring the

difficulty for each isolated jump or challenge, which can

be used to feed the probability graphs presented in the

last subsection.

One simple assumption is that a single jump is more dif-

ficult to accomplish if the gap to jump is bigger. This is

valid for platforms at the same height, but for different

heights the problem is not that direct. With a physics

simulator it is possible to identify the multiple alterna-

tives to make a successful jump between two platforms.

Compton and Mateas [Compton06] already proposed this

approach but only as a theoretical possibility without

concretization. In addition, looking at all existing combi-

nations of jumps also gives just a notion on the difficulty

of a jump by counting the successful and failure cases.

Some of those cases will be more likely to happen than

others, because the user keeps correcting the movement

in the jump. Since transposing physical constraints to a

difficulty measurer may be a difficult task, especially if

we are estimating difficulty in an existing game with

closed source, we propose a faster alternative based on

the jump characteristics. So, in a jump, at a higher level

of abstraction, the player is trying to jump from one point

to another. These points represent the edges of the origin

and destiny platform. With this in mind, our approach

consists in launching a projectile from the first point P�

and measuring a possible margin of error for its trajectory

relatively to the second point P�.

Recalling some basic physics, a projectile trajectory can

be defined by the following set of equations in order of

time: x(t) = x� + v��. t and y(t) = y� + v��. t − �
� a. t�

Once every jump is relative to the platform from which

the user is jumping, we can consider the origin point (P�)

as the reference to simplify the equations. Also, we will

not consider a throwing angle, so the initial speed can be

defined as a constant (K�), configurable for different

games. Finally, these calculations are space oriented and

the jump duration is not used, so the calculation can be

resumed as one expression, which is basically a quadratic

equation intersecting the origin, simply defined by:

f(x) = K�. x − 1
2 a. x�

This trajectory can be seen as the biggest possible jump

the avatar can perform. By intersecting the projectile with

two lines that are parallel to the Cartesian axis and that

also intersect the destiny point, we can estimate the pos-

sible deviation to the trajectory that is still a valid jump.

From now, this deviation will be referred as the error

margin. In fact, we are identifying two values: the height

of the player when he/she horizontally reaches the plat-

form (∆y) and the horizontal amplitude of the jump (∆x).

So, our error margin has values in x and y axis (m� and

m�) defined by ∆� − x� and ∆� − y�, respectively, with

P� = (x�, y�). This concept is graphically summarized in

Figure 8.

Figure 8 – Graphical representation of

the concept of error margin

Obtaining m� requires knowing ∆y, which consists on

calculating f(x�). A negative value means that the plat-

form in unreachable with the reference jump. Here, the

system has to identify whether the platform is really un-

reachable and thus the error margin is immediately zero

without any other calculations, or the jump has to be at-

tempted differently (for instance, moving the origin point

176

Interacção 2010

to the left). For positive values we measure the horizontal

tolerance by calculating the value of for which f(x)
equals y�, which consists in solving a second degree

equation and selecting the appropriate root. To normalize

results we consider the error margins as relative values to

the full distances measured along the axis. In the end we

multiply both the normalized error margins to define the

final error margin for the obstacle (&), defined between

zero and one.

Empirically, one can perceive that difficulty is related to

the error margin in a non-linear fashion. As error margin

decreases it is expectable to have a few failures occasion-

ally occurring, but as the error margin gets lower, more

and more failures are willing to occur. To reflect this

principle, we represent the final difficulty value for each

obstacle based in an exponential function with the fol-

lowing equation for difficulty in the obstacle of index i:

D(i) = &)*+

The constant ,- represents the mapping of the linear

error margin and the expected exponential distribution

that can be configured to a certain player profile. In the

results presented in section 4 we will present some com-

parisons.

3.4 Dynamic entities
Our main principles consider a static scenario, which is

somehow a limitation. Some alternatives and proposals

for the dynamic question will be addressed in future

work. However, in this subsection we will present how

we deal with this problem in our current studies.

Typically, in a platform game, dynamic objects are mov-

ing platforms and enemy creatures. For the first ones, we

can consider a gap that separates two platforms and that

is impossible to jump across the gap. One moveable plat-

form slides from one side of the gap to the other, so the

user needs to use it as a transport. Considering that the

user is focused in the task and it is not exploring the sce-

nario in a way that is not intended, this process consists

in jumping two gaps. The main issue is that the move-

ment of the dynamic platform produces an extra error

probability. Also, the faster the platform moves, the big-

ger the error might be. So, for situations like this, we ap-

ply the calculations previously presented for normal

jumps. However, to represent the increase of difficulty

caused by dynamics, the gap distance to consider is a

normal jump to the platform at the nearest place plus an

extra term that is proportional to platform speed and a

constant. Representing enemies can also be considered as

jumping implicit gaps. Depending on the enemy’s char-

acteristics (mainly speed and size), we manually define a

value for P�.

3.5 Final remarks
In this section we have presented an approach to measure

difficulty in platform game levels. For each obstacle we

defined an error margin to extract an estimated probabil-

ity of succeeding. The whole level can be considered as a

graph with multiple transitions where the referred prob-

abilities can be applied to obtain a global value. The next

section presents some results about applying this concept.

4. CASE STUDY
In this section we will briefly explain our experiences on

measuring difficulty in levels of existing commercial

applications. Our experiments consisted on the following:

� Mapping existing game levels in a representation

with only the situations previously presented and

measuring difficulty in the mapped levels with the

principles previously presented.

� Testing levels with real players on the referred lev-

els, measuring their probability of success and com-

paring to the estimated results.

4.1 Mapping and measuring existing levels
As we previously referred, we applied our proposed met-

rics to some existing games. The classics are useful be-

cause normally it is possible to find online bitmaps with

whole level representations. The results of this subsection

present difficulty measurement in some levels of the

game Super Mario Bros.

First, in Table 1 we present the success probability for a

regular user in some levels of this game measured as we

proposed in this document. We selected a set of levels

that share similar objects and obstacles to avoid having

particular aspects biasing the conclusions, such as the

existence of bosses, portals or different physical condi-

tions (for instance, some levels are played under water).

The value T in the table represents the number of times

the user will retry an unsuccessful jump.

Level T=1 T=2 T=3 T=∞

W1L1 10.8% 32.4% 40.8% 44.6%

W1L2 3.5% 10.7% 13.7% 15.0 %

W1L3 .5% .8% .9% 1%

W2 L1 .22% 3.15% 5.8% 7.4%

W3 L1 2.4% 15.9% 21.6% 24.0%

W3 L2 3.6% 13.2% 15.3% 15.7%

W3 L3 .40% .51% .52% .52%

Table 1: Measured values in Super Mario Bros.

One interesting aspect to notice in these results is that, in

fact, levels tend to have higher difficulty values as the

game evolves (less probability of success). It is also pos-

sible to notice that different resilience values for the user

(T) influences the final probability of success. In particu-

lar, a value of 1 represents the less resilient player that

can exist, which is one that resigns automatically after

failing one simple jump.

This particular game, as some others of the genre, organ-

ises the levels in groups named as worlds (in table 1, W

stands for world and L for level). One can also notice that

when a new world starts difficulty tends to have a small

decrease before rising again. This might represent an

intention of having a resting level after completing a dif-

ficult task, in this case, the last level of the previous

world.

Moreover, tuning the exponential coefficient allows ad-

justing the values in proportions to have them to be more

177

Aveiro, 13, 14 e 15 de Outubro de 2010

reliable for usage as real success probabilities. Lower

values are more suitable to represent the more skilled

players, which are very unlikely to lose in small chal-

lenges. Contrary to this, higher values represent less

skilled players that have higher failure rates immediately

as challenges appear.

In Table 2 we fixed the value of T to 3 and vary the ex-

ponential coefficient. So, each column represents the

probabilities for players with different skills in the levels

presented in each row.

Level Kd=.25 Kd=.33 Kd=.50

W1L1 40.8% 28.9% 12.6%

W1L2 13.7% 6.8% 1.4%

W1L3 .9% .2% .01%

W2 L1 5.8% 2.0% .2%

W3 L1 21.6% 13.3% 3.3%

W3 L2 15.3% 8.2% 2.1%

W3 L3 .52% .10% .003%

Table 2: Measured values for difficulty in

Super Mario Bros. with different Kd Values

 We proceed now to some tests we ran with a set of play-

ers in the game Little Big Planet. This game was particu-

larly useful because it allows users to create their own

levels. With this, it was possible to create our own test

set. We created a small template level with a few jumps

and adapted it to have different versions with distinct gap

sizes in order to influence the difficulty. In table 2 we

present the predicted and the effective probability of suc-

cess for each obstacle.

Real P(s)
Pred. P(s)

Kd=.3

Pred. P(s)

Kd=.2

Pred. P(s)

Kd=.1

40,4% 40% 54% 74%

89,3% 48% 62% 78%

91,7% 65% 75% 87%

96,2% 57% 69% 83%

96,2% 57% 69% 83%

96,2% 94% 96% 98%

97,1% 78% 84% 92%

98,0% 74% 82% 90%

98,0% 94% 96% 98%

98,0% 87% 91% 95%

98,0% 89% 92% 96%

98,0% 81% 87% 93%

100,0% 95% 96% 98%

Table 3: Examples of measured difficulty in the levels

created for the game Little Big Planet

Even though we have not yet extracted correlations to the

obtained values, some relations are detectable. In further

experiments we intend to apply some categorizations to

our users, mapped to different values for ,-, in order to

achieve for accurate values.

5. RELATED WORK

5.1 Platform videogames
Platform games have been studied before by a few au-

thors. There are three main relevant works to refer in the

context of this article. In fact, those three articles are the

result of continuous work inside the same research group.

In the first work, Compton and Mateas [Compton06]

studied the structure of platform levels, identifying some

construction parameters to configure platforms. Also,

they identified that platforms are associated together by

patterns that represent the actions that the avatar has to do

in order to pass through a certain section in one level,

designated as cell. They also identified the main struc-

tures of organising cells in one level, which was particu-

larly helpful in the definition of the examples presented

in the previous sections of this document. Finally, they

stated that a system that automatically generates levels

could be improved by measuring difficulty. As a theo-

retical approach, the authors pointed this analysis as one

step of the process. In their proposal, one possible ap-

proach for this was to calculate all possible trajectories

for each jump from one platform to another. With this,

they wanted to be able to calculate the spatial window to

a possible successful jump. In some aspects, the concept

of error margin previously presented in this article repre-

sents a window like this. Also, they wanted to use the

referred physical calculation to extract the time window

the player has to make corrections to the movement.

Later, Smith et al. [Smith08] defined a framework to ana-

lyse platform levels in which concerns to its structure.

Some important concepts were formalised, resulting in a

conceptual model to define a generic level. The need of

classifying difficulty was identified once again but only

proposed as a future work. Recalling the simplifications

or abstractions previously considered to deal with dy-

namic objects and enemies, the same approach was con-

sidered by these authors. For instance, they defined a

platform level as a hierarchy where everything that may

cause damage to the player is a generic obstacle. This

means that one gap between two platforms is an obstacle.

Since in our work we directed our measurements to dis-

tance, our abstraction was built in the other way around,

by mapping objects into gaps.

The previously presented concepts lead to an effective

implementation of a level generator [Smith09]. This im-

plementation starts with a rhythm generator that creates a

set of actions to be done by the avatar. Those actions are

then used with a physics system in order to generate a

valid geometry, which is one that allows the user to repli-

cate the generated actions. A system based on critics

analyses the generated levels to avoid over generation

and also to establish a quality threshold. However, the

geometry that is created is still not analysed with a diffi-

culty perspective. Once again, it was identified the need

of measuring difficulty for further implementations. Also,

the authors stated that measuring difficulty can be used

178

Interacção 2010

inside the critics system. The approach we have pre-

sented allows analysing a level with the condition of hav-

ing the set of actions well identified. Once their proposal

is rhythm-based, which means that all the level is gener-

ated based on a set of actions, difficulty could be meas-

ured as we proposed.

Besides the three previous works, there is one particular

study for platform games that is important to refer, de-

veloped by Pederson et al. [Pedersen09]. Their focus was

directed to more abstract concepts about user experience.

In particular, the authors studied the users’ perceptions in

an adapted version of the game Super Mario Bros. Sev-

eral users played the game with different features to es-

tablish correlations between those features and reported

emotions. A model was built with the obtained results in

order to predict fun, challenge and frustration.

5.2 Difficulty measurements in other genres
In other genres, difficulty has been used in some more

concretized manners. Just to give a brief overview of

that, we will point a few examples.

Togelius et al. [Togelius07] presented a system to auto-

matically generate racing tracks for a driving simulator.

To evaluate each track quality for usage as fitness func-

tion in a genetic algorithm, they used artificial drivers,

mapped to a certain profile, to extract some attributes

such as timings and speeds.

A similar approach was used for Pac-Man-like games by

Togelius and Schmidhuber [Togelius08]. The interesting

aspect of this work is that the generation process pro-

duces game variants instead of game levels. Again, the

main principle used was evolutionary computation and

the measurements of difficulty were accomplished by

making intelligent agents play the game.

Finally, another interesting work to refer was developed

by Pereira et al. [Pereira09]. In this case the objectives

and approaches are considerably different from the last

ones. The considered genre was Strategic Multiplayer

Browser Game, which consists on a slow paced evolution

system, accessed by players a few times on one day to

establish some strategies about virtual resource manage-

ment. The system tries to involve the player in an ambi-

ent that fits the user preferences, with a balanced distribu-

tion of resources to avoid repetition. Also, the authors

refer the importance in handling efficiently the constant

appearance of new players in the earlier stages of the

game.

Naturally, there are several other examples of dynamic

adjustment of difficulty, in particular on commercial

games. Nevertheless, the presented cases are particularly

interesting because they have emphasis on automated

generation of content.

5.3 Practical usage of difficulty measures
As presented in this document, the main importance of

quantifying difficulty is that it also allows adapting it.

Adapting difficulty in videogames has the main objective

of levelling a challenge among intervenients. However, it

is important to make those adaptations without compro-

mising the core player experience [Hunicke05]. For a

single player game, adapting difficulty normally consists

on tuning artificial intelligence behind virtual agents. In

multiplayer games the key idea is to make the challenge

higher to expert players and lower to casual player. The

final goal is that every player has a similar chance of

winning. Basically, it is the same intent as in some sports

that use handicap, such as golf. However, that system is

not always applicable, and in some videogames we can

make performance analysis in real-time and with that

adjust difficulty in a more transparent way. One example

of implementation of this concept is the work proposed

by Martínez and Mata [Martínez09] in which a Pong

version is adapted according to players’ skills. The au-

thors considered that, in this game, difficulty is due to the

paddle size and ball speed. This two attributes are

adapted during game play to balance the result and level

the odds of each player. In addition, these values are also

adapted to make the game challenging enough for both

players, and not too easy or hard for both.

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
We have proposed a way to measure difficulty in plat-

form games and presented its possible application in real

games. With basic probability principles, we define the

flow of action in a level in association with failing prob-

abilities to obtain a final probability of completing a level

with success. Resilience parameters were also considered

to reflect the possibility of a user to resign on harder

challenges. In addition, basic projectile principles al-

lowed a simple estimation of difficulty for each individ-

ual obstacle, which is mapped in a probability value to be

used in the calculations of the full success probability.

Our primal experiences show that estimating difficulty

based on probability gives an effective notion about its

growth. We have tested our measurement in some exist-

ing games, in particular a few classics in the gaming in-

dustry. As presented previously in section 4, with the

results obtained in Super Mario Bros., we could verify

that our approach generally identifies the earlier levels as

being easier than the later ones. This goes in line with the

empirical notion of common users and basic design rules.

One important aspect is that the obtained results don’t

consider the existence of lives (attempts) and check-

points. So, the probability values presented estimate the

chance that the user has to complete the whole levels in

one single try.

Finally, our tests with users also allowed identifying a

relationship between the proposed difficulty estimator

and the real probability of success. Once again, it is no-

ticeable that the difficulty measured can estimate if a

level is easier or harder, but it does not represent an ef-

fective probability of success in one level.

6.2 Future Work
Even though we have identified some of the principles

where difficulty in platform games is based on, some of

those need to be analysed with more depth.

Firstly, we believe that it is important to expand the con-

cept of obstacle. The simplifications used for enemies

179

Aveiro, 13, 14 e 15 de Outubro de 2010

and dynamics were a sufficient solution for this first ap-

proach, but this is a question that requires other calcula-

tions to be defined with more detail.

As stated before, the measurements didn’t consider the

existence of checkpoints and lives that allow the user to

retry the level. It would be interesting to expand the study

taking this aspect in account and identifying possible

differences.

Also, it would be interesting to consider the existence in

some levels of the so called bosses, which are particularly

skilled enemies. For that reason, some levels were not

analysed.

Moreover, it is important to make parameter adjustment

based in real measurements rather than the ad-hoc tuning

that was used. In particular, the coefficient used can rep-

resent the user skills, hence predicting more accurately

the user’s probability of success.

Finally, an interesting way to improve data gathering and

analysis, in particular on what concerns to difficulty,

might consist in the creation of a community where play-

ers could freely play automatically generated levels. This

could improve the results obtained in-game.

7. REFERENCES
[Compton06] Compton, K. and Mateas, M. 2006. Proce-

dural Level Design for Platform Games. Proceed-

ings of the 2nd Artificial Intelligence and Interactive

Digital Entertainment Conference (Stanford, CA,

2006).

[Csikszentmihaly91] Csikszentmihaly, M. Flow: The

Psychology of Optimal Experience. Harper Collins,

NY, 1991.

[Desurvire04] Desurvire, H., Caplan, M., and Toth, J. A.

2004. Using heuristics to evaluate the playability of

games. CHI '04 Extended Abstracts on Human Fac-

tors in Computing Systems (Vienna, Austria, April

24 - 29, 2004). CHI '04. ACM, New York, NY,

1509-1512.
<http://doi.acm.org/10.1145/985921.986102>

[Hunicke05] Hunicke, R. 2005. The case for dynamic

difficulty adjustment in games. Proceedings of the

2005 ACM SIGCHI international Conference on Ad-

vances in Computer Entertainment Technology (Va-

lencia, Spain, June 15 - 17, 2005). ACE '05, vol. 265.

ACM, New York, NY, 429-433.
<http://doi.acm.org/10.1145/1178477.1178573>

[Martínez09] Ibáñez-Martínez, J. and Delgado-Mata, C.

From competitive to social two-player videogames.

Proceedings of the 2nd Workshop on Child, Com-

puter and interaction (Cambridge, Massachusetts,

November 05 - 05, 2009). WOCCI '09. ACM, New

York, NY, 1-5.
<http://doi.acm.org/10.1145/1640377.1640395>

 [Pedersen09] Pedersen, C., Togelius, J., and Yannakakis,

G. N. 2009. Modeling player experience in super

mario bros. In Proceedings of the 5th international

Conference on Computational intelligence and

Games (Milano, Italy, September 07 - 10, 2009).

IEEE Press, Piscataway, NJ, 132-139.

[Pereira09] Pereira, G., Santos, P. A., and Prada, R. 2009.

Self-adapting dynamically generated maps for turn-

based strategic multiplayer browser games. Proceed-

ings of the international Conference on Advances in

Computer Enterntainment Technology (Athens,

Greece, October 29 - 31, 2009). ACE '09, vol. 422.

ACM, New York, NY, 353-356.
<http://doi.acm.org/10.1145/1690388.1690457>

[Smith08] Smith, G., Cha, M., and Whitehead, J. 2008. A

framework for analysis of 2D platformer levels. Pro-

ceedings of the 2008 ACM SIGGRAPH Symposium

on Video Games (Los Angeles, California, August

09 - 10, 2008). Sandbox '08. ACM, New York, NY,

75-80.
<http://doi.acm.org/10.1145/1401843.1401858>

[Smith09] Smith, G., Treanor, M., Whitehead, J., and

Mateas, M. 2009. Rhythm-based level generation for

2D platformers. Proceedings of the 4th international

Conference on Foundations of Digital Games (Or-

lando, Florida, April 26 - 30, 2009). FDG '09. ACM,

New York, NY, 175-182.
<http://doi.acm.org/10.1145/1536513.1536548>

[Togelius07] Togelius, J. Nardi, R and Lucas, S. Towards

automatic personalised content creation for racing

games, Proceedings of the IEEE Symposium on

Computational Intelligence and Games, 2007.
<http://cogprints.org/5573/>

[Togelius08] Togelius, J. and Schmidhuber, J. An expe-

riment in automatic game design. Proceedings of the

IEEE Symposium on Computational Intelligence and

Games, 2008.
<http://citeseerx.ist.psu.edu/viewdoc/summar

y?doi=10.1.1.141.4110>

180

