Computagdo Graficaem Tempo Real e Paralelizacdo de Algoritmos

Efficient use of Multiple Hardware Components for Image
Synthesis

Francisco Pereira ~ Jodo Paulo Moura José Afonso Bulas-Cruz Luis Magalhédes
Universidade de Tras-os-Montes e Alto Douro

Quinta de Prados, Vila Real
{fsp, jpmoura, jcruz, lmagalha}@utad.pt

Alan Chamers
Warwick Digital Laboratory
University of Warwick

Warwick, UK
A.G.Chalmers@warwick.ac.uk

Abstract

With the advent of affordable and powerful computers systems, even in desktop configurations, the rapid render-
ing of complex scenes using global illumination algorithms is within reach. However, some significant problems
still must be dealt with when performing such physically based lighting simulations if we are to achieve real time
performance on current technology. The power offered by modern computer systems is not only due to the in-
creasing CPU capabilities, but also to the fast development of others system elements, including graphics proc-
essing units (GPU) and other additional processing boards. Ray tracing implementations in such environments
typically target only one hardware component, or at best map specific type of work to particular elements within
the system. This approach leads to an unbalanced work distribution and marginalisation of certain types of re-
sources. In this paper we present a framework for managing and interfacing all the available computational
power within a modern PC in a balanced and efficient way. At the centre of proposed approach is an abstraction
layer between the main rendering stage and the primitives of the rendering process. Several advantages of such
organisation are discussed, including portability and easy extendibility to newer powerful hardware resources
as they become available, optimizations at resource level, modularity, and load balancing. More practical issues
regarding the management strategy and implementation for heterogeneous environments below this level of ab-
straction, where performance is a key aspect, are also presented. To validate this model a set of experiments
were conducted. The results have shown that the introduction of an abstraction layer into the rendering system
can improve the performance and better use the available resources.

Keywords
Parallel Rendering, Platform Independent, Ray Tracing, Real-time.

1. INTRODUCTION posed of several hardware elements that are able to
The significant increase in computational power contribute to the rendering process. Portability to
within standard computer systems and the range of other architectures or resources is not a key issue, at
resources available provided the necessary frame- least in the design stage. More details of the referred
work for the development of customised ray tracers. approaches are presented in section 2.
Implementations have targeted several types of com- The work developed and presented in this paper is
modity hardware [Buck04, Chalmers02, Parker99, part of the Rendering on Demand (RoD) project
Zemcik03] including single processing elements [RoD09]. The project main objective is to produce
[Wald01] or multiple ones in a homogenous envi- high fidelity animations in real time. For this purpose
ronment [Parker99, Wald01], specific hardware ele- three levels of speedup are considered:

ments [Zemcik03] and graphics processing units . P ") di lculati
(GPU) [Buck04, Parker99]. The design of such im- ereeption - avolding unnecessary caiculation

where users will not perceive any difference be-
tween a lower and full quality rendering [Cater03,
Dumont03, Sundstedt04];

plementations was tailored to the underling hardware
at the algorithm and data structures level, for per-
formance purposes, and essentially targets one class
of resources, although computers systems are com-

221

17° Encontro Portugués de Computacdo Gréfica

e Parallel processing - provide an extended compu-
tational power pool using several nodes and man-
age efficiently data and tasks within the work at

hand [Chalmers02, Wald02, Wald03];

Parallel processing at resources level - use all the
resources available in each node and maximise
each resources contribution throughput in the ren-
dering process.

The work described in this paper is related to the par-
allel processing inside each node of the system, with
the overall goal of real-time rendering in mind. This
constraint is embedded in the framework design and
low level support was included in the design.

A more clear view of the interaction between levels
in the RoD project is shown in Figure 1.

Platform Independent Parallelism

Commercial Modellers | Maya, 3ds Max

l Plug-in
Joint Importance Maps |

1 Pixel Priority List

System level parallelism

Selective Rendering |

l P-Code level

| Hardware Resource Allocation | Node level parallelism

Figure 1 — Overview of RoD

2. RELATED WORK

Rendering of high fidelity images and animations has
been undertaken on both CPUs and dedicated hard-
ware. In the CPU domain, optimisation at low level,
such as instruction level parallelism and data repre-
sentation have been used to achieve higher perform-
ance [Wald02]. The main type of hardware targeted,
besides the CPU, is the GPU. Other types of hard-
ware have also been considered. This section will
give an overview of ray tracer implementations car-
ried out using graphics cards, processing boards and
CPU optimisations.

Newer approaches and platforms aim to combine and
facilities a transparent programming between the
CPU and the GPU world. Such examples include
CUDA platform for parallel processing [Halthill08]
and OpenCL open standard for heterogeneous paral-
lel programming [Saha09]. These approaches intend
a more general view of problem solving beyond ray
tracing [GPGPUO09, Owens07].

2.1 Graphics card approach

The current graphics cards architecture is designed to
speedup the rasterisation of images from a geome-
try/texture model, although slowly shifting towards a

222

more powerful generic coprocessor in more recent
times. Outside the computer graphics domain other
algorithms have been implemented, for example, Fast
Fourier Transform (FFT), Basic Linear Algebra and
matrices calculations [Buck04]. It has been shown
that the performance between a top of the line GPU
and the CPU counterpart are very similar for a variety
of problems. The main advantage of the GPU is the
presence of multiple integer and floating units, in a
parallel and pipelined architecture, that benefits the
implementation of matrices based algorithms.

Although the GPU is not optimized for ray tracing,
several primitives are shared with rasterisation mak-
ing this type of hardware attractive for ray tracer de-
velopers. The fast growing computational power/low
cost ratio in GPUs is also appealing. Ray tracing al-
gorithms implemented on such architectures have
achieved performances similar to those achieved with
a standard CPU [Carr02] and several algorithms in
the computer graphics domain have been adapted or
implemented [Buck04].

The definition of a general-purpose stream language
for GPUs by Buck et al. [Buck04] demonstrates the
versatility and power of commodity graphics hard-
ware. The language takes advantage of the GPU
SIMD architecture, programmable vertex and frag-
ment processors, texture memory and internal regis-
ters to implement a streaming paradigm environment.
Streams are arrays of similar data types that can be
processed in parallel by basic transformations defined
as kernels. Results of one kernel are passed to the
next one in an efficient way using internal memory.
Single parameters are stored in internal registers as
read only. All the specificity of the hardware is hid-
den from the programmer by the compiler. The pro-
grammer only needs to define the streams, input and
output, and implement the intended algorithms in the
kernels. This type of environment is well suited for
problems with SIMD behaviour. The major drawback
in GPUs programming is the lack of branching in the
programmable vertex and fragment processors which
difficult the implementation of certain algorithms
such as octree crossing.

2.2 Processing boards

More recently some specific and general purpose
types of hardware boards have been used in the com-
puter graphics domain. The evolution of microelec-
tronics has brought to the market faster and more
resourceful devices such as Digital Signal Processors
(DSP) and Field Programmable Gate Arrays (FPGA).

Zemcik et al. [Camea09, Zemcik03] implemented a
particle rendering pipeline into a hardware board
which includes a DSP and a FPGA. The DSP is
mainly devoted to interfacing and managing the sys-
tem, and FPGA programming. The FPGA is pro-

Computagdo Graficaem Tempo Real e Paralelizacdo de Algoritmos

grammed with the rendering algorithm and accesses
local DRAM present in the board for the data/results.
The main advantage of a FPGA is its adaptation at
instruction level to a specific problem, enabling the
implementation of SIMD instructions for the particle
rendering, in this case. The communication to the
board is available through a serial or Ethernet link. A
newer version of the board will include a PCI inter-
face and several FPGAs on the same board.

The FPGAs provide a simple and powerful way to
implement problem specific instructions with low
impact in the algorithm pipeline. Data parallelism and
pipelining at instruction level can be programmed
into them to obtain higher performance in specific
algorithms. Nevertheless, operations such as isolated
integer and floating point arithmetic are not best
suited for this type of hardware.

More powerful and specific boards have been used
for rendering [Coulthurst08], but the interface and
programming model is more close to the GPU model,
with several processing elements and shared memory
architecture.

2.3 CPU optimizations

At the CPU level, significant performance increases
have been achieved by maintaining the CPU pipelines
and functional units at full capacity, through data
representation adaptation and algorithms re-
engineering. Examples of this type of optimisations
are CPU cache alignment and use of instruction level
parallelism [Wald02, WaldO1]. This includes SIMD
instructions present in the Intel Pentium™ architec-
ture. Wald et al. implemented a ray tracer optimised
for the Pentium architecture [Wald03] especially at
low level data representation and SIMD instructions.
Rays Coherency was used to pack four intersection
tests with triangles into the Pentium pipeline, taking
advantage of the CPU SIMD instructions.

At a higher level the accelerating structure was de-
signed to benefit from the first and second level of
CPU cache alignment. Access time to one level of
cache is normally one order of magnitude less than
the next level of memory. In the shading component
of the ray tracer a similar approach to the ray inter-
section test was followed, but due to data re-
arrangement the speedup obtained was less than ray
intersection. The conjugated speedup of the ray tracer
implemented, compared with Rayshade and POV-ray,
was of one order of magnitude. Compared results
from standard rasterisation with the implemented ray
tracer have shown that ray tracing is more affordable
in scenes with a very large number of polygons,
above one million. This is due mainly to the loga-
rithmic and linear computational power increase with
scene complexity, for ray tracing and rasterisation
respectively [Wald03].

223

3. HRA OVERALL DESIGN

The Hardware Resource Allocation (HRA) is de-
signed to provide an abstract interface between the
Selective Renderer and the underling hardware, as
shown in Figure 2. In addition to the typical data
structures adaptation and optimisation of the low
level rendering primitives in each type of resource,
the HRA must also ensure that all the resources are
working to their maximum capacity. The HRA main-
tains a status of each resource, such as work units
dispatched and data/code present in each resource’s
local memory. The interface between the main ren-
dering program and the HRA process is provided
through two bins: One for depositing work units, by
the selective renderer thread; the other for collecting
processed results.

The HRA collects from the work units’ bin a set de-
pending on type and the resources’ actual allocation
and status. This set is then dispatched to a selected
resource according to the associated communication
strategy in one or more packets. After finishing the
work, the resource returns the result to the HRA to be
stored in the results’ bin. Each resource contains a
part of the rendering algorithm and partial data
needed to complete the requested work units. All the
global management and resources status is kept in the
HRA main thread.

selective
renderer

I A
Requests Results
Y |

Work Units
Bin

Results
Bin

| A
Requests Results

work: 4——Results
HRA
Results ™ work
work Results l
resource 1 resource ... resource N

(process) | interface | [data store —data flows

Figure 2 — HRA dataflow

3.1 Implementation issues

In order to get the maximum computational power
from the underlying hardware, it is important to en-
sure that the workload is subdivided appropriately
amongst the hardware. When considering several
different hardware resources, a number of issues need
to be considered. These include data representation
and size, communication between the main loop in-

17° Encontro Portugués de Computacdo Gréfica

teraction and available resources, and the program-
ming model followed in each type of resource.

The main purpose is to use all the available resources
in the common goal, achieving higher performance
and keeping the generated overhead, due to data con-
version, management and communications, within a
reasonable margin.

3.2 Data representation

There is a trade-off between portability and efficient
implementation of the data structures involved in any
algorithm. One aspect is the basic data types avail-
able in each type of resources and respective resolu-
tion. For example, ray tracing can be implement using
integers or floats. Floating point is more appropriate
for high fidelity graphics. However, graphics cards
currently provide some non standard representations
in the arithmetic units such as 16 bit floats, half reso-
lution, or, 20 bit [Hutchins08].

At a higher level, the data structures representing the
scene elements and basic primitives, rays and shapes
for example, can be internally rearranged and adapted
to the underling hardware caching scheme or opti-
mized for the processing element pipeline at instruc-
tion level parallelism [Wald03]. When using hetero-
geneous hardware, the data alignment and organisa-
tion can be very distinctive between architectures.
The overhead of converting on the fly from one rep-
resentation to the other may cancel any gain obtained
from the code/data optimisation. In addition, the or-
ganisation of the high level data structures, for exam-
ple an octree, must take into account the caching
schemes between the main program loop and the par-
tial code running in the resource.

3.2.1 Heterogeneous communication models

A simple master/slave model can not fulfil all types
of communication between the HRA and resources,
because it does not take into account the broad range
of latency values and communications paths within
the system. This latency can vary from some nano-
seconds in a shared memory approach to several mil-
liseconds in a dedicated connection, such as an
Ethernet link.

The communication model must ensure that when
sending work packets, it can do it without requiring
the results from previous work packets which have
yet to be processed. In addition, the communication
system must avoid contention and be fast enough to
provide work packets rapidly to the faster processing
resources. For the slower resources, a pipelining ap-
proach is more appropriate.

The communication strategy should also take into
account the need to keep the hardware pipeline full or
near its full capacity throughout at all the time during

224

the rendering process, for each of the available re-
sources.

3.2.2 Heterogeneous programming models

The different types of hardware available today in
common desktop computers provide the systems with
useful additional computational power. However, the
underling programming model may vary significantly
for each type of resource. Such programming models
include the sequential imperative model and the
streaming model. This last one is most commonly
used in graphics cards. The proliferation of FPGAs,
in several types of processing boards, has introduced
a new paradigm, mixing traditional programming
techniques with reprogramming/reorganisation at the
hardware level, at setup or runtime. When integrating
all these models together, the designed interaction for
the ray tracing algorithm must take into account sev-
eral layers with different types of granularity.

This mixing of several different programming models
should not interfere with the main algorithm running
on the CPU. Small and simple basic primitives are
thus better to accomplish the interaction between the
main renderer and the hardware resources, and easier
to implement in any of the different programming
models.

3.3 HRA element design

3.3.1 Primitives

Load balancing amongst the different hardware re-
sources, heterogeneous or homogeneous, is best
achieved using a fine grain work division. With this
in mind, the ray tracing algorithm is divided into
three levels: low level primitives, high levels primi-
tives, high level recursive management. The lowest
level includes all the basics primitives involved in ray
intersection and shading with simple objects repre-
sentation. Normally, this kind of primitives can be
easily implemented in a variety of hardware, even
with low memory capacity or programmability. Fur-
thermore, there is no sequential dependency between
the results, thus it is possible to compute them inde-
pendently and concurrently. This approach helps to
divide the work more uniformly amongst the avail-
able resources.

More general data structures and complex algorithms,
which can be composed of low level primitives, are
implemented as a single higher level primitive. An
example of a high level primitive is ray intersection
with an acceleration structure, such as the octree.

The most important feature required from either a
low or high level primitive is that it must be self con-
tained. This means that all the data necessary to ob-
tain the result for that primitive and all the necessary
code for completing the work is available; no other
primitive will be invoked unless it is an integral part

Computagdo Graficaem Tempo Real e Paralelizacdo de Algoritmos

of the one being executed. The primitive is also time
bounded to compute the result. This last rule excludes
recursive calls on the primitive itself. All the high
level recursive nature of a global illumination algo-
rithm is performed at the main rendering loop, using
decomposed primitives and results previously calcu-
lated.

This decomposing of the rendering algorithm into
three components, basic primitives, high level non
self recursive primitives and high level data/function
management permits the definition of a standard API
which can be implemented in each resource. The im-
plementation of the API in a specific type of hard-
ware can be partial due to its memory size or pro-
grammability limitations. For this reason the HRA is
configured with a list of capabilities for each type of
hardware available.

Marginalisation of the hardware and workload unbal-
ancing occurs whenever all the work units in a large
time interval can not be processed by a specific type
of hardware. One option to minimise this aspect in
future developments is to start calculations ahead of
schedule for the type of primitives implemented in
the idle resource. This is not a trivial approach be-
cause it requires more state management from the
main rendering loop or even from the HRA. Another
solution can be to increase the work unit bin length,
but also this can cause less interactivity in a real time
system implementation. This issue will be further
discussed in section 3.3.3.

3.3.2 Work units

The work submitted to the HRA is in the form of
work units. A work unit is composed of a data set and
the function to be applied to that data set. An exam-
ple of a work unit is a simple intersection test be-
tween an object and a ray. In this case the test is the
function, the object and rays are the data set. The
work unit does not contain the actual data or the code
itself, but references to it. This approach offers sev-
eral advantages such as smaller packets sent by HRA
to the resources when the data or code is already pre-
sent in the resource local memory or smaller memory
footprint in the HRA and resources. It also permits
the grouping of several work units together by the
HRA, optimising the resources allocation and the
packet size. In this last case only a copy of each data
set or code is needed even when it is not present in
the targeted resource local memory. The advantage is
even more obvious in the resources with shared
memory access. The data set is an input to the primi-
tive in a read only mode, making data blocking ac-
cess unnecessary.

The code refers to one primitive previous defined,
which make a work unit an instance with a specific
data component. The work units can be seen as a

225

function of code and data references. These parame-
ters are used in the algorithm for management and
dispatch of work units amongst the resources.

3.3.3 Bins for work units and results

The communication and flow control between the
node Selective Renderer component and the HRA is
implemented on top of two data structures called
bins. The work units’ bin has a maximum length that
acts as a flow control mechanism. When the bin is
full the “add work unit” call will block the caller,
being awake after successful insertion. In the current
implementation, the length value is statically defined
as well as the notion of full and empty. By workload
profiling, a strategy for dynamically reconfiguring the
length value and full/empty definition by the HRA
can be implemented in the future to improve system
efficiency and interactivity. A higher value improves
the system efficiency, bigger work units’ set to
choose from, but can delay results and adversely af-
fect interactivity.

Both bins reside in a shared memory space in order to
minimise the latency. Locking inside the bins is per-
formed by mutexs.

Frequently, a sequence of submitted work units has
some component in common, data or code. To ac-
commodate such situations a set of group submission
functions are provided, minimising the interaction
and reducing the submission time. This option also
reduces the time spent in the HRA sorting algorithm
for work units’ dispatch to the resources, due to pre-
submission ordering reduction from the selective ren-
derer.

The results’ bin is simpler to manage because it is
mainly a communication and storage element. No
size limitation is imposed on it. The results from this
bin are removed by the renderer main loop.

3.3.4 HRA data representation

The representation of the basic data types must take
into account the diversity of hardware, namely the
bitwise representation of values. Problems with size
and alignment must be solved before passing the data
to the resources. To overcome alignment problems,
the implementation of the basic rendering data types,
such as points, rays, intervals, pixels, colours, are
defined as arrays. More high level and complex struc-
tures use heterogeneous elements that are mainly
composed of the basic data types referred to previ-
ously. The basic rendering data types are defined on
top of a standard float representation common to all
the available hardware.

3.3.5 HRA work unit sorting and management

The main function of the HRA, besides providing an
abstraction layer between the render and the hard-
ware, is to maximise the efficiency of the whole sys-

17° Encontro Portugués de Computacdo Gréfica

tem. In this heterogeneous parallel environment the
order of work units is not totally imperative, at least
in a small scale, which enables order rearrangement
of the work units. This approach is used to maintain
the resources pipelines at a maximum capacity.

A group packet submission, of work units of the same
type, can improve memory management and effi-
ciency at the resource. Only a read copy of each data
or code is needed, avoiding multiple tests in the re-
source local cache.

The HRA design follows the RoD project main speci-
fications, in which it was defined that all the work
presented to HRA must be performed. Each work unit
has a life time validity and if one or more work units
are constantly not dealt with, due to the arrival of new
work to the bin, its validity will be overdue. To avoid
this problem a maximum delay, sufficiently small
relatively to the life time validity, is set for each work
unit. All the work units with a delay greater than the
maximum have highest priority. The influence of the
bin maximum size in this matter is taken into account
at setup time.

3.3.6 HRA/resources communication

When analysing the communications between the
HRA and the resources, two properties are relevant:
the bandwidth available and the latency of the con-
nection. Taking into account these parameters differ-
ent strategies need to be considered.

A simple master/slave approach is implemented for
high bandwidth and low latency. The work unit or
group of work units is sent regardless of the packet
size. An example of this approach is the Virtual CPU.
The result of a work unit is collected by the HRA as
soon as the execution in the “VirtualCPU” thread
finishes the work assigned. The latency, in this case,
is very small and the resource is not dedicated 100%
to the work unit execution. The idle time, when the
Virtual CPU thread is waiting, can be used by the
other threads in the system such as the HRA and the
selective renderer.

For resources with high latency, the previous model
does not provide an interaction capable of maintain-
ing the resource pipeline fully occupied. The idle
time will affect the resource efficiency, when waiting
for a new work unit and sending a result back. For
this type of situation the communication protocol
must provide a mechanism that enables the transmis-
sion of several work units without results acknowl-
edge. The sliding window protocol, also used in the
TCP/IP protocol suite, is a solution for this case.
Each packet is numbered in sequence order when it is
sent. The window is defined by the number of packets
that can be sent without receiving the results. When-
ever results are received more packets can be sent to
the resource. In the current implementation the work

226

unit order is always preserved and it is assumed that
none of the packets are lost in the communication.
The implementation of the sliding window strategy is
more complex than the master/slave approach and
may be difficult to implement on certain types of
hardware. A ponderable decision between efficiency
and complexity must be taken regarding each type of
hardware available. The sliding window model can
be applied to almost any resource, but the window
size must be tuned according with each resource ca-
pabilities and communications parameters.

For resources with low bandwidth others aspects
must be taken into consideration. In this case the
HRA have to optimize the work units/packet size
ratio. This means more work units in smaller packets.
This aspect is also taken into account with small size
memory devices in order to minimise local cache and
cache misses.

The choice between a master/slave approach or slid-
ing window communication protocol must take into
account the overhead in complexity implementation
and the gain in using the more complex model. In a
fast communication link between a outside resource
(e.g. external processing board) and the main system,
the gain in efficiency may not be worth if it leads to a
complex communication model implementation.

The communication between the HRA and the re-
sources does not confine itself to sending work units
and receiving results. Additional packets or fields
inside a packet are used to exchange system informa-
tion such as workload or memory status. This infor-
mation is used by the HRA to manage and distribute
work units amongst available resources more effi-
ciently.

4. TEST AND RESULTS

In order to test the proposed model in terms of an
overall efficiency, a set of experiments were defined.
The efficiency between the proposed model and a
standard ray tracer implementation were compared.
The test bed was designed only to measure the impact
of the HRA in the overall rendering process speedup,
and the introduction of more than one rendering re-
source in the rendering system. In this sense no low
level optimizations were introduced for any kind of
specific hardware that might alter the experiments
results. Also an effort was taken to minimize the im-
pact of external variables to designed goal, such as
system or hardware level indirect parallelism. As
example, Intel© Hyper Threading™ technology was
disabled to avoid CPU level parallelism, since the
base setup, the standard ray tracer implementation, is
a sequential single threaded program while the others
configurations were multithreaded.

Computagdo Graficaem Tempo Real e Paralelizacdo de Algoritmos

4.1 Defined experiments

Three types of experiments were defined to evaluate
the impact of the introduction of the HRA in the sys-
tem (overhead) and the gains (speedup) achieved with
the inclusion of two hardware rendering elements into
the rendering pipeline, managed by HRA.

In this first type of experiments the main rendering
loop calls the primitives directly, as in a standard
implementation. The main rendering loop and the
primitives are executed within the same thread and no
form of parallelism is used from the user point of
view.

The rendering time from this configuration was used
as a base for relative index for others configurations.
It was, in some sense, considered as a standard ray
tracer implementation.

Main Loop
L] 4
Primitives
Low Level | High Level NR

Figure 3 — CPU without HRA

On the second type, the HRA was introduced and
instead of calling the primitives directly, the main
rendering loop creates work units and puts them in
the work unit’s bin. The HRA was configured to use
only the CPU (VirtualCPU) as a rendering resource.
The main rendering loop, the HRA and Virtual CPU
resource are executed within each own thread. A total
of three threads are used and run concurrently, at
least from the user point of view. This configuration
is more prone to width system parallelism.

Main Loop
v L
HRA
v L)
Primitives
Low Level | High Level NR

Figure 4 — CPU with HRA

Finally in the third and last configuration the HRA is
used with two hardware rendering resources, the CPU
(Virtual CPU) and the GPU. Besides the three threads
found in the previous configuration, primitives are
also executed in the GPU at the same time.

227

Main

HRA

Primitives

Low Level

High Level NR

VirtualCPU + GPU

Figure 5 — CPU+GPU with HRA

In terms of software implementation, and according
with the proposed model, three layers were defined.

e Main ray tracer loop — Responsible for analysing
the scene description, produce the necessaries
work units and gathering the results to produce

the renderer image;

HRA — With the goal of managing the submitted
work units in accordance with the defined strategy
and available resources;

Rendering primitives — Implementation of all
standard low level and high level primitives in the
rendering algorithm, with no recursion (NR in the
figures means No Recursion).

4.2 Hardware setup and results

Two hardware setups were used as platforms for test-
ing the defined experiments. Platform 1 was com-
posed by a 3GHz Pentium 4 single core, 1 GiB of
memory (DRR400), and a NVIDIA GPU 6600GT
(128MiB) with an AGP interface. Platform 2 was
composed by a 3GHz Pentium 4 single core, 1 GiB of
memory (DRR533), and a NVIDIA GPU 6600GT
(256MiB) with a PCI Express interface.

Two scenes descriptions were considered, A and B,
with different geometry and photometric characteris-
tics. Scene A focused more on interreflections and a
higher diffuse light component, while Scene B con-
tains fewer interreflections and higher direct light
component that means more coherency between
casted rays and highest cache hit rate .

Table 1 and Table 2 present some of the default pa-
rameters and obtained results from running the ex-
periments ten times in each different combination of
configuration, scene, and platform.

17° Encontro Portugués de Computacdo Gréfica

Time (in seconds)
PCL+GPUL cPU cPU CPU+GPU
without HRA with HRA with HRA
Number of rays 100000000 | 100000000 | 100000000
Maximum bounces 5 5 5
Number of resources 1 1 2
Scene A
Average - max - min 201,13 234,73 163,19
Relative index 100% 117% 81%
Scene B
Average - max - min 166,81 188,71 139,53
Relative index 100% 113% 84%
Table 1 - Rendering scenes A and B (platform 1)
Time (in seconds)
PC2+GPU2 cPU CPU CPU+GPU
without HRA with HRA with HRA
Number of rays 100000000 | 100000000 [100000000
Maximum bounces 5 5 5
Number of resources 1 1 2
Scene A
Average - max - min 154,99 172,72 123,00
Relative index 100% 111% 79%
Scene B
Average - max - min 127,69 149,40 95,317
Relative index 100% 117% 75%

Table 2 - Rendering scenes A and B (platform 2)

The HRA was designed to work with several and
distinctive types of resources at the same time. When
only one resource is managed by the HRA no real
speedup is achieve with its introduction in the render-
ing process. In this case it will only delay the work
units’ execution and overcharges the CPU with an
extra burden in terms of computational requirements.
Actually it can be observed that this overhead, about
13%, will reduce the system capacity which makes
the use of the HRA in a standard sequential and sin-
gle computational resource configuration unwise.

When comparing the first, CPU without HRA, and
third test, CPU + GPU with HRA, the speedup ob-
tained is 1,39. In this case both CPU and GPU are
used in the scene rendering simultaneously.

In all the experiments the system, overall configura-
tion and not only the render specific setup, was con-
figured to avoid or minimize any side effect for oper-
ating system or hardware tuning. One example was
turning off the hyperthreading option from the sys-

228

tem, because it usually benefits programs with multi-
ple threads. Also experiments were run more than
once, trying to minimize the system caching interfer-
ence. The presented average times from the set of
experiment realized within the same type, do not in-
clude the best and worst time, to remove possible
interferences from external elements, such as file sys-
tem caching policies or operating system memory
management.

5. CONCLUSIONS AND FUTURE WORK

The work presented in this paper shows that the in-
clusion of a hardware resources allocator (HRA) in a
system with multiple computational resources avail-
able may reduce the rendering time. The HRA pre-
sents several advantages over similar approaches.
The most important is the portability in system de-
sign, by separating the rendering process in three
levels, with simpler and smaller work units. The in-
ter-operability of different types of hardware is im-
portant, because it does not limit the use of such a
system on a variety of platforms. The reduced size of
some of the defined primitives and partial implemen-
tation is useful for testing and porting to newer and
more powerful hardware. The development/test cycle
can be shortened because it is unnecessary to imple-
ment the full rendering API specifications into the
new resources.

The HRA design does not only limit itself to manage
the workload between available resources, but has
additional indirect benefits at other levels, such as
code optimisation, execution reordering, resources
caching schemes and more high levels caching strate-
gies.

The current implementation aim is to demonstrate the
versatility and performance enhancements of this type
of approach. Further work is needed to develop dy-
namic parameters tuning, such as the bins length,
work units sorting algorithm taking into account
available resources in the running system, or
HRA/resources communications protocols. Also
more localised values and profiling, such as data/code
distribution, resource occupation and cache hit at
several levels must be evaluated in order to fine tune
the overall model to particular and specific condi-
tions.

6. ACKNOWLEDGMENTS

The work reported in this paper was formed from part
of the Rendering on Demand (RoD) project within
the 3C research programme, who’s funding and sup-
port is gratefully acknowledged.

This work was partially supported by the FCT -
Fundag@o para a Ciéncia e a Tecnologia (Portugal).

Computagdo Graficaem Tempo Real e Paralelizacdo de Algoritmos

The authors would like to thank all of RoD project
team, especially its leader Prof. Alan Chalmers, for
all the support and help provided.

7. REFERENCES

[RoD09] 3CR Projects Rendering on Demand
<http://www.3cresearch.co.uk/renderingond
emandprojectpage.htm>

[GPUO09] General-Purpose computation on Graphics
Processing Units
<http://www.gpgpu.org>

[Camea09] Computation accelerators - Camea — sig-
nal and image processing
<http://www.camea.cz/en/products/technolo
gies/computation-accelerators/>

[Buck04] Buck, T. Foley, D. Horn, J. Sugerman, K.
Mike, and H. Pat. Brook for gpus: Stream com-
puting on graphics hardware, 2004.

[Carr02] N. A. Carr, J. D. Hall, and J. C. Hart. The
ray engine. In HWWS *02: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 37-46, Aire-la-
Ville, Switzerland, Switzerland, 2002. Eurograph-
ics Association.

[Cater03] K. Cater, A. Chalmers, and G. Ward. De-
tail to attention: Exploiting visual tasks for selec-
tive rendering. In Eurographics Symposium on
Rendering 2003, pages 270-280. ACM, June
2003.

[Chalmers02] A. Chalmers, T. Davis, and E.
Reinhard. Practical Parallel Rendering. AK Peters
Ltd, July 2002.

[Coulthurst08] David Coulthurst, Piotr Dubla, Kurt
Debattista, Simon McIntosh-Smith and Alan
Chalmers. Parallel Path Tracing using Incoherent
Path-Atom Binning. Spring Conference on Com-
puter Graphics 2008, April 2008.

[Dumont03] R. Dumont, F. Pellacini, and J. A. Fer-
werda. Perceptually driven decision theory for in-
teractive realistic rendering. ACM Trans. Graph.,
22(2):152-181, 2003.

[Halthill08] Tom Halfhill. Parallel Processing with

CUDA. Microprocessor Journal, 2008.

<http://www.nvidia.com/docs/I0/55972/2204
01 Reprint.pdf>

229

[Hutchins08] E. A. Hutchins and B. K. Angell, "US
Patent 7199799 - Interleaving of pixels for low
power programmable processor." vol. 2008, 2007.

[Owens07] John D. Owens, David Luebke, Naga
Govindaraju, Mark Harris, Jens Kriiger, Aaron E.
Lefohn, and Tim Purcell. "A Survey of General-
Purpose Computation on Graphics Hardware".
Computer Graphics Forum, volume 26, number 1,
2007, pp. 80-113.

[Parker99] S. Parker, W. Martin, P.-P. J. Sloan, P.
Shirley, B. Smits, and C. Hansen. Interactive ray
tracing. In Symposium on Interactive 3D Graph-
ics, pages 119-126, 1999.

[Saha09] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan,
M. Rajagopalan, J. Fang, P. Zhang, R. Ronen, and
A. Mendelson, "Programming model for a hetero-
geneous x86 platform," PLDI '09: Proceedings of
the 2009 ACM SIGPLAN conference on Pro-
gramming language design and implementation,
pp. 431-440, 2009.

[Sundstedt04] V. Sundstedt, A. Chalmers, K. Cater,
and K. Debattista. Topdown visual attention for
efficient rendering of task related scenes. In VMV
2004 - Vision, Modelling and Visualization. Stan-
ford, November 2004.

[Wald01] I. Wald, P. Slusallek, C. Benthin, and
M.Wagner. Interactive rendering with coherent
ray tracing. In A. Chalmers and T.-M. Rhyne, edi-
tors, EG 2001 Proceedings, volume 20(3), pages
153-164. Blackwell Publishing, 2001.

[Wald02] I. Wald, T. Kollig, C. Benthin, A. Keller,
and P. Slusallek. Interactive Global [llumination
using Fast Ray Tracing. In Proceedings of the
13th EUROGRAPHICS Workshop on Rendering.
Saarland University, Kaiserslautern University,
2002. Available at http://www.openrt.de.

[Wald03] I. Wald, T. J. Purcell, J. Schmittler, C.
Benthin, and P. Slusallek. Realtime Ray Tracing
and its use for Interactive Global Illumination. In
Eurographics State of the Art Reports, 2003.

[Zemcik03] P. Zemcik, P. Tisnovsky, and A. Herout.
Particle rendering pipeline. In SCCG ’03: Pro-
ceedings of the 19th spring conference on Com-
puter graphics, pages 165-170. ACM Press, 2003.

