
AniMAL
A user interface prototyper and animator

for MAL interactor models

Nuno Guerreiro
pg10965@mail.uminho.pt

Sandrine Mendes
pg10968@mail.uminho.pt

Vı́tor Pinheiro
pg11965@mail.uminho.pt

José Creissac Campos
jose.campos@di.uminho.pt

Departamento de Informática/CCTC, Universidade do Minho
Braga, Portugal

Resumo
Engineering correct software is one of the grand challenges of computer science. Practical design and verification
methodologies to ensure correct software can have a substantial impact on how programs are built by the industry.
As human-machine systems become more functional, they also become more complex. Consequently, the inter-
actions between the machine and its users becomes less predictable and more difficult to analyse. Using Model
Checking it is possible to automatically analyse the behaviour of a modelled system. Hence, different authors have
investigated the applicability of model checking to the analysis of human-machine interactions.
The IVY workbench is a tool that supports system design and verification, by providing a model checking based
integrated modelling and analysis environment. The tool is based around a plugin architecture, and although
it features a verification results’ analyser, it thus far lacked the ability to visually expose the sequence of events
that lead to a system failure on a system’s prototype. We propose the AniMAL plugin as an extension to the IVY
workbench, providing automatic user interface prototyping and verification results’ animation, while allowing
thorough customisation.

Palavras-Chave
dialogue analysis tool, user interface specifications, visual representations, prototyping

1 Introduction

Interactive systems design is a very challenging undertak-
ing, considering the multiplicity of areas that need to be
taken into account during the design and verification pro-
cesses. End-users and context are crucial factors that must
be taken into account, in order to create a successful sys-
tem. There are several disciplines involved, each one with
different inputs, from psychology to system analysis, from
design to ergonomics, to name a few.

Developing interactive systems will always be a complex
endeavour. As the development process advances, it is in-
creasingly difficult and expensive to introduce changes, in
order to correct errors or comply with new requirements.
Therefore, system analysis should be performed as early
as possible, providing a broader view of the problem, while
enabling a more effective design.

Creating abstract models is a common engineering prac-
tice. It enables reasoning over a system’s design, by break-
ing the problem into smaller, understandable parts, while
eliminating irrelevant aspects. Models are also easier to

handle than the complete system, which makes it possible
to perform a more thorough analysis of the modelled as-
pects. Models can be expressed using different modelling
languages, by capturing and defining relevant aspects of a
system and creating a comprehensible representation.

Formal specification of interactive systems provides a way
to analyse the consequences of systems design and thereby
reduces the risks of interface design. Concerning systems
behaviour, model checking has gained particular relevance.
This is also the case for interactive systems. For exam-
ple, Paternò [9] uses model checking for the analysis of
dialogue properties of device models specified as interac-
tors. Campos and Harrison use system models specified
as MAL interactors [4] for mode confusion analysis, using
SMV [1]. See [3,7,10] for some examples of recent work.

An interactor is a particular type of modelling artifact that
focuses on human interface components of the system and
can be used in a verification process. The IVY workbench
uses the Interactor concept as developed in [4]. In tis light,
an interactor consists of an object capable of rendering

Concepção de Interfaces

Interacção 2008 93

(part of) its state into some presentation medium. MAL
interactors support the notion of action, and have their be-
haviour expressed in Modal Action Logic [1]. MAL in-
teractor models can have their behaviour verified through
model checking in the IVY workbench.

Model checking, although an automated verification tech-
nique, can be a complex task, as it involves developing
apropriate models, expressing relevant properties, and in-
terpreting the result of the checking process. There are
tools that support these steps, easing the verification pro-
cess. The IVY (Interactors VerifYer) project aims to pro-
vide one of such tool for the specific case of interactive
systems’ analysis: the IVY workbench. It is based on the
Java Plugin Framework and provides a pluggable and ex-
tensible architecture.

This paper describes the design and development of a tool
that aims to complete that application, by providing user
interface prototyping and user interface prototype anima-
tion.

1.1 Context

Computers have become almost essential for most daily
functions. The popularity of the computer, increased by
easier access to the Internet, has won a huge number of
distinct types of users, who use it as an essential tool, on
a daily basis. We need to create computer systems that
justify the trust that society increasingly places on them.
Developing software is such a difficult task that often un-
predictable failures of systems arise. It is hard to deter-
mine requirements, expect interactions and consider new
functionality, while maintaining previous behaviour.

Due to the wide recognition of software verification, tools
have been created to prove software correctness and to un-
derstand how software works, in order to achieve sustained
reliability. As software verification becomes a challenge,
tools are needed to automatically guarantee that programs
meet given specifications [6].

Model checking is a systematic approach for verifying sys-
tem property correctness. This technique is based on mod-
els that represent the target system. Such models describe
the set of properties to be proven, for a given system mod-
ule. A property defines expected behaviour throughout
time; the system meets the property if each execution’s
result matches the expected behaviour. Verification tools
either inform that a model satisfies a property’s formula or
show why the formula fails to prevail, on the given model.
These counterexamples are particularly helpful in identi-
fying errors in the model or the system. To reach a com-
pletely automatic approach, it may be necessary for the
model checking algorithm to traverse all reachable states
of the system. This is only possible if state space is fi-
nite [8].

1.2 Motivation and Objectives

Despite providing functionality to create models and prop-
erties, and to simplify their verification and failure detec-
tion, the IVY workbench still lacks the possibility to gen-

erate a user interface prototype in order to expose detected
interaction failures.

Currently, the tool application already enables failure ex-
planation. Its Traces Analyzer plugin is able to display the
sequence of events of a failure, by animating a state ma-
chine and showing state tables. However, this approach
does not provide a clear explanation of what happens dur-
ing a system failure, including state transitions or state val-
ues. There is no way to visualize this changes on a user
interface. As interactors are intrinsically related with user
interface components, it is important to provide a preview
of what the system would look like. Errors analysis on the
user interface could give more real perception.

Our goal is to create a tool that is able to create user inter-
face prototypes automatically, by using the interactor mod-
els already handled by the Interactor Editor. Furthermore,
the tool needs to allow for customisation, in order to create
a more realistically-looking user interfaces. Finally, this
tool must be able to animate system failures, on the cre-
ated user interface prototype.

1.3 Article structure

The paper is organised as follows. Section 2 describes the
IVY project. In Section 3 we discuss the AniMAL plugin:
an addition to the existing IVY workbench application that
enables user interface prototyping and animation for MAL
interactor models. Section 4 presents an example, illustrat-
ing AniMAL’s use. Finally, Section 5 draws some conclu-
sions and outlines future work.

2 The IVY workbench

The IVY workbench (see figure 1) is an output of the
IVY project, financed by FCT and FEDER, under con-
tract POSC/EIA/56646/2004. This project addressed the
development of models of the interactive devices, and their
verification through model checking against properties that
encode assumptions about usability of the device. The
models are developed using the MAL Interactors language,
and the properties expressed in CTL (Computacional Tree
Logic). Verification is performed resorting to the NuSMV
model checker.

The tool was developed around a plugin framework (the
IPF – Interactors Plugin Framework). The framework
stores and makes available information about the models
and the verification process. Appropriate plugins can then
be connected to the IPF to provide the modelling and veri-
fication services to the users of the tool. Figure 1 illustrates
the typical workflow of the tool. The diagram includes the
AniMAL plugin, which is the subject of this paper, and not
part of the original set of plugins.

The models can be created using IVY workbench’s Model
Editor plugin (see figure 2). This editor allows the user to
input MAL models textually or to create a class-like dia-
gram and generate the MAL code automatically.

The Property Editor plugin enables the user to express
properties that must be respected by the model’s behaviour.
The plugin includes a set of patterns that can be instanti-

AniMAL: A user interface prototyper and animator for MAL interactor models (Guerreiro, Mendes, Pinheiro, Campos)

94 Interacção 2008

Figure 1. IVY workbench workflow

Figure 2. IVY workbench’s editor (detail)

ated to create these properties for verification. Detailing
the patterns is out of the scope of the paper, see [2] for an
overview.

Once a set of properties is defined, the integrated SMV
model checker can be used in order to validate them. If
the verification fails, the verification process typically pro-
duces a trace, a sequence of states, illustrating a behaviour
of the model that falsifies the property. Depending on the
model complexity, the traces can become very large, and
their analysis time consuming and complex.

A Trace Visualiser plugin is provided to support the analy-
sis of the traces. The plugin eases this analysis, by express-
ing the fail traces in a number of different representations.

These include a tabular representation, where rows repre-
sent interactor attributes and columns the different states
in the trace; a state transition-like representation, showing
the different states of each interactor and the actions caus-
ing the transitions between them; and an activity diagram
representations, where the main focus is on the actions of
the trace. Figure 3 illustrates the different representations.

Although the Traces Visualizer plugin provides basic ani-
mation functionalities, they work at the level of the trace
(for example, sequencially highlighting the different states
of a trace), and not of the interface. That is to say that there
is no support in the plugin to analyse the problem by means
of directly inspecting (a prototype of) the user interface.

3 Our Proposal

The AniMAL plugin is an addition to the existing IVY
workbench suite (see appendix A for a simplified class di-
agram). It enables user interface prototyping, by fetching
interactor data from the suite and generating a default, yet
customisable, user interface prototype. That prototype can
be animated, in order to present the sequence of events
recorded by a fail trace.

In this section we discuss the implementation and features
of the plugin.

3.1 Data integration

The IVY workbench’s plugin framework (IPF) has its own
data repository. It acts as a broker, providing all plugins
with the ability to store and query interactor information.
Currently, we are using interactor models published by the
Model Editor, as well as traces provided by the Traces
Analyser, as can be seen in Figure 4.

Whenever AniMAL detects that new information is avail-
able, a new data model is generated, containing the loaded

Concepção de Interfaces

Interacção 2008 95

(a) Tabular representation

(b) State transition-like representation

(c) Activity diagram representation

Figure 3. Different trace representations

Figure 4. Data integration

interactor and trace data.

Interactor data includes the list of interactors, their hierar-
chical relationships, its visible attributes and their possible
values, as well as visible actions. Using the lists of values,
AniMAL infers data types, in order to determine how to
represent each attribute.

Trace data is queried directly on IPF’s repository and con-
tains the attributes’ and actions’ values, for each of the fail
trace’s states.

3.2 Interactor to User Interface Mapping

Due to the hierarchical nature of interactors, AniMAL rep-
resents them as panel components, grouping their own at-
tributes’ and actions’ representations.

Rendering attributes requires increased flexibility. Firstly,
an attribute may need to be rendered with one of several
components, in order to have its values represented more
realistically or conveniently. For example, we might wish
to include a label next to an input field. Secondly, there are
several data types for storing values. For instance, boolean
attributes require different components than integer at-
tributes. Finally, rendering attributes requires the user in-
terface prototype to communicate with the data model, to
synchronise values. Our approach requires each widget to
implement a set of interfaces, making it possible to write
new widgets and use them to represent attributes, without
requiring changes to the plugin itself (appendix B shows a
sample widget’s code).

For simplicity’s sake, actions are rendered as toggle but-
tons. An action can currently be seen as a boolean attribute
as well, whose value indicates whether or not the action is
being executed. This allows us, when animating a trace, to
signal which action has just been executed, at each step in
the animation.

3.3 User Interface Generation

From the extracted data model, AniMAL creates a tree,
containing all interactors and their attributes and actions. It
is possible to drag elements from that tree to the view port,

AniMAL: A user interface prototyper and animator for MAL interactor models (Guerreiro, Mendes, Pinheiro, Campos)

96 Interacção 2008

in order to create a visual representation of the interactor,
attribute or action. Furthermore, an automatic prototype
generation can be requested, rendering all elements using
the default components (see Figure 5).

Figure 5. User Interface Mapping and Gener-
ation

3.4 User Interface Architecture

Once rendered, elements are placed hierarchically, us-
ing the main interactor’s panel as the root, on the view
port. The prototype is built around the known Hierar-
chical Model-View-Controller (or HMVC) pattern, using
the Tikeswing framework [11]. Each interactor is repre-
sented by a Model-View-Controller (or MVC) set. The
View aggregates graphical elements, like child interactors’
views, as well as attributes’ and actions’ widgets. The Con-
troller handles view events, like mouse drags and keyboard
events, as well as View-Model synchronisation. Finally,
we use a centralised Model, to store attributes’ and actions’
values (see Figure 6).

Using the HMVC pattern, values are transparently syn-
chronised between model and view, eliminating the need
for complex event handling and user interface component
dependent value updates. Therefore, a change on an at-
tribute’s value on the model is automatically reflected on
the view, on the corresponding widget.

Both the user interface and data elements are centrally
managed by the InteractorManager. This is the entry-point
for adding new data elements to the model (during data
extraction), to generate a user interface prototype, saving
and loading, as well as resetting the environment, prior to
loading a new model.

Whenever new data elements are added to the model, the
InteractorManager updates the hierarchical structure, and
its tree-like graphical representation, while maintaining a
centralised registry. This entity provides the methods to
render interactors, attributes and actions using the default
components, as well as to replace the widget being used for

rendering a given attribute. Components are created via
reflection, using the classes defined on the configuration
file, allowing the plugin to be extended with other widgets
without the need of recompilation.

3.5 Customisation

In order to adapt the prototypes to different situations, An-
iMAL allows the user to select different customisations,
creating a more realistic user interface. In this section we
cover the three levels of customisation that are possible:
changing the layout management algorithm; changing the
widget associated to a given attribute; and changing the
rendering properties of a given widget.

3.5.1 Layout Management

Layout management can be performed manually or au-
tomatically. In manual mode, graphical elements can be
manually disposed, using drag-and-drop options, for every
panel or widget. Dimension can also be changed for every
element, after boundary validation.

As a convenience, and in order to ease prototype creation,
AniMAL enables the use of automatic layout managers.
These layout managers are responsible for resizing and
changing positions for every element, according to their
own algorithms. Currently, AniMAL provides two simple
layout managers that spread components on a grid: one
that places all elements side-by-side, and another that ren-
der interactors first, then attributes, then actions, from top
to bottom. These are simply proofs of concept, and addi-
tional layout managers can be created.

If new layout managers need to be created, and in order to
shield the plugin’s code from thorough modification, Ani-
MAL relies on a factory (a well know pattern [5]), which
makes layout managers available for the user to choose,
while decoupling the plugin’s user interface from specific
layout manager implementation. This way, a new layout
manager can be implemented, using a specific interface,
and only the factory needs to be slightly changed.

3.5.2 Widget interchangeability

Attribute rendering widgets are required to implement a
set of interfaces, in order to make them interchangeable
and maintain View-Model synchronisation. This allows
the plugin to be widget-agnostic, as all widgets are treated
alike. Most of the methods included on those interfaces are
already implemented by Java Swing and Tikeswing com-
ponents, so creating new widgets is fairly simple.

When a widget is replaced, the data model is unchanged
and therefore the new widget represents the same value as
the old one.

3.5.3 Properties

A user interface editor would not be complete without
the ability to change graphical elements’ properties, like
colours, captions, tooltips, and many other parameters.
AniMAL uses the L2FProd Common Components library,
which makes it possible to change most visual aspects of a
Java Swing component.

Concepção de Interfaces

Interacção 2008 97

Figure 6. Sample User Interface prototype, highlighting some HMVC aspects

3.6 Fail trace animation

Each fail trace includes a set of values for each attribute
and action, for each state. Animating a fail trace is done by
changing the data model to sequentially match each state
in the trace. By using the HMVC design pattern, only the
data model needs to be changed, while graphical elements
are automatically updated, due to View-Model synchroni-
sation, provided by the Tikeswing framework.

3.7 Miscellaneous

An additional set of features can currently be found on the
AniMAL plugin, as described below.

3.7.1 Configuration

AniMAL uses a set of configuration files to allow the user
to change the behaviour and visual aspects of the plugin.
It is possible to change several parameters, including drag-
and-drop highlight colour, default panel size, default lay-
out parameters, as well as fail trace animator’s time param-
eters.

The list of widgets that can be used for each data type is
also configurable. As has already been discussed, new wid-
gets can be added, without requiring plugin’s code compi-
lation. This is achieved by including the widget’s class
name on the list of possible widgets for appropriate data
types. Appendix C shows an example of a configuration
file.

3.7.2 Persistence

AniMAL provides user interface prototype persistence, by
allowing the user to save prototypes to XML files. Those
files can be loaded afterwards, recreating the user interface.

Figure 7. The air-conditioning control panel

3.7.3 Internationalisation

All labels and messages used in the plugin can be trans-
lated onto different languages, without the need for code
recompilation. AniMAL uses a resource manager that
loads labels and messages from resource bundles, accord-
ing to the user’s locale.

4 An illustrative example

In this section we present an example, describing how An-
iMAL can be used to create and animate a prototype of a
MAL interactors model.

The example is adapted from [3]. It consists of a car’s auto-
matic air-conditioning (A/C) panel user interface. Figure 7
shows a representation of the actual user interface of the
panel. The A/C panel has a total of 10 buttons and 7 dis-
play items of interest. The buttons are the following (num-
bers are used to identify the buttons in the figure, names in
parenthesis will be used in the model):

1. increase fan speed button (fanspeedup)

AniMAL: A user interface prototyper and animator for MAL interactor models (Guerreiro, Mendes, Pinheiro, Campos)

98 Interacção 2008

(a) Prototype 1 (b) Prototype 2

Figure 8. Two customised user interface prototypes

2. decrease fan speed button (fanspeeddown)

3. increasing target temperature button (tempup)

4. decreasing target temperature button (tempdown)

5. air conditioning mode selection button (ackey)

6. windscreen (front) flow mode selection button (fron-
tkey)

7. flow mode selection button (modekey)

8. air intake mode selection button (airintakekey)

9. off button (off)

10. automatic mode button (autokey)

4.1 The model

The following partial MAL Interactor describes the set of
attributes and actions that model the A/C panel:
t y p e s
Temp = MAXCOLD . . MAXHOT
AirFlow = {pane , double , f l o o r , f l o o r w s , w s c l e a r}
FanSpeed = 0 . . MAXFANSPEED

d e f i n e s
MAXCOLD = 15
MAXHOT = 30
MAXFANSPEED = 10

i n t e r a c t o r s y s
a t t r i b u t e s

on : Boolean
[v i s] au to , a i r i n t a k e f r e s h , f r o n t , ac : Boolean
[v i s] s e t t e m p : Temp
[v i s] a i r f l o w : AirFlow
[v i s] f a n s p e e d : FanSpeed

a c t i o n s
a u t o k e y o f f modekey f a n s p e e d u p
fanspeeddown tempup tempdown f r o n t k e y

[v i s] ackey a i r i n t a k e k e y

The sys interactor aggregates attributes and actions that
define the visible parameters and available actions. At-
tributes include the temperature to set (settemp), the fan

speed (fanspeed), the active air flow ducts (airflow), as well
as others, like whether or not fresh air should be introduced
into the cockpit (airintakefresh) and whether or not the air
conditioning is on (ac). Attributes’ values’ domains are set
using the user-defined Temp, AirFlow and AirSpeed data
types. Available actions include changing the air speed,
temperature, as well as activating the air conditioning, for
instance.

We will not delve into extensive detail of the language or
the model, as our goal is not to describe the interactor, but
its representation. In particular, the axioms of the model
are not presented since they are relevant to the discussion
that follows.

Figure 8 presents AniMAL showing two customised pro-
totypes, for the previous model. The prototypes were au-
tomatically generated and then some custom widgets were
chosen, in order to adapt it to this specific case study. How-
ever, no adaptation would be required, as long as the con-
figuration stated that the chosen widgets were the default
ones. The sys interactor is rendered as a panel on the view-
port, inside the main interactor’s panel. Each attribute is
rendered using a widget. Besides usual widgets like tog-
gle buttons (for boolean attributes), some custom widgets
were used, like a thermometer for displaying the settemp
attribute and a dial, for representing the airflow attribute,
while actions are rendered as toggle buttons.

There are endless possibilites to creating a user interface
prototype. Figure 9 shows some of the widgets that have
been implemented, and can be used to render attributes like
settemp.

4.2 Animation

Using traces imported from the Traces Analyzer plugin,
AniMAL is able to animate sequences of events, making
it easier to see the states transitions and value changes that
violate the property under scrutiny. Figure 10(a) shows

Concepção de Interfaces

Interacção 2008 99

(a) YDial (b) Thermometer

(c) YJSpinner

Figure 9. An example of different attribute
representations

(a) Tabular representation (traces)

(b) state 1 (c) state 2 (d) state 3

Figure 10. An example of prototype anima-
tion based on traces

one of Traces Analyzer’s trace visualisation methods (tab-
ular) representing how the settemp, airflow and fanspeed
attributes change in the particular trace. Figure 10(b),
Figure 10(c) and Figure 10(d) show the settemp attribute
changing its value, based on the fail trace. As the value
changes, so does the widget’s rendering. This is the prin-
ciple behind AniMAL’s trace animation: attributes and ac-
tions change their values throughout time and the user in-
terface representation changes accordingly.

5 Conclusions and Future Work

System design and development is a complex undertaking
that involves knowledge of multiple disciplines. As such,
it is often difficult to predict system behaviour and guar-
antee correctness. Model checking approaches help un-
veiling potential interaction failures, allowing errors to be
found before becoming excessively expensive to deal with.
This requires automated tools, to help in understanding the
system and detecting its potential design flaws.

The IVY workbench supports system design and verifica-
tion, by providing a model and properties editor as well

as a fail trace analyser. The AniMAL plugin extends this
application, by providing user interface prototyping and
fail trace animation capabilities. AniMAL enables the cre-
ation and customisation of a user interface prototype based
on a model, in order to visually expose the sequence of
events that lead to a system failure. Additionally, the plu-
gin allows for automatic user interface prototype genera-
tion, freeing the user from unnecessary work.

At this point, there are still much work that can be done to
improve the plugin. We list some of the possible improve-
ments and areas for future work:

• The widget library could be extended, in order to pro-
vide a wider set of user interface representations, thus
supporting the creation of more realistic user inter-
faces.

• Additional layout managers could be developed, in
order to automatically generate different types of lay-
outs.

• Undo management is still to be developed and could
improve the user’s experience.

Finally, providing a fully functional user interface, one ca-
pable of accepting user input and behaving according to the
axioms in the model, would also be an important addition.
The plugin could ultimately generate application skeletons,
from MAL interactor models, in order to go from a proto-
type into a full-blown user interface. It would be also in-
teresting to create user interfaces for different visualisation
platforms (e.g. web sites), by using the generated XML
file (exported using the save operation).

Acknowledgments

The authors would like to thank Nuno Sousa, for develop-
ing the data integration mechanisms that allow AniMAL to
query the InteractorEditor’s data model. Also, Nuno Guer-
reiro (Alert Life Sciences Computing), Sandrine Mendes
(Alert Life Sciences Computing) and Vı́tor Pinheiro (En-
abler, a Wipro Company) would like to thank their employ-
ers for sponsoring this work.

References

[1] J. C. Campos and M. D. Harrison. Model checking
interactor specifications. Automated Software Engi-
neering, 8(3/4):275–310, August 2001.

[2] J. C. Campos and M. D. Harrison. Systematic analy-
sis of control panel interfaces using formal tools. In
XVth International Workshop on the Design, Verifica-
tion and Specification of Interactive Systems (DSV-IS
2008), number 5136 in Lecture Notes in Computer
Science, pages 72–85. Springer-Verlag, July 2008.

[3] J.C. Campos and M.D. Harrison. Considering con-
text and users in interactive systems analysis. In En-
gineering Interactive Systems 2007, Lecture Notes in
Computer Science. Springer-Verlag, 2007. to appear.

AniMAL: A user interface prototyper and animator for MAL interactor models (Guerreiro, Mendes, Pinheiro, Campos)

100 Interacção 2008

[4] D. J. Duke and M. D. Harrison. Abstract interac-
tion objects. Computer Graphics Forum, 12(3):25–
26, 1993.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley
Professional, 1995.

[6] Cliff B. Jones, Peter W. O’Hearn, and Jim Woodcock.
Verified software: A grand challenge. IEEE Com-
puter, 39(4):93–95, 2006.

[7] K. Loer and M.D. Harrison. Analysing user confu-
sion in context aware mobile applications. In M. Con-
stabile and F. Paternò, editors, Interact 2005, volume
3585 of Lecture Notes in Computer Science, pages
184–197. Springer, 2005.

[8] Karsten Loer. Model-based Automated Analysis for
Dependable Interactive Systems. PhD thesis, The
University of York, August 2003.

[9] F. D. Paternò. A Method for Formal Specification and
Verification of Interactive Systems. PhD thesis, De-
partment of Computer Science, University of York,
1995.

[10] M. ten Beek, M. Massink, and D. Latella. Towards
model checking stochastic aspects of the thinkteam
user interface. In M. Harrison and S. Gilroy, editors,
Proceedings 12th International Workshop on the De-
sign, Specification and Verification of Interactive Sys-
tems, volume 3941 of Lecture Notes in Computer Sci-
ence, pages 39–50. Springer, 2006.

[11] Tomi Tuomainen. Tikeswing - User’s Guide. Ministry
of Agriculture and Forestry of Finland, 2007.

A Class diagram

Figure 11 shows a class diagram with the most relevant
classes developed. Due to the extension of such diagram,
only the manager classes are fully described. These are
the classes responsible for adding new elements to the UI
prototype.

B A sample widget

Creating a widget for use in AniMAL is fairly simple. The
following (Listing 1) is an example of a graphical element
that was adapted to become a widget. In order to be a valid
widget, a graphical element’s class must implement IInter-
actorValueWidget interface. This includes methods for get-
ting and setting the widgets value (setModelValue and get-
ModelValue), for registering the controller (addViewLis-
tener), for setting the widget’s name (setName) and setting
the list of values to be represented (setValuesList). This
particular widget does not need which values will be rep-
resented, as it will only be representing boolean values.

Figure 11. Class diagram, showing the most
relevant classes

Listing 1. A checkbox widget
/∗∗
∗ Thi s c l a s s shows how a checkbox can be a d a p t e d t o a c t
∗ as an AniMAL ’ s w id ge t .
∗
∗ @author V i t o r P i n h e i r o
∗ @since 2 0 0 8 / 0 2 / 0 8
∗ @version 1 . 0
∗ /
p u b l i c c l a s s YJCheckBox ex tends YCheckBox

implements I I n t e r a c t o r V a l u e W i d g e t {

p r i v a t e YPrope r ty myProper ty = new YPrope r ty () ;

/∗∗ Value o f CheckBox ∗ /
p r i v a t e O b j e c t v a l u e ;

Concepção de Interfaces

Interacção 2008 101

/∗∗ Name ∗ /
p r i v a t e S t r i n g name ;

/∗∗ C o n s t r u c t o r ∗ /
p u b l i c YJCheckBox () {

super () ;
name = "" ;

}

/∗∗
∗ R e t u r n s t h e w id ge t ’ s p r o p e r t y map , used by
∗ t h e t i k e s w i n g framework
∗ @return w i d g e t ’ s p r o p e r t y map
∗ /
p u b l i c YPrope r ty g e t Y P r o p e r t y () {

re turn myProper ty ;
}

/∗∗
∗ Method c a l l e d by t h e t i k e s w i n g framework , i n
∗ o r d e r t o a s s i g n a c o n t r o l l e r t o t h i s w id ge t .
∗ @param c o n t r o l l e r C o n t r o l l e r f o r t h i s w i dg e t
∗ /

p u b l i c vo id a d d V i e w L i s t e n e r
(f i n a l Y C o n t r o l l e r c o n t r o l l e r) {

/∗∗
∗ We c r e a t e an a c t i o n l i s t e n e r t h a t c a l l s
∗ t h e c o n t r o l l e r ’ s s y n c h r o n i s a t i o n method
∗ /
t h i s . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {

p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
c o n t r o l l e r .

u p d a t e M o d e l A n d C o n t r o l l e r (YJCheckBox . t h i s) ;
}
}) ;

}

/∗∗
∗ Method c a l l e d by t h e t i k e s w i n g framework ,
∗ t o g e t t h e wi dg e t ’ s v a l u e .
∗ @return w i d g e t ’ s model v a l u e
∗ /

p u b l i c O b j e c t ge tModelValue () {
re turn t h i s . i s S e l e c t e d () ;

}

/∗∗
∗ Method c a l l e d by t h e t i k e s w i n g framework ,
∗ t o s e t t h e w i dg e t ’ s va lue , u s i n g t h e d a t a model ’ s .
∗ /
p u b l i c vo id se tMode lVa lue (O b j e c t o b j) {

t h i s . s e t S e l e c t e d ((Boolean) o b j) ;
}

/∗∗
∗ S e t s t h e Model−View−C o n t r o l l e r name .
∗ Thi s name s h o u l d c o r r e s p o n d t o an a t t r i b u t e / a c t i o n
∗ i n t h e model , w i th t h e same name
∗ /
p u b l i c vo id setMvcName (S t r i n g mvcName) {

g e t Y P r o p e r t y () . p u t (YIComponent .MVC NAME, mvcName) ;
}

/∗∗
∗ Thi s method i s c a l l e d when t h e w id ge t i s c r e a t e d
∗ and b e f o r e b e i n g r e n d e r e d .
∗ Some w i d g e t s need t o know which v a l u e s w i l l
∗ need t o r e p r e s e n t (a s l i d e r , a d i a l , e t c) .
∗ @param l i s t o f v a l u e s t h a t t h e wi dg e t must r e p r e s e n t
∗ /
p u b l i c vo id s e t V a l u e s L i s t (L i s t l i s t O f V a l u e s) {}

/∗∗
∗ Method c a l l e d when t h e wi dg e t i s c r e a t e d ,
∗ t o s e t i t s name
∗ @param wi dg e t ’ s name
∗ /
p u b l i c vo id setName (S t r i n g name) {

super . setName (name) ;
t h i s . name = name ;
s e t T o o l T i p T e x t (name) ;

}
}

C Using the widget

To start using the widget, it is necessary to configure the
TypeMapper.xml file, setting the widget to be used for
boolean values:

Listing 2. TypeMapper.xml file
<BOOLEAN t y p e ="java.lang.Boolean">

<C l a s s i d ="0">
p t . uminho . d i . msc . AniMAL . u i . w i d g e t s . YJToogleBut ton

</ C l a s s>
<C l a s s i d ="1">

p t . uminho . d i . msc . AniMAL . u i . w i d g e t s . YJCheckBox
</ C l a s s>
<C l a s s i d ="2">

p t . uminho . d i . msc . AniMAL . u i . w i d g e t s . YJCheckBoxLabel
</ C l a s s>
<C l a s s i d ="3">

p t . uminho . d i . msc . AniMAL . u i . w i d g e t s . Y J S l i d e r
</ C l a s s>

</BOOLEAN>

AniMAL: A user interface prototyper and animator for MAL interactor models (Guerreiro, Mendes, Pinheiro, Campos)

102 Interacção 2008

