
Interacção 2010

 GUI for XML Documents Access using Query-By-Example
Paradigm

Daniela Fonte Daniela da Cruz Pedro Rangel Henriques
Department of Informatics, 4710 Braga, Portugal

{danielafonte, danieladacruz, prh}@di.uminho.pt

Alda Lopes Gançarski
Institut Télécom, Télécom SudParis, CNRS UM Samovar

9 rue Charles Fourier, 91011 Evry, France
alda.gancarski@it-sudparis.eu

Abstract
In the context of our research project, we propose an interactive tool (GuessXQ) to perform the access to the
information in a collection of eXtensible Markup Language (XML) documents. Due to the complex nature of
those structured documents, the associated standard query language is also complex and, thus, not easy for most
of the users. The GUI we propose does not require any knowledge about the query language, it is based on the
Query-By-Example (QBE) paradigm from traditional databases. Using QBE, instead of specifying the desired
components of the documents and eventual restrictions in a query, the user exemplifies those components marking
them directly on a sample document picked-up from the collection. We believe this leverages the user’s cognition
about the object to search. GuessXQ is then responsible for the generation of the query to be treated by the
information retrieval engine.

Keywords
XML, XQuery, Query-by-example.

1. Introduction

This paper addresses the problem of eXtensible Markup
Language (XML) documents information access. Those
documents, being structured, are accessed using specific
query languages where the interesting structural compo-
nents are specified, as well as restrictions over them if
needed. The standard query language for XML is XQuery
[BCF+05]. XQuery queries are powerful but complex to
write (the user must have a deep knowledge of the query
language as well as the document structure). To help the
user in the task of specifying his queries, some specialized
editors have been developed ([Kim02], [Oxy08]), but still
requiring a good knowledge level of the query language.
At the same time, thinking that ”Example is always more
efficacious than precept”, HCI researchers proposed a
Query-by-example (QBE) paradigm as a new interaction
mechanism in the context of database querying [RG07].
QBE is based on the concept that the user formulates his
query by filling in the appropriate skeleton tables the fields
(relational projection concept) and/or restrictions on fields
(relational selection concept) he intends to search for.
Due to the complex nature of XML documents querying,
the QBE concept was adapted to XML retrieval [LGB07],
[BC05], [NO04] by showing the XML Schema Definition

(XSD) tree instead of the relational table skeleton. The
system we are developing [dCFH+09], called GuessXQ,
also displays the XML Schema tree representation. More-
over and distinct from other approaches, the user can query
the entire collection exemplifying over a sample document.
Thus, elements selection and restriction is done directly in
the sample document, which gives the user a clear indica-
tion of the information he is searching for.
Suppose the user is willing to search in a ship order doc-
ument composed by a set of ship destinations, where each
one is defined by an address, a city and a country. Consider
also that his specific interest is to look for the order iden-
tifier number 889923 and get all the addresses where the
item with the title The Secret whas shipped to. Adopting
the QBE principle, instead of specifying the query in tex-
tual form, the user selects directly on the sample document
exhibited by the QBE interface (see Fig. 1) the desired id
(attribute value) and the elements person and country, just
clicking and highlighting them.
In this paper, we fully describe the interface (actually a
GUI) of GuessXQ that is responsible for all the interac-
tion between the user and the system, providing to the user
a simple but effective way of querying a collection of XML
documents based on a query-by-example approach. Spe-

89

Aveiro, 13, 14 e 15 de Outubro de 2010

Figure 1. GuessXQ GUI (XML Tab): Sample document and Visual Query specification

cial care will be devoted to: the method used to choose
the sample document from the entire collection; the visual
specification of the query; the generation of an XQuery
sentence from the visual specification; and the presenta-
tion of the documents retrieved.
The remainder of this paper is organized as follows. We
first give an overview of the GuessXQ system discussing
its architecture (Sec. 2). Sec. 3 presents the criteria used
by our approach in order to select a sample document from
the collection. Sec. 4 introduces the interface used to dis-
play the sample document and to allow for the visual speci-
fication of the query. This section elaborates on the way we
implement the QBE paradigm. Sec. 5 describes the three
different modes of querys offered by our system. Sec. 6
discusses the interface to display the information retrieved
from the collection that satisfies the query. To conclude, in
Sec. 7, we make some remarks and discuss the contribution
of our approach, giving directions for future work.
2. GuessXQ System
After the choice of a XSD Schema (displayed in a specific
window), representing the collection of documents from
where the user wants to retrieve information, GuessXQ
picks up a sample document from the collection and
presents it (in a second window) to the user for him to
specify his query. Fig. 1 shows the GUI where the user
selects the components (elements or attributes) directly in
the sample document. Another tab of that GUI is used to
show the query inferred by the system and to display the
documents retrieved.
After the Sample Document Choice, the document picked
up is shown to the user in an interface for Visual Query
Specification. This interface corresponds to the one pre-
sented above in Fig. 1. The Visual Annotations made in
the previous interface are, then, translated into XQuery
by a Query Generator. The generated query is processed
by an Information Retrieval Engine which searches in the
documents collection for the components specified in the

query. The returned components are given back to the user
in a Document Viewer interface.
In the following paragraphs, we detail each bloc.
XML and XSD Repository The repository is a collec-
tion of XML files grouped by their schema (XSD). This
Repository, in a simple way, is composed by two tables:
XMLdocs and XSDfamilies. The XMLdocs table stores the
name of the XML document, its location and its correspon-
dent XSD family; the XSDfamilies table stores the name
of each XSD and its location. To assess our system dur-
ing development we are resorting to an archive of XML
documents for testing, XAT (see [FCdC+10] for details)
composed of documents belonging to the following Web
accessible collections: Medical Subject Headings vocab-
ulary files (MESH), the complete plays of Shakespeare,
Eurovoc - a multilingual thesaurus covering the fields in
which the European communities are active, and a set of
miscellaneous documents collected from different sources.
Collection Selection The collection selection allows the
other modules to access the repository in a systematic and
simple way. It allows the other modules to select a Schema,
a collection of documents, a single document or a compo-
nent of a document. It also offers an appropriate interface
to allow the user to choose a document type (XSD) from
the repository.
Sample Document Choice The choice of the sample doc-
ument is a crucial point in our approach, since the user
specifies his needs over it. Thus, there must be a well
founded logic behind the selection of the sample docu-
ment from the collection. We have identified several crite-
ria which should be taken into account when choosing that
document (document size, number of different elements,
diversity of values, among others), as discussed in Sec. 3.
Visual Query Specification The visual query specification
is done through the sample document GUI (Fig. 1), which
is responsible for the interaction between the user and the

90

Interacção 2010

Figure 2. GuessXQ GUI (XSD Tab): the Collection Schema

system, in a way that allows the user to set the ”example”
for the QBE engine.
In our system, the specification of the query includes the
selection of components (elements or attributes) and the
possibility to restrict them to some desired value. Both of
them are specified by clicking over the desired fields in the
sample document. Each time a node is selected, its color
is changed: this mechanism allows the user to easily see
which nodes are already selected. It also uses different col-
ors to distinguish between elements, attributes and values
(restrictions) selection.
Query Generator After the query specification, the query
generator module has the task of inferring the appropri-
ate XQuery sentence. The selected nodes can be of two
kinds: elements/attributes or values. An example of the
former is selecting person element as shown in Fig. 1; the
later happens for example when selecting the value from
the attribute id. The construction of the query takes in con-
sideration this two types of selected nodes.
Information Retrieval Engine After generating the query
to retrieve document parts, a retrieval engine will access all
documents in the collection where those parts appear. The
engine has the capability to understand the query language
and reach the interesting parts using several indexes.
Retrieved Documents Viewer The Retrieved Documents
Viewer shows the results or answers produced by the re-
trieval engine. The user can choose, in the sample docu-
ment interface (Result view option in Fig. 1), the type of
the result to be shown: just elements; just textual values; or
Miscellaneous (elements and text results in XML format).
Fig. 4 is an example of the output visualization using Mis-
cellaneous mode.

3. Sample Document Choice

In this section we will discuss the criteria used to rank doc-
uments. We identified the following metrics which should
be taken into account when choosing the sample document.

1st Document size Big size files can slow down the sys-
tem; but small size files can contain too little information
or elements to aid the user selection. This metric can be
used as a delimiter to complement the other ones; the prin-
ciple is to not choose a file bigger than a predefined size.
2nd Number of components It is important to take into
account the number of components in the sample. On one
hand, if the file has too many components, it can be too
cluttered for the user to select the desired example. On the
other hand, if the document has few components, maybe it
does not contain all those the user needs.
3th Number of different components To counteract some
of the shortcoming of the previous metric, it may be inter-
esting to look at the number of different components in a
file. This way, if a file contains almost all the elements
and attributes present in the schema, the user gets a more
complete variety of elements to specify his needs.
4th Diversity of Values As stated before, the main inno-
vation of our QBE approach is the capacity of the user to
see sample data and not just the structure (schema) of the
queried documents. Therefore, a metric guaranteeing the
diversity of data is important. Having different values for
the same component allows the user to better understand
the fields in the document he is querying. However, simi-
lar to the other metrics, if there is too much diversity, the
example document may become too big.
5th Number of commonly used components and values
It can be interesting to have a sample document as similar
as possible to the majority of the documents in the collec-
tion. This means that the sample should contain commonly
used components and values which may be the most inter-
esting for the user example. A component/value is con-
sidered to be common if it is in the top N more frequent
components/values of the collection.
As seen, each criterion has its own merits and shortcom-
ings, so they must be used together in a meaningful way.

91

Aveiro, 13, 14 e 15 de Outubro de 2010

Figure 3. Query Mode: the different XPath expressions associated to each component.

4. Visual Query Specification

GuessXQ offers a simple and intuitive GUI that allows
the visual specification of the query, without the need of an
advanced knowledge of the XQuery language. In this sec-
tion, we describe the interaction between the system and
the user through this interface (shown in Fig. 1, as referred
in Sec. 2), to explain the QBE concept proposed.
As previously said, the user starts by selecting the intended
collection choosing a Schema and the system shows its
content in the XSD Tab, as illustrated in Fig. 2.
After the Schema selection GuessXQ suggests a sam-
ple document, as fully described in Sec. 3. To select the
desired components (elements or attributes), the user can
click directly on the specific item of the document (ex-
hibited in the XML Tab, as illustrated in Fig. 1) and re-
stricts their value. To improve this interaction, each time a
component is selected its color is changed. This enhance-
ment is obtained using different colors, according to their
types: elements are highlighted in blue; attributes in green;
PCDATA content is highlighted in red; and the attribute
values in yellow. To unselect an highlighted component,
the user just has to click again over it.
To improve the perception of the restriction implied by
each selected item (in terms of the final query), when the
user puts the mouse cursor over it, GuessXQ shows a tip
with the correspondent XPath expression.
To simplify the search of the components to select, the sys-
tem provides a feature to expand or retract blocks inside the
document, more specifically elements with children nodes.
Fig. 2 illustrates this feature: by clicking on ”-” (minus)
sign, the correspondent block retracts, and only its element
name is displayed, preceded now by a ”+”(plus) sign. To
expand it again, the user just clicks on the ”+” sign, and
the entire element subtree will be displayed.
After finish the visual query specification, the user must
submit it so that GuessXQ starts the IR process, applying
to the entire collection this query (see Sec. 6 for details).

5. Query Generator
GuessXQ generates the XQuery query based on the
union of the paths obtained for each selected component.
These paths are assigned to each document node accord-
ing to three different modes of querying: element-oriented,
parent-oriented and document-oriented, which user can
choose in the Type of view option (as illustrated in Fig. 4).
By default, system selects the element-oriented mode.
In the element-oriented mode, the path reflects the corre-
spondent absolute location path from the root node to the
selected component (as illustrated in Fig. 3 by the first path
shown in each selection). In the parent-oriented mode, the
generator assigns to each document node the absolute path
from the root node to its parent (as illustrated in Fig. 3
by the second path in each selection). In the document-
oriented mode, the generated XPath expression allows the
search of the selected component on the entire document,
independently of its position on the document tree (as il-
lustrated in Fig.3 by the third path in each selection).
Before the submission, the user must select the type of
view he wishes for the retrieved answer, as will be de-
scribed in Sec. 6.

6. Retrieved Document Viewer
Concerning the visualization of the answer retrieved by the
search engine, the user can choose one out of three modes
(as said in Sec. 5): only the correspondent node names
(elements); only the literal (PCDATA) values; or a mixed
of both elements and literal, which shows the entire XML
nodes resulting from the search. By default, the system
outputs the results in mixed mode.
After the submission of the desired selection, GuessXQ
shows in the Results Tab (as depicted in Fig. 4) the re-
spective query and the result of applying it to the entire col-
lection of documents (actually the desired output). First,
the system displays the result extracted from the sample
document, followed by the results (non-empty) extracted
from each other document in the collection. Each result

92

Interacção 2010

Figure 4. GuessXQ GUI (Results Tab): Retrieved Document Viewer

is loaded into a selector, to improve the usability: the user
can expand the selector by clicking over it, or retracting it
again by doing the same action (as illustrated in Fig. 4).
The system also allows to expand/collapse all the selectors
with one click and offers the chance to copy the query or
each particular output to the clipboard. In this way, we aim
at offering a versatile and user-friendly interface.
7. Conclusion
This article presents new contributions for XML query
specification in a user friendly interface. As far as we
know, no other previous work addresses the framework of
QBE in the context of XML information access based on
a sample document from the collection.
In this paper, we focus on the general interface provided by
our tool to support the visual specification of a query based
on a example pointed out over a sample document. This in-
terface also exhibits the query inferred from the selection,
applies it to the entire collection, and at last displays the
retrieved answer (a list of documents or theirs parts).
As future work, we plan to implement different methods
to choose the sample document, as well as to finish other
aspects under construction by now (like output visualiza-
tion). After this, we think about making experiments for
tuning the score computation parameters. As soon as pos-
sible, we intended to step forward to a second experimen-
tation phase; GuessXQ interface will be assessed, testing
the system with real users to measure their level of satisfi-
ability.
References
[BC05] Daniele Braga and Alessandro Campi. Xqbe:

A graphical environment to query xml data.
World Wide Web, 8(3):287–316, 2005.

[BCF+05] S. Boag, D. Chamberlin, M. Fernandez,
D. Florescu, J. Robie, and J. Simeon. Xquery
1.0: An xml query language. w3c working
draft. http://www.w3c.org/TR/xquery, 2005.

[dCFH+09] Daniela da Cruz, Flávio Xavier Ferreira,
Pedro Rangel Henriques, Alda Lopes
Gançarski, and Bruno Defude. Guessxq,
an inference web-engine for querying xml
documents. In INForum’09 — Simpósio
de Informática, pages 322 – 325, Lisboa,
Portugal, September 2009. Faculdade de
Ciências da Universidade de Lisboa.

[FCdC+10] Daniela Fonte, Pedro Carvalho, Daniela
da Cruz, Alda Lopes Gançarski, and Pe-
dro Rangel Henriques. Xml archive for test-
ing: a benchmark for guessxq. In XATA 2010
— XML, Associated Technologies and Appli-
cations, Vila do Conde, Portugal, May 2010.

[Kim02] Larry Kim. The XMLSPY Handbook. John
Wiley & Sons, Inc., New York, NY, USA,
2002.

[LGB07] X. Li1, J. H. Gennari1, and J. F. Brinkley.
Xgi: A graphical interface for xquery cre-
ation. In Proceedings of the American Med-
ical Informatics Association Anual Sympo-
sium, pages 453–457. American Medical In-
formatics Association, 2007.

[NO04] Scott Newman and Z. Meral Ozsoyoglu. A
tree-structured query interface for querying
semi-structured data. Scientific and Statis-
tical Database Management, International
Conference on, 0:127, 2004.

[Oxy08] Oxygen xml editor.
http//www.oxygenxml.com, 2008.

[RG07] Raghu Ramakrishnan and Johannes Gehrke.
Database Management Systems, chapter 6 -
Query-by-Example (QBE). 2007.

93

