Sintese de Imagem, Modelagdo Geométrica e GPU

Fast CUDA-Based Triangulation of Molecular Surfaces

Sérgio Dias

Abel Gomes

Instituto de Telecomunicacoes,
Departamento de Informatica, Universidade da Beira Interior,

Rua Marqués D’Avilae Bolama,
6200—001 Covilha, Portugal

sergioduartedias@sapo.pt,

agomes@di.ubi.pt

Abstract

Modeling molecular surfaces enables us to extract useful information about interactions with other molecules and
measurements of areas and volumes. Over the years many types of algorithms have been developed to represent and
rendering molecular surfaces, but all these algorithms have problems related to time performance in triangulating
molecular surfaces. One possible solution to solve this problem is using parallel computing systems, but until
recently they have been very expensive. Fortunately, the appearance of the new generation of low-cost GPUs with
massive computational power opens up an opportunity window to solve this problem. So, in this paper, we present
a GPU-based algorithm to speed up the triangulation and rendering of molecular surfaces. Besides we carry out a
study that compares a sequential version (CPU) and a parallel version (GPU) of a molecular surface representation

using the Marching Cubes (MC) Algorithm.

Keywords

Connolly surface, molecular surface, implicit surface, GPU computing.

1 INTRODUCTION

The study of molecular surfaces was initiated by Richards
in 1974 to solve the protein folding problem that con-
sists in predicting the three dimensional structure of a pro-
tein [Agostino 08]. This problem happens because at that
time there was not a method to represent a 3 dimensional
structure of a molecular surface. Consequently, it was not
possible to know other aspects of a molecule, namely sub-
strate binding, catalysis and drug-nucleid acid interaction,
which require a formal geometrical representation.

To solve this problem, Lee and Richards proposed a new
representation for molecular surfaces [Lee 71]. They for-
mulated the molecular surface from the van der Walls sur-
face (also called VDW surface), which is simply the sur-
face of the union of the atoms of a molecule. The Lee-
Richards surface is a kind of inflated or offset VDW sur-
face, where the offset displacement is given by the ra-
dius of the probe sphere (representing the solvent or water
molecule) that abstractly rolls on the molecule atoms. Sim-
ilar to VDW surfaces, Lee-Richards surface also present
crevices and other singularities that originate difficulties in
shape matching, as needed in docking.

To solve this latter problem, i.e. to remove the singulari-
ties mentioned above, and get a smooth surface, Connolly
implemented a new molecular surface model given by a
network of two types of surface patches [Connolly 83]:

103

e Contact Surface Patches. These patches concern the
surface patches of the atoms that are accessible to or
in contact with the probe sphere. Thus, these patches
are convex.

o Re-entrant Surface Patches. These patches concern
the surface patches generated from the surface of the
probe sphere when it rolls on the atoms. Some of
these patches are concave, some are saddle toroidal.

This new model of molecular surface was given the
name of solvent-excluded surface (SES or Connolly sur-
face) [Sanner 98]. The result is a smooth molecular surface
given by stitching together convex, concave, and toroidal
surface patches. This stitching operation is not that easy
because it requires the computation of the curves of contact
between neighbour patches, as well as to find the differen-
tial conditions that guarantee the smoothness between two
neighbour patches.

Alternative algorithms have been used to represent molec-
ular surfaces such as, for example, Ray Tracing [Blinn 82]
and Marching Cubes [Lorensen 87]. Marching Cubes re-
quires a kind of isosurface, not a surface formulated as be-
ing compounded from patches. The MCs algorithm gen-
erates a triangular mesh that approximates the isosurface.
Unfortunately, this algorithm is very time-consuming for
a large number of voxels. To overcome this problem, re-
searchers have used parallel systems to deal with large vox-

17° Encontro Portugués de Computacdo Gréfica

elizations, but they are very expensive. But now, we can
take advantage of the low-cost programmable GPU graph-
ics cards to render surfaces of molecules with thousands of
atoms.

So, the purpose of this paper is just to describe a new
GPU-specific algorithm to triangulate and render molec-
ular surfaces that implements a CUDA-based parallel ver-
sion of Marching Cubes. Besides, we carry out a com-
parative study of the time performance between CPU- and
GPU-based triangulation algorithms to render molecular
surfaces.

This paper is organised as follows. Section 2 describes the
mathematical formulation of Connolly surfaces. Section 3
briefly introduces the CUDA technology. Section 4 de-
scribes the CUDA-based triangulation algorithm for Con-
nolly surfaces. Section 5 carries out a time performance
analysis and comparison between CPU- and GPU-based
marching cubes algorithms. Finally, Section 6 summarises
the main results obtained with our algorithms, and points
out directions for future work.

2 ANALYTIC MOLECULAR SURFACES

A molecule as a set of atoms can be mathematically de-
scribed as a union of balls, each representing an atom. In
this paper, we are interested in analytical formulations of
molecular surfaces that result from summing up local func-
tions that describe the electrical field of atoms. This is so
because each atom has its own electrical field, which can
be described by an analytical function that decays with the
distance. It is clear that there several functions that can
describe the electrical field of an atom, namely: Gaussian
function [Blinn 82], Wyvill function [Wyvill 86], and in-
verse quadratic distance function. In this paper, we use the
inverse quadratic distance kernel given by:

fi($7y7z) = g

T

)

where C' stands for the smoothness or blobiness parameter
andr; = (x—x;)%+(y—yi)*+(2—2;)? is the squared dis-
tance from the center (x;, y;, z;) of the atom i to a generic
point (z,y, z). Typically, the parameter C' takes on a value
in the interval |0, 1]. Thus, the electrical field of each atom
in the molecule is formulated as a distance function, i.e. an
implicit scalar function. The molecular surface is the re-
sult of the summation of the distance functions associated
to all atoms, i.e. the summation of electric fields of all the
atoms, as follows:

N

F(z,y,2) = Zfi(%yaz)

=0

2

where NN is the total number of atoms of the molecule.
The atomic local functions f; work as blending functions
of the resulting molecular surface, which will be hope-
fully smooth. The smoothness of the molecular surface de-
pends on the smoothness of the blending functions. Thus,
the blending functions must be differentiable. A surface

104

with this characteristics is referred to as convolution sur-
face [Bloomenthal 91].

A molecular surface formulated in this manner is an im-
plicit surface that is defined by a function F' with do-
main R3 and range R. This implicit molecular surface
is given by all the points in R? that satisfy the function
F(z,y,z) = T, where T is the isovalue. That is, it cor-
responds to the level set defined by the constant 7. Thus,
F' > 0 for points outside the surface, and F' < 0 for points
inside the surface, and /' = T for points on the surface.

3 GPU PROGRAMMING USING CUDA

We took the decision of running our program on GPU be-
cause our algorithm fits very well in the parallel computing
model. In fact, the voxelization of the axis-aligned bound-
ing box that encloses the molecule allows us to speed up
the program by assigning a thread to each voxel. So, before
proceeding any further, let us first see important details re-
lated to CUDA technology and GPU programming.

3.1 CUDA Architecture

CUDA (Compute Unified Device Architecture) gives data-
intensive applications access to the tremendous process-
ing power of NVIDIA graphics processing units (GPUs)
through a revolutionary computing architecture unleash-
ing entirely new capabilities [Owens 08]. In our work, we
have used a NVIDIA GeForce GTX 280 graphics card.
This graphics card includes 10 thread processing clusters
(TPCs), where each TPC consists of 3 streaming multi-
processors (SMs), with each SM having 8 stream proces-
sors, which yields 240 cores in total. Each core processes
threads; hence the parallel computing model on GPU. To
control and distribute the massive computing load by the
240 cores, we use a thread scheduler to guarantee a nearly
full utilisation of the GPU [NVIDIA 08b].

3.2 CUDA Programming Model

When we are programming in CUDA we must take care
of how a program is going to be executed. In this pa-
per, a CUDA program is written in C, in which we have
CPU-specific functions and GPU-specific functions. A
CPU-specific function runs on the CPU (host), while a
GPU-specific function is executed on the GPU (device) as
shown in Figure 1. There are three types of GPU-specific
qualifiers. The first, named __global__, acts as prefix of
functions that are GPU kernels, that is GPU functions that
are invoked from CPU-specific code. The second, named
device,, qualifies a GPU function that can be only
called from a GPU kernel. Finally, the third qualifier is the
keyword __shared__ that acts as a prefix of a variable al-
located in the streaming multiprocessors shared memory.
Note that GPU-specific functions are prohibited to be re-
cursive.

There are other three important CUDA functions to
(dis)allocate memory on the GPU side and to exchange
data between CPU and GPU. The cudaMalloc is used to
allocate memory on GPU, while the cudaFree function
releases memory space from GPU. The cudaMemcpy

function serves to transfer data from the CPU side to GPU
side, and vice-versa. Note that GPU runs kernels. A kernel
is a GPU-specific function that launches threads, hierar-
chically organised into grid—blocks—threads [NVIDIA 08a,
Owens 08], as illustrated in Figure 1.

| Device

Host

Block
Kernel 1 ————> (0.0)

Block
. Lo

B

Block
2,0

| Biock |
@1

" Biock
g .

Block(1, 1)
Thresd Thresd Thead |
oo o @0
Thread Thread Thread |
oy @) @n
Thread Thread Thread |
(L2

©2 @2

Figure 1. GPU Architecture [NVIDIA 08b]

The compilation of a CUDA program is done in three
stages. The first extracts the CPU code from the CUDA
file into an intermediate file that is then passed to the stan-
dard C compiler. Next, the remaining code, that is the
GPU code, is converted to a PTX file (i.e., a kind of as-
sembly language). The third stage translates this PTX file
into GPU-specific commands and encapsulates them in an
executable file.

4 TRIANGULATION OF CONNOLLY SURFACES

Amongst all the available triangulation algorithms used to
render molecular surfaces, the Marching Cubes algorithm
is possibly the most adequate for GPU processing. This
is justified by the fact that MCs lead to an uniform space
partition of the bounding box into voxels, which is ideal for
the design of a possible parallel implementation on GPU.

4.1 Marching Cubes: Overview

This algorithm starts by dividing the space that contains the
molecule into an uniform grid of voxels of appropriate size.
The next step is the calculation of the electrical field inten-
sity F' at all voxel vertices of the grid (Equation 2). Do-
ing this involves very time-consuming computations, due
to the fact that organic molecules may have long chains
of atoms, and the spatial distribution of these atoms often
requires very large grids, even for molecules with a small
number of atoms. To deal with this problem, our algo-
rithm calculates the intensity in a per atom charge fashion,
instead of calculating it at each grid vertex directly. Since
the influence of the field can be neglected beyond some ap-
propriate distance, this optimisation can be used in general
for intensity calculations. Next, we calculate the position

105

Sintese de Imagem, Modelagdo Geométrica e GPU

of the voxel for each atom, and then we define a sub-grid
centered on such a atom/voxel. The intensity contribution
of this atom adds to the current intensity of each sub-grid
vertex.

Terminated the computation of the intensity ' for all grid
vertices, we have to determine the 8-bit flag for each voxel.
This flag characterises the surface inside each voxel. The
flag bits form an index to a lookup table to determine which
edges of each voxel intersect the isosurface. If F' > T at
a grid vertex, the corresponding flag bit is set to 1; other-
wise it is set to 0. After, setting the flag bits for each voxel,
the algorithm uses the lookup table to determine which of
the 256 cases of surface fits inside the voxel. When this is
done, the algorithm goes a step forward to interpolate the
surface vertices, for each cube along the appropriate edges,
by using the lookup tables. After computing the surface
vertices for all voxels, we are ready to generate the trian-
gles inside each voxel, which together form the the final
mesh that approximates the molecular surface. It is clear
that rendering this surface mesh requires the calculation of
the triangle normals. The reader is referred to Lorensen
and Cline [Lorensen 87] for further details on MCs.

4.2 GPU Implementation

We use CUDA to implement a variant of Marching Cubes
(MC) algorithm for molecular surfaces. All MC compu-
tations are carried out on the GPU. The algorithm can be
described as follows:

e Bounding Box Computation (CPU side). We first
determine the axis-aligned bounding box that en-
closes a given molecule is determined while reading
in the centers of atoms from a PDB file into an 1-
dimensional array of size M, where M is the number
of atoms of the molecule. The computation of the
bounding box means here computing the locations of
the opposite vertices of the diagonal of the bounding
box.

e Voxel Decomposition (CPU side). Next, we determine
the number N = I x J x K of cubic voxels with a pre-
defined size, where I, J, and K stand for the number
of voxels along z-, y-, and z-axis, respectively, that fit
the bounding box.

e Allocation and Copying of Data Structures to GPU.
This step involves the allocation of GPU memory for
two 1-dimensional arrays, to where we copy the ar-
ray of M atomic centers and the array of IV inte-
gers, one integer for each voxel; these two operations
are carried out by calling the cudaMallloc and
cudaMemcpy functions from the CPU side. These
two functions are also used to allocate and copy the
lookup tables of the MC algorithm, as well as the ar-
ray of all voxel vertices, to GPU memory. The pre-
vious array of N integers serves the purpose of stor-
ing the number of vertices of the triangulation of the
molecular surface patch inside each voxel, as needed
in a later step.

17° Encontro Portugués de Computacdo Gréfica

Computation of Electric Field Intensities at Voxel Ver-
tices (1st GPU kernel). This kernel computes the in-
tensity of electric field at each voxel vertex; this value
is initialised to zero at each vertex. Because the num-
ber of voxels largely exceeds the number of atoms,
the intensity computations are carried out per atom
rather than per voxel. This is reinforced by the fact
that many biological molecules have long chains of
carbon atoms which are not attached to the chains,
which implies that the spatial distribution of these
atoms originates very large bounding boxes even
for molecules with a small number of atoms. The
per-atom intensity computation only occurs within a
boxed neighbourhood around each atom, i.e. at the
vertices of voxels surrounding each atom center. The
local box centered at each atom center has usually
20 x 20 x 20 voxels. Thus, we are assuming that
the local function f; (see Eq. 1) of the atom 4 beyond
its surrounding box takes on the value 0. In short, the
intensity contribution f; of the atom ¢ at each vertex
of its surrounding box is added to the current intensity
value F' of such vertex.

Computation of MC Configurations for Voxels (2nd
GPU kernel). After computing the intensities F' at the
grid of vertices, we determine the 8-bit flag —a bit per
voxel vertex— that corresponds to 1 out of 256 MC
surface patterns we may have inside each voxel. A bit
has the value 0 if the corresponding vertex has an in-
tensity under the pre-defined isovalue, and 1 if the in-
tensity is over the isovalue. This 8-bit flag works as an
index to the lookup table for determining which edges
of the voxel intersect with molecular isosurface. This
gives the number of vertices of the mesh that approx-
imates the molecular surface inside each voxel; this
number is stored into the array of N numbers men-
tioned above (3rd step). Each element of this array
stores the number of vertices we use to triangulate the
surface inside each voxel.

Allocation of VBO Array for Posterior Rendering of
Surface Mesh (3rd GPU kernel). By performing a
Parallel Prefix Sum (scan) [Harris 07] of the number
of mesh vertices in the array of N numbers of the
previous step, we determine the total number of ver-
tices that sample the molecular surface, from which
we triangulate the surface. Recall that this triangula-
tion will be done locally inside each voxel, as usual in
the MC algorithm. This Parallel Prefix Sum operation
is carried by calling the function cudppScan, which
is essentially another GPU kernel. The number of ver-
tices output by cudppScan is then used to allocate a
VBO (Vertex Buffer Objects) array for the mesh ver-
tices, from which we can later generate triangles to
render the mesh that approximates the molecular sur-
face.

Setting up a Mapping Array Between Array of N
Voxel Numbers and VBO Array (4th GPU kernel).

106

This kernel creates an intermediate array of N el-
ements between the array of /N voxel numbers and
the corresponding VBO array, which allows to map a
given voxel (and its surface vertices) to its first surface
vertex in the VBO array. That is, for each voxel, the
mapping array stores the index of the VBO array ele-
ment where we will later store the first surface vertex
associated with such a voxel. This allows to create an
association between the occupied voxels (e.g. voxels
transverse to the molecular surface) and the correct
position in the VBO array.

e Computation of Surface Vertices by Linear Interpola-
tion (5th GPU kernel). This GPU kernel uses linear
interpolation along the voxel edges that intersect the
molecular surface in order to sample the surface. The
lookup tables are here useful to tell us which are the
edges that intersect the surface. The resulting sam-
pling points of the surface will be the triangle vertices
of the mesh that approximates the surface. These sur-
face points are computed for each voxel and are stored
into the VBO array using the previous mapping array.

o Computation of Surface Normals at the Vertices in
VBO Array (6th GPU kernel). Taking into account
that the vertices stored in the VBO array are points of
the molecular surface, the normal at a given surface
point is given by the gradient vector as follows:

oF OF OF

VF = (%7 aiy’a)

3)

where

OF & —2C (z — x;)
ox z:: [(x —2:)2 + (y — 9:)* + (2 — 2:)?]?

OF & —2C(y—vi)
dy ; [(z —2i)? + (y — %) + (2 — z)?]?
and

or al —2C (2 — %)
2D 3] T e e e e

These normals are stored in a separate array.

e Rendering the Molecular Surface (CPU side). Taking
into consideration that the VBO array in the GPU can
be accessed from the CPU side, we have only to dis-
play the VBOs to render the surface. We use Gouraud
shading that comes with OpenGL.

5 RESULTS

In our tests, we have used a Windows XP PC equipped with
a Quad Core Q9550 running at 2.83 GHz, and 4GB RAM,
and a NVIDIA GeForce GTX 280 CUDA-programmable
graphics card. We have written two programs for the same
algorithm:

o CPU-based Serial Program. This program was writ-
ten in C++, and makes usage of the STL (Standard
Template Library).

e CUDA-based Parallel Program. This program was
written in C, and makes usage of the CUDA API.

We have used 16 different molecules, read in from the cor-
responding .pdb files, to compare the time performance of
both algorithms, as shown in Tables 1 and 2. These .pdb
files are ASCII files and were taken from the Protein Data
Bank (PDB) at www.rcsb.org, which is a repository
for 3D structural data of molecules. Each molecule has a
unique ID (see first column of both Tables 1 and 2).

ID # # # CPU
Atoms | Voxels | Triangles | Time
110D 120 346580 6447 0,43
200D 259 603520 13460 1,2
1QL1 322 1581370 18558 1,9
4PTI 381 1043464 24566 3
1BK2 468 650160 24511 3
2QZF 479 3536664 27386 3,6
2QZD 507 3860800 29642 4
20715 545 1154032 32131 4,14
1HHO 691 1632000 25639 4,46
IHGV 691 1970752 25938 4,57
1HGZ 691 1605760 24968 4,36
2INS 781 1316250 43250 7,3
1QL2 966 4619920 56025 11,5
11ZH 1521 | 2578680 88512 25,1
1IGTO | 2746 | 5681590 | 140821 | 67,87
1BIJ 4387 | 7229120 | 243101 179,1

Table 1. Time performance using CPU.

ID # # # GPU
Atoms Voxels Triangles | Time
110D 120 352000 6492 0,13
200D 259 610176 13522 0,26
1QL1 322 1600896 18694 0,39
4PTI 381 1053440 24168 0,4
1BK2 468 657920 24204 0,35
2QZF 479 3562624 27002 0,72
2QZD 507 3901824 29204 0,94
20T5 545 1167360 32048 0,51
1HHO 691 1652608 25839 0,67
1HGV 691 1994752 25936 0,7
1HGZ 691 1626112 25149 0,64
2INS 781 1326976 42722 0,82
1QL2 966 4654208 56388 2
11ZH 1521 2601472 86380 2,15
1GTO 2746 | 5720832 | 138354 6,9
1BIJ 4387 | 7267456 | 239896 | 14,26

Table 2. Time performance using GPU.

The time performance results output by both programs are
presented in Tables 1 and 2, where we find columns for the

107

Sintese de Imagem, Modelagdo Geométrica e GPU

2 140
2120
2 100
&
o 80
g 60
2 40
20
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
N® Atomos
Figure 2. CPU runtime analysis
16
14
12
8 10
5
8
g
Q26
2
£ 4
(i
=2
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ne de Atomos

Figure 3. GPU runtime analysis

number of atoms (# Atoms), number of voxels (# Voxels)
and number of triangles (# Triangles). Table 1 also has the
column ‘CPU time’ that shows the time performance of the
serial program in seconds, while the column ‘GPU time’ in
Table 2 presents the time performance of the CUDA-based
parallel program.

Comparing the results obtained in CPU (Table 1) and
GPU (Table 2) we note slightly differences in the num-
ber of voxels (and, consequently, triangles). These dif-
ferences are due to the distinct formulas we use to calcu-
late the number of voxels in CPU and GPU. We use the
formula (Bxz x By x Bz) for the CPU, and the formula
(Bzx x By X Bz) + (By x Bz) 4 (Bz) for the GPU, where
Bz, By, Bz are the sizes of the bounding box along each
axis. The rationale behind these different formulas are:

e Division of GPU Threads. The number of threads per
block —in a grid of thread block— is a multiple of
2; we have used 128 threads per block. This means
that the number of voxels of the bounding box that
encloses the molecule must also be a multiple of two
because each voxel is processed by a single thread.

o Voxel Indexing. Taking into account that GPU 3D
arrays were not available at the starting time of this
project, we had to arrange the indexing formula given
above for an equivalent 1D array in the GPU memory.

As expected, and looking at Tables 1 and 2, the main differ-
ence between CPU- and GPU-based implementations oc-
curs in time performance, as a consequence of the num-
ber of voxels that are processed at the same time. CPU-
based implementation processes a single voxel at a time,
while GPU-based implementation processes voxels simul-

17° Encontro Portugués de Computacdo Gréfica

taneously, with each voxel being processed by a single
thread. In true, our GPU implementation was designed in a
manner that a thread processes a small number of voxels in
sequence. This happens as an consequence of the massive
computation that the GPU can process in parallel with its
multiple arithmetic logic units. Consequently, GPU-based
implementation is much faster CPU-based counterpart.

Figures 2 and 3 show the time complexity of the CPU-
and GPU-based algorithms, respectively. Figure 2 shows
that the CPU-based algorithm has quadratic complexity be-
cause the graph approximates a parabola. On the other
hand, Figure 3 shows that the GPU-based algorithm has
linear complexity because, apart the unstable behaviour for
small molecules (as a consequence of the non-uniform dis-
tribution of atoms), the graph approximates a line. This
happens because CPU processes a voxel at a time, while
GPU processes several voxels simultaneously.

6 CONCLUSION

In this paper we have presented a CUDA-based method to
render molecular surfaces on GPU. The main contribution
of this work is a multi-threaded GPU-based implementa-
tion of Marching Cubes algorithm to triangulate and render
molecular surfaces. Also, a comparison to a CPU-based
implementation of the Marching Cubes has been carried
out for a number of different molecules.

Besides, taking into consideration the linear time complex-
ity of the GPU-based algorithm, we hope in the near future
to design and implement a scalable parallel algorithm us-
ing a cluster of GPUs in order to process and render large
molecules (i.e. with hundreds of thousands of atoms) in
real-time.

References

[Agostino 08] Daniele Agostino, Andrea Clematis,
Ivan Merelli, Luciano Milanesi, and
Matteo Coloberti. A grid service based
parallel molecular surface reconstruc-
tion system. In PDP ’08: Proceed-
ings of the 16th Euromicro Conference
on Parallel, Distributed and Network-
Based Processing (PDP 2008), pages
455-462, Washington, DC, USA, 2008.

IEEE Computer Society.

[Blinn 82] James F. Blinn. A generalization of al-
gebraic surface drawing. ACM Trans.

Graph., 1(3):235-256, July 1982.

[Bloomenthal 91] Jules Bloomenthal and Ken Shoe-
make. Convolution surfaces. Computer

Graphics, 25(4):251-256, 1991.

[Connolly 83] Michael Connolly. Solvent-accessible
surfaces of proteins and nucleic acids.
Science, 221(4612):709-713, August

1983.

[Harris 07] Mark Harris, Shubhabrata Sengupta,

and John D. Owens. Parallel prefix sum

108

[Lee 71]

[Lorensen 87]

[NVIDIA 08a]

[NVIDIA 08b]

[Owens 08]

[Sanner 98]

[Wyvill 86]

scan with cuda. In GPU Gems 3, ed-
itor, Hubert Nguyen. Addison-Wesley
Professional, Upper Saddle River, New
Jersey, Aug 2007.

B. Lee and F. Richards. The interpreta-
tion of protein structures: Estimation of
static accessibility. Journal of Molec-
ular Biology, 55(3):379-380, February
1971.

William E. Lorensen and Harvey E.
Cline. Marching cubes: A high res-
olution 3d surface construction algo-
rithm. In SIGGRAPH ’87: Proceed-
ings of the I14th annual conference
on Computer graphics and interactive
techniques, volume 21, pages 163-169,
New York, NY, USA, July 1987. ACM
Press.

NVIDIA. CUDA programming
guide 2.0. http://developer.
download.nvidia.com/
compute/cuda/2_0/docs/
NVIDIA_CUDA_Programming_
Guide_2.0.pdf, Jul. 2008.

NVIDIA. Technical brief informa-
tion. http://www.nvidia.com/
docs/I0/55506/GeForce_GTX_
200_GPU_Technical_ Brief.
pdf, Jun. 2008.

J. D. Owens, M. Houston, D. Luebke,
S. Green, J. E. Stone, and J. C. Phillips.
Gpu computing. Proceedings of the
IEEE, 96(5):879-899, 2008.

Michel F. Sanner, Arthur J. Olson, and
Jean-Claude Spehner. Reduced surface:
An efficient way to compute molecular
surfaces. Biopolymers, 38(3):305-320,
December 1998.

Geoff Wyvill, Craig McPheeters, and
Brian Wyvill. Data Structure for
Soft Objects. The Visual Computer,
2(4):227-234, February 1986.

Sintese de Imagem, Modelagdo Geométrica e GPU

o B
¥ -

Figure 4. Examples of molecular surfaces displayed using multi-threaded Marching Cubes algo-
rithm. (a - PDB ID:110d), (b - PDB ID:200d), (c - PDB ID:1ql1), (d - PDB ID:4pti), (e - PDB ID:1bk2), (f
- PDB ID:2qzf), (g - PDB ID:2qzd), (h - PDB ID:20t5)

109

17° Encontro Portugués de Computacdo Gréfica

(@) (b)

(© (d)

(@ (h)

Figure 5. More examples of molecular surfaces displayed using multi-threaded Marching Cubes
algorithm. (a - PDB ID:1hh0), (b - PDB ID:1hgv), (c - PDB ID:1hgz), (d - PDB ID:2ins), (e - PDB
ID:1ql2), (f - PDB ID:1izh), (g - PDB ID:1gt0), (h - PDB ID:1bij)

110

