
A System to Evaluate and Understand Routing Algorithms

Mario Marcelo Berón
Univ. de San Luis

Argentina
mberon@unsl.edu.ar

Pedro Rangel Henriques
Univ. de Minho

Braga
prh@di.uminho.pt

Maria Joao Varanda
Inst. Politécnico de Bragança

Bragança
mjoao@ipb.pt

Abstract
In this communication in the form of poster and demo we intent to present a tool aimed at evaluating and
understanding routing algorithms. This application has a powerful environment that allows: to draw graphs and
manipulate their components in manual or automatic form; to incorporate routing algorithms; to make
experiments, measurement, and performance tests; to understand programs. The tool incorporates mechanisms
to make easy the task for building executable files. These characteristics make this tool a versatile and easy
evaluation and comprehension system to be used with routing algorithms.

Along the paper we will emphasize how we conceived and implemented the system’s interface to satisfy the
user’s requirements. Our purpose in the context of Interacçao06 is to demonstrate it!.

Key words
Routing Algorithms, Graph Class, Metrics, Visualization, Comprehension Functions

1.INTRODUCTION
A graph is a tuple G=(V,E) where V is a set of vertices
and E is a binary relation defined on V. A graph is a very
useful mathematical model to represent real systems (like
networks, dependencies, etc.). There are many well
known and optimized algorithms to implement the most
usual operations over graphs. A routing algorithm is a
program used to find one or more paths between two
nodes of a graph.

Nowadays there are many routing algorithms tuned to
solve each different case efficiently. For example, the
Dijkstra’s algorithm solves the problem of finding the
shortest path between two nodes of a graph. However, the
technological advances create new application contexts
where traditional algorithms can’t be applied; for
example the mobile networks. In these applications the
network’s nodes change of place continuously and
therefore the graph that represents the network is
unpredictable, it changes dynamically. To solve this
problem the scientific community created new routing
strategies; for instance the online routing algorithms. The
problem is that we don’t know the performance of these
new routing procedures and sometimes their operation
and implementation is not clear.

To attack this problem we conceived a system to
experiment, evaluate and understand routing algorithms.
The evaluation is carried out through the execution of
experiments programmed by the user. To aid the user in
understanding the algorithms, the system provides
several views of the program under analysis, from the
control flow to the machine code.

This communication is organized as follows. Section 2
describes the functional requirements of the routing
system. Section 3 shows the approach used to visualize
graphs and paths. Section 4 explains the mechanism of
automatic compilation and the interaction with other
tools. Finally, section 5 presents the comprehension
facilities.

2.REQUIREMENTS
In this section we describe the requirements expected
from a good system for evaluation/comprehension of
routing algorithms. The selection of the criteria is based
on the study of the state of the art and on the experience
of our research group.

A routing evaluation/comprehension system must
provide the following main functions:

1. Visualization of the graph and the path found by
each routing algorithm.

2. Incorporation of different routing algorithms,
support for graph classes, metrics and
experiments.

3. Embedded compilation, linkage and loading
processes.

4. Interaction with other tools, such as compilers,
spread sheets, text editors, etc.

5. Algorithm Comprehension processes.

For the implementation of these requirements, we built a
graphical environment composed by a menu with tool
bars and windows that integrate all theses function.

Posters e Demos

Interacção 2006 201

In the following sections we justify theses needs and we
describe our solution.

3.VISUALIZATION OF GRAPHS AND PATHS
The visualization of the different kind of graphs and
paths is necessary because the user needs to analyze the
network type used and to study the routing strategies.

To satisfy this requirement, the evaluator has a window
that shows the graph used before having applied the
routing strategies (see figure 1).

Figure 1: Graph visualiztion
Additionally, the user can see the path found by the
routing algorithm chosen. The result can be visualized in
two forms: i) as a trace; or ii) as a whole. The first one
allows the user to decide step by step when to show the
next node in the path. This task is made by using a
dialog box (see figure 2).

Figure 2: Path visualization using trace method

With the second approach it is possible to see the path
without intervention of the user (see figure 3).
Furthermore, the evaluator provides functions to: delete;
personalize the color; identify and search nodes and arcs.
These tasks are made in a simple form using the menu
and tool bars.

Inside the graph visualization window, the user can
create a graph manually, just clicking with the mouse on
the drawing area. When the user wants to create arcs, he
must make a click on the determinated area for the
source node. Then, without liberating the button, the

mouse’s pointer must be placed on the determinated area,
for target node. Finally the mouse’s button can be
released.

Figure 3: Walk visualization total

3.1 Incorporation of Routing Algorithms, Graph
Classes, Metrics and Experiments
In the set of mandatory characteristics that an
evaluation/comprehension system must have for routing
algorithms, we include operations to incorporate the
routing algorithms, graph classes, metrics and
experiments easily. In this way, the user is able to focus
on the study of routing algorithm study.

To satisfy these requisites, the routing system has four
windows to make available each one of these
components. Each window has a set of parameter that
have to be defined.

For the routing algorithm case the parameters are:
routing algorithm’s name; function’s name which
implements it; and the function parameters. After having
satisfied the parameter values, the user, presses the apply
button and the system incorporates this routine to its
kernel. Finally, he must press the build object button to
build the object module of each routing algorithm.

Note that the routing algorithms can be eliminated using
the button delete. Figure 4 shows the window for the
routing algorithm incorporation.

Figure 4: Routing Algorithm window

Posters e Demos

202 Interacção 2006

The other three windows have a similar behavior. The
experiment’s window has an additional function that
allows the automatic creation of dialog boxes. This
characteristic has the objective of facilitating the tool
usage by the experts. The commands can be executed
from the command line or the dialog boxes.

4. AUTOMATIC COMPILATION AND
INTERACTION WITH OTHER TOOLS

One of the main difficulties found in systems like this, is
the complexity of the routines compilation process
because the system has many routines in its kernel.
Theses routines implement different data structures
useful for the creation of new routing algorithms, graph
classes, etc. In addition to this, the possibility that the
user has to increment the system functions (remember
that the user can incorporate new routing algorithms,
graphs, metrics, etc.) produces an increase in the system
´s routines. For this reason, the system has a compilation
mechanism based in the creation of object modules of
each routine that then they are linked to build the
executable file. All these tasks are easily made by
pressing the button build object in the case of routing
algorithms, graph classes and metrics. To experiment,
the user just has to press the executable button. In this
way, he is only concerned with the data parameters, and
the system makes the rest.

Interaction with other tools
When the user studies the routing algorithms, he needs:
i) to program the routing strategies and ii) to visualize
the result. To make these tasks easier the system interacts
with other tools such as: compilers, text editors, spread
sheets. To access to each tool, the user only needs to
activate the option external tools of the menu bar and
then select the adequate application.

5.COMPREHENSION OF ROUTING
ALGORITHMS

Sometimes the programmer has access to routines which
implement a task like graph classes, routing algorithms,
metrics or experiments that he needs to include in a
certain application. However, usually he prefers to
develop the program from scratch instead of reusing the
one available because reusing implies to understand the
code written by another person and that is usually a very
hard task. To help in this task, our system has a set of
functions aimed at program understanding.

The program comprehension can be reached building
different views of the algorithms under study.

We thought that the following views are important: i) the
result, that is to say, the output provided by the program;
ii) the functions used to get the result and iii) the source
and object code associated to each function.

The result is important because it allows the user to have
an idea of the algorithm’s objective. The list of function
calls offer information about how the result was
obtained. The two remaining views let that the function’s
implementation to be visualized and studied. The reader
can see the comprehension screen with its four windows
in figure 5.

In addition, the system provides navigation functions.
Once obtained the list of function calls used to build the
result, the user can observe its source and object code
just clicking in the name of each function; the system
reacts showing the code of the selected function
automatically.

Figure 5: Comprehension Windows
On the other hand, the system permits the user to
document each code (source and object) doing click on
the corresponding line.

6.REFERENCES
 [Berón05] Berón, M; Hernádez Peñalver, G; Gagliardi,

O. “Un Evaluador de Algoritmos de Ruteo”. Master
Thesis in Software Engineering. Universidad
Nacional de San Luís. 2005

[Brooks78] Brooks, R. “Using Behavioral Theory of
Program Comprehension in Software Engineering”.
IEEE. 1978.

[Riesco02] Riesco, D; Grosso, A; Berón, M. “Una
Herramienta para la Ingeniería Inversa de Sistemas
Escritos en Lenguaje C, Bajo Linux”. Comunicación,
Expuesta y Publicada en el Acta de Resúmenes del
Congreso Argentino de Ciencias de la Computación
CACIC en el año 2002.

 [Linter03] Linter, R; Michand, J; Storey, M; Wu, X.
“Plugging-in Visualization: Experiences Integrating a
Visualization Tool with Eclipse”. ACM Symposium
on Software Visualizaton. 2003.

[Mayrhauser95] Mayrhauser, A; Vans, M. “Program
Comprensión During Software Maintenace and
Evolution”. IEEE. 1995.

Posters e Demos

Interacção 2006 203

[Moreno04] Moreno, A; Myller, N; Satinen, E; Ben-Ari,
M. “Visualizing Programs with Jeliot 3”. ACM.
2004.

[Oliveira06] Oliveira, E; Henriques, P; Varanda, M.
“Características de um Sistema de Visualização para
Compreensão de Aplicações Web através de
Inspecção de Software e baseadas em Modelos

Cognitivos”. Tesis de Maestría en Ingeniería del
Software. 23 de Febrero de 2006.

[Pacione03] Pacione, M; Roper, M; Wood, M. “A
Comparative Evaluation of Dynamic Visualization
Tools”. Proceedings of the 10th Working Conference
on Reverse Engineering (WCRE’03). IEEE. 2003.

Posters e Demos

204 Interacção 2006

