Interfaces Multimodais e Adaptativas

JavaSketchlt2 — Using Relational Adjacency Grammars for
Visual Syntax Parsing

Filipe M Garcia Pereira
IMMI/INESC-ID/IST/UT

R. Alves Redol, 9, 1000Lisboa
fmgp@mega.ist.utl.pt

Manuel Jodo Fonseca
IMMI/INESC-ID/IST/UTL

R. Alves Redol, 9, 1000 Lisboa
mjf@inesc-id.pt

Joaquim A. Jorge
IMMVI/INESC-ID/IST/UTL

R. Alves Redol, 9, 1000 Lisboa
jorgejlacm.org

Abstract

This paper presents a project which expands on JavaSketchit [8], which parsed sketches of user interfaces, iden-
tifying gestures by using CALI [6], and then used topological relations and relational constraints [4] to recog-
nize pairs of gestures as widgets in a Java graphical user interface. JavaSketchit was able to export the func-
tional source code for the prototype in Java. Our approach allows users to write down their own visual lan-
guage and removes the existing limitation of one pair of gestures per widget. The resulting parser became appli-
cable in different contexts besides designing user interfaces. The result is a functional implementation of a
parser designed to handle Relational Adjacency Grammars customized by the user..

Keywords

Calligraphic Interface, Visual Parser, Visual Syntax Parsing, Visual Grammar, Relational Adjacency Grammar,

Widgets, Gestures, Sketches.

1. INTRODUCTION

Every programmer, computer engineering student,
software engineer or interface designer has a natural de-
sire to have some simple and immediate way to translate
sketches and interface drafts from paper to functional
source code. This concept would always apply to any
given programming language they’re working on in their
projects. To overcome this obstacle, some researchers
have been working on calligraphic interfaces for translat-
ing sketches to functional interface prototypes.

In many cases the calligraphic interfaces focus on rec-
ognizing individual strokes under an application context.
In contrast, the approach in this paper presents a parser
that takes the sketched shapes one by one, and uses them
to recognize widgets according to sets of rules which are
represented by topological relations.

2. RELATED WORK

DENIM[4] is among the first to allow the creation of in-
terface prototypes. This was achieved by use of a pattern
recognizer to identify both commands and strokes made
by the user. The DENIM[4] project is also relevant be-
cause it allows multiple pages and a zooming view for the
creation of storyboards for the user interface behavior. A
great feature in this project was its ability to export the
pages created by the user to HTML. The major limita-
tions to DENIM[4] were the problems which were pre-
sent when the pattern recognizer would not allow a sketch
to be used correctly or when the recognizer would correct
a stroke not meant to be corrected.

Another approach was JavaSketchit [S]. This used the
CALI [3] recognizer to identify which geometrical shape
was the closest match to each user drawn sketch, and used
the shapes as input tokens. Each shape was crossed with
all previously drawn ones to identify which pairs repre-
sent widgets and then decide which to keep in the inter-
face prototype. A great feature was that this project would
export the prototype to fully functional Java. Still, the
project had limitations. These were the fact the user
couldn’t choose which widgets were part of the visual
language, or what gesture pairs to use in each widget and
which spatial relations to use.

3. THEORETICAL BACKGROUND

Grammars have been a common concept present in logic
since early computation concepts and became a root topic
in computational sciences. Usually grammars are de-
scribed as (N, T, P, S), a quadruple where N is the set of
non-terminal symbols, T is the set of terminal symbols, P
is a set of valid productions and finally S is the starting
symbol. A simple example of a regular grammar defini-
tion would be the one presented in Fig. 1 where all the
sets and productions are clearly defined.

This information is usually enough for most language
concepts and applications, such as textual programming
language parsers. However, for the approach presented
here, regular grammars do not present a structure which
holds enough information, in that they lack a way to spec-
ify the constraints needed to describe each non-terminal
symbol in detail.

Interac¢do 2006

119



N = { Text, TextField, TextArea, € }
T = { Line, Rectangle }
S=¢
P: &€ > {Text | TextField | TextArea}
Text > {Line} if isHorizontal(Line)
TextField > {Text, Rectangle}
if isInside(Text, Rectangle)
TextArea > {Text, TextField}
if isInside(Text, TextField)
A = { isHorizontal(x), isInside(x,y)}

Figure 1: Example Relational Adjacency Grammar [2]

For example, visual languages are not able to describe
spatial constraints such as those that indicate whether a
sketch is inside another as in Fig. 3. Towards this goal,
we adopted Relational Adjacency Grammars [2] (RAG).
A RAG is defined as a quintuple (N, T, S, P, A) where N,
T, S and P are the same as in regular grammars and A is a
set of constraints which allow to keep the extra informa-
tion required.

N={AB,S}
T={ab}

P = {(S>aA), (S>bB), (A>a), (B>b)}
S=8

Figure 2 — Example of a regular grammar definition

In Fig. 5 we demonstrate how this information is used to
describe Figs. 2 through 4. With the extra information it
becomes possible to unambiguously identify each widget.

Figure 3 — A sketch representing Text.

o -~ TesFiglt - 9

Figure 4 — Set of sketches that represent a TextField

Figure 5: Set of sketches that represent a TextArea

Interfaces Multimodais e Adaptativas

There are modifiers other than “if” as shown in Fig. 5,
though for this application only the “if” is utilized for the
definition of widgets. Finally, establishing a bridge be-
tween the terms in use inside the application and the
terms in the grammar:

* N represents the non-terminal symbols which are also
known as widgets;

* T represents the terminal symbols which are known
as gestures or sketches;

* S is the empty symbol for the reason that the tem-
plates hold no valid information until it is instanti-
ated;

* P is the set of valid productions, which are stored as
templates after read from a file;

* A is the set of rules which represents the topological
relations that can be applied for the validation of
widgets when new input is presented.

4. THE APPLICATION

As mentioned, this project focus on the implementation of
a parser which uses a RAG to allow a better mechanism
for the syntax analysis using sketched inputs, especially
when there is no order when drawing the shapes. The
architecture of the resulting application is shown in Fig.
6, where is visible how both the sets with non-terminal
symbols (widgets) and the valid productions (templates)
are supplied. The CALI [3] recognizer receives the
sketched shapes and identifies them as gestures by appli-
cation of fuzzy logic. As a result, the possible gesture
results considered for this project are {Line, Arrow, Tri-
angle, Rectangle, Diamond, Circle, Ellipse, Copy, Cross,
Move, WavyLine}. After processing the sketch, the ges-
ture with highest probability value is sent to the parser
itself. The parser uses the gesture and tries to see if any of
the temporary widgets can change its state, followed by
generating new widgets from the templates. Finally, gen-
erates a list of complete widgets. These last are widgets
that have gathered all the gestures they were supposed to
collect, and validated all the respective rules These rules
can be either relational constraints [2] or topological rela-
tions [1,2]. The topological relations considered are either
adjacency relations, overlap relations, or metric relations.
These cover basic concepts where one gesture is inside
another, or intersecting each other, being “to the right” of
a gesture, or “to the left”, and were even considered all
cardinal directions. For the metric relations were consid-
ered cases like two gestures having similar areas. In Fig.
7 is shown one example of a “grammar.xml” file where
some rules are demonstrated for widget declaration.

120

Interac¢ao 2006



Interfaces Multimodais e Adaptativas

SHETCH grammar_<ml

TEMPLATE
GEMERATOR
b A A% A

- - . - - .

GESTURE TEMFLATES

s N
PARSER
4 ™
Temporary
y Widgets

Ty
Complete '
Widgsts

\_ y

WIDGETS

I'/-' \I
Clean
Redundancy

N y

S
WIDGETS

Figure 6: Architecture of the developed application

Notice still in Fig. 7 the presence of the id attribute which
is used to assure order in how parameters are applied in
rule validation. Also the distinction between isTrue and
isFalse tag names for the rules allow to use the NOT
operator.

To prevent false positives, routines are called to clean the
global widgets lists, by removing widgets that are only
parts of the larger ones, also by removing replicas and by
ensuring that any gesture is only used once in the proto-
type.

The parser itself is based on the algorithm shown in Fig.
8, where the parsing mechanism is summarized.
ParseIncludingCompletes takes the transformed
input and uses it as input for both temporary widgets and
templates. Visible in the code is that for each complete
widget found, the routine will make a recursive call using
that complete widget. This call allows the user to make
use of a widget as piece for another widget declaration.
One last feature is that each recursive call will create its
own temporary widget list to avoid entering a state of
infinite recursive calls.

There is one last task associated to the widget parsing,
which is answering the question “which rules are needed
to validate each input in a widget?”. In result, a temporary
widget can be a valid hypothesis or not. This task is per-
formed in the addpiece routine as shown in Fig. 9.

<widgets>
<widget type="Label”>
<symbol type="Line” id="1"/>
</widget>
<widget type="TextBox”>
<widget type="Label” id="1"/>
<symbol type="Rectangle” id="2"/>
<isTrue name="isInside”
paraml="1" param2="2"/>
</widget>
<widget type="Button”>
<symbol type="Rectangle” id="1"/>
<symbol type="Rectangle” id="2"/>
<isTrue name="isInside”
paraml="1" param2="2"/>
<isTrue name="haveSimilarAreas”
paraml="1" param2="2"/>
</widget>
</widgets>

Figure 7: Sample contents of the “grammar.xml” file

5. RESULTS

This project has not included usability tests and inquiries
since these were the object of existing results reported
from the previous project (JavaSketchit). The main task
consisted on converting the previous project from
Scheme and C to C++. Another task was to allow users to
be able to define widgets for use in the parser by means
of a grammar specified in external XML files, rather than
having it embedded in the code. Also, effort was spent on
making the parser work in real time thus allowing users to
see widgets being identified while drawing.

The results in Table 1 show that our parser is able to rec-
ognize nontrivial elements in real time, which is desirable
for interactive applications. The larger values for memory
consumption and parsing time are result from having el-
lipses sketched in the prototype. This happens because
they store the greatest amount of data. Despite that, what
can be observed is the average parsing time taken per
gesture keeps under 0.1s, which is a reasonable value for
real time interaction with the developed application.

Table 1: Average results obtained during perform-
ance tests

#Gestures per Parsing Time per Memory Consumption
Prototype Gesture (seconds) (Byte)
9 0,00819 63.984
14 0,01061 120.432
25 0,01890 201.288
35 0,07838 411.328
43 0,05584 335.672

Interac¢do 2006

121




parselncludingCompletes (symbol newInput) {
//Check temporary widgets
if (! (temporaryWidgetList.empty())) {
for each tw in temporaryWidgetList do{
elems<-tw.checkValidEntry( newInput );
if( elems.size()>0 ) {
for each tag in elems do{
newtw<-tw.clone () ;
valid<-newtw.addPiece (newInput, tag);
if( newTemp.isFinnished() && valid ) {
completes.push back( newTemp );
parselInclCompletes (nwtw.clone () );
}
else(
if( valid ) {
temps.push back( nwtw );
FrEbDY
//Try to generate widgets from templates
for each tw in templateWidgetList do{
elems<-tw.checkValidEntry( newInput );
if( elems.size()>0 ) {
for each tag in elems dof{
newt<-templateWidget.clone();
valid<-newt.addPiece ( newlInput, tag );
if( valid && newt.isFinnished() ) {
completes.push back( newt );
parselnclCompletes ( newt.clone() );
}
else(
if( valid ){
temps.push back( newTemp );

ISBRSS

Figure 8: The main algorithm in the parsing process

6. FUTURE WORK

The most relevant work missing in this project is to per-
form usability tests to gather recent results from real us-
ers.

Another interesting development would be a trainable
interface to generate grammar elements and supply sets of
valid productions to the parser without having to type the
widget definitions.

There is also some work to be done to improve the effi-
ciency of the algorithms developed as well as its lower
level data structures, which store a lot of redundant in-
formation. These would be particularly relevant to allow
the whole application viable to use in mobile devices.

7. ACKNOWLEDGMENTS
This work was supported in part by a grant from Portu-
guese Science Foundation (FCT) POSC/EIA/59022/2004

Interfaces Multimodais e Adaptativas

widget::addPiece (widget newWidget,
tagValue tag) {
// The widget can have no rules at all
if (_Rules.empty()) {
missingPieces.remove (newWidget, tag) ;
addedPieces.push back (newWidget, tag));
if (missingPieces.empty()) finished<-true;
valid<-true;
return true;
}

//If the widget has rules, know what to
validate

list<rules> rulesToVerify;
for each Rule in localRulesList do{
if ('Rule.isVerified()) {
if (Rule.canBeVerified(tag,addedPieces) {
rulesToVerify.push back(Rule);
I3
result<-true;
for each Rule in rulesToVerify do
result <- result &&
Rule.validate( newWidget, addedPieces );
if (result) {
addedPieces.push back (newWidget, tag);
missingPieces.remove (newWidget, tag) ;
if (missingPieces.empty ()) {
finish <- true;
for each Rule in localRulesList do
finish <- finish && Rule.isVerified();
}}
valid<-result;
return result;

}

Figure 9: The addPiece algorithm

REFERENCES

[1] Max J. Egenhofer. A Formal Definition of Binary Topological Rela-
tionships. In W. Litwin and H. Schek, editors, Third International
Conference on Foundations of Data Organization and Algorithms
(FODO 89), volume 367 of Lecture Notes in Computer Science,
pages 457 472. Springer-Verlag, Paris, France, June 1989.

[2] Joaquim A Jorge, Parsing Adjacency Grammars for Calligraphic
Interfaces, Phd Thesis, Rensselaer Polytechnic Institute, Troy,
NY, 1994.

[3] M. Fonseca and J. Jorge. CALI: A Software Library for Calligraphic
Interfaces. INESC-ID, 2000, available at http://immi.inesc-
id.pt/projects/cali/

[4] James Lin, Mark W. Newman, Jason 1. Hong, James A. Landay,
"DENIM: An Informal Tool for Early Stage Web Site Design."
Video poster in Extended Abstracts of Human Factors in Comput-
ing Systems: CHI 2001, Seattle, WA, March 31-April 5, 2001, pp.
205-206.

[5] Caetano, A., Goulart, N., Fonseca, M. and Jorge, J.: JavaSketchlt:
Issues in Sketching the Look of User Interfaces. In Proceedings of
the 2002 AAAI Spring Symposium - Sketch Understanding, pages
9-14, Palo Alto, USA, 2002.
http://immi.inesc.pt/publication.php?publication_id=40

122

Interac¢ao 2006



