Concepedo e Desenvolvimento

Formalizing Markup Languages for User Interface

Luis G. M. Ferreira
Grupo Sistemas de Tecnologia e Informacado, IPCA-EST
Barcelos
lufer@ipca.pt

Resumo

This work focus on the formalization process of user interfaces specification using eXtended Markup Language
(XML) description. As an instance of this process, we explore a VDM-SL specification of UIML - User Interface
Markup Language. The main results are tested in a particular graphical tabular OLAP features case study, towards
a definition of a Visual Component Library, with UI components composition and reuse.

Palavras-Chave

User interfaces, XML, VDM-SL, Formal methods, OLAP.

1. Introduction

For the companies of today it is crucial the full integration
and consistency of all the information which flows or is
stored in its databases. The number of specific and differ-
ent applications, manipulating this information, is neces-
sarily large. Maintenance and support of these applications
requires expensive team work.

The (conventional) Relational Database Management Sys-
tems (RDBMS) no longer can guarantee timely efficiency
in the answers to complex queries. The treatment of infor-
mation in bidimensional format (tables and spreadsheets,
for example), the inability of the analysis, transformation
and consolidation of such information, restrict the overall
application of these systems.

The advantages of formal specifications of complex sys-
tems using formal methods are well known. It is known
and accepted by a considerable group of persons as a way
to avoid ambiguities and clearly guarantee correctness and
consistency of the developed programs. In this context,
it is useful to experiment these guaranties on user interface
development, exploring some kind of merging processes of
new specification methods with existing graphical objects
specifications.

As a consequence of this large set of graphical elements,
many of them only found in pure commercial application,
its formal specification process, towards a Visual Compo-
nent Library - VCL, could become complex. This com-
plexity can even increase during the tentative abstraction
of real problems.

This paper is organized as follows. Section 2 presents the
motivations and main technical guidelines followed on this
work. This is followed, in Section 3, by the brief presen-
tation of - at time of writing - technologies on modelling,

specifying, designing and programming user interfaces, as
well as OLAP concepts and Markup Languages applied
to interfaces description. Section 4 discusses the archived
UIML VDM-SL specification, followed by resultant table
model and its specification on VDM-SL on Section 5. Sec-
tion 6 describes the developed prototype and main support-
ing tools. Finally, Section 7 concludes the paper and fore-
tell future developments.

2 Problem Statement

This work stands from the thoughts of Brad Myers
[Brad 98], where the area of the Ul is an example of the
strong influence of academic research in the industrial way
of doing things. In its essence, this research intends to ap-
ply formal semantics techniques to the user interface de-
velopment, in order to impose scientific rigor on the whole
process, from interface specification and validation to its
transformation (“transcoding”). However, the application
of formal methods should never surpass the limits of ver-
satility, trying whenever possible to build the specification
through the composition of components previously speci-
fied.

By applying formal methods, UI development becomes a
rigorous discipline with focus on higher abstraction levels
(relative to implementation), using visual components such
as ListBox, Button, TextBox, Menu, etc.) and a semantic set
of rules which describes the process.

The Sets Theory [Oliveira 03] semantic specification of
each component will resort to semantic models, describ-
ing their distinct internal states, associated to execution of
each operator.

The process usually starts from a data model, properly (or
not) normalized, to describe the intended information sys-
tem. Using VDM-SL, developers will try to specify its data

Interac¢do 2006

81

model, by identifying the interface components, necessary
for its information visualization. To guarantee coherence
in the final placement of the components in the interface
layout, it should be interesting the use invariants which, in
the later phase of layout placement, should prove its rela-
tive position.

3. State-of-the-Art

This work, being specially focused with data Visualization
in application interfaces, gave priority to the analysis of
the existing technologies in the area. In [Phanouriou 00],
Constantinos summarizes the main steps that can be iden-
tified in this process and, as the Seeheim model [Pfaff 85]
advocates, the importance on maintaining a real separation
between the presentation layer and the remaining applica-
tion layers.

Amongst the known user interface Models, from the
“ancient” to the recent ones (Arch Model, MVC
Model, PAC Model, XForms, N-Tier Model, MIM
Model[Phanouriou 00]), perhaps the first and the most sig-
nificant Ul model was Seeheim Model, presented at the
Seeheim Workshop (Berlin, 1985). As this model de-
scribes, as well as on recent architecture models (such as
N-Tier), there are evident concerns in separating responsi-
bilities between interfaces and the rest of the application.

The MIM -Meta-Interface Model, which extends the level
of abstraction of the Slinky Model, was created with ab-
stractions mechanisms to describe interfaces that can map
into multiple and distinct types of devices. It divides the
interface into three major components: presentation, logic
and interface.

The UIML, markup specification language for generic in-
terfaces description explored on this work, is based upon
MIM model.

3.1 Multidimensional Analysis

Once we intend to explore OLAP features applied to tab-
ular object as a case study, the Multidimensional Analy-
sis technique over multidimensional information was care-
fully explored.

Multidimensional data models categorize data as being ei-
ther facts, which means data values and eventual attributes,
or as being dimensions, that categorize the facts and are
mostly textual. The model of a Multidimensional Data-
base is an array of n-dimensions (often called Hypercube
or collection of related cubes). Although the term “cube”
implies three dimensions, a cube can have any number of
dimensions.

Each dimension is associated to a hierarchy of data levels
consolidation. For example, a dimension “time” can have
a hierarchy with levels day, month or year. A dimension
works as an index of identification of values in the array.
Each array position, corresponding to the intersection of
all dimensions, is a cell.

Operations like Rotation, Ranging, Rolling-Up, Drill-
Down, Hierarchies, etc. should be available, supporting
OLAP technologies.

Concepgao e Desenvolvimento

3.2 Markup Languages for User Interface de-
scription

Over the past few years, there have been a number of in-
dustrial and academic initiatives to standardize many data
types towards application interoperability. However, it
seems that the same did not happen in the interface design
area.

It is relieving to know that the W3C - World Wide Web Con-
sortium and OASIS - Organization for the Advancement
of Structured Information Systems have worked towards
the great dissemination of XML and of some standards
for application interoperability (like SOAP') and several
XML applications for multiple distinct areas. Focusing on
our main goal, there are already several XML applications

aiming user interface specifications?.

Noting the scope, requirements and structure of XIML - eX-
tensible Interface Markup Language, XUL - XML-based
User-interface Language (by Mozilla project), AUIML -
Abstract User Interface Markup Language and UIML -
User Interface Markup Language, we focus our attention
on the last one, mainly because its extensibility and facil-
ity.

We can also confirm that UIML does not walk alone on
this path, ignoring all other initiatives. For instance, in the
current UIML version (3.0) it is even better to use XForms
with UIML than to work directly with HTML

4 UIML Formal Specification

The UIML should not be considered a pure VCL because it
“works” away from any concrete representation. However
it can be understood as so in the sense that it describes
visual components that can be represented in a concrete
graphical environment.

All UIML elements were formally specified. <uiml>,
<head>, <structure>, <peer>, etc., using VDM-SL no-
tation as following code excerpts try to represent.

The <uiml> specification was:

Uiml :: head: [Head]

members : Member
inv uiml = uniqueIds(uiml) and
validProperties(uiml);

where inv represent the invariant which must be respected.

The <interface> element specification was,

intele: InterfaceElements=*
id: [ID]

source: String

how: [SourceModes]
export: [ExportOptions]
inv i = uniquelIDs(i);

Interface

The <structure> element specification was,

'SOAP - Simple Object Access Protocol
Zhttp://xml.coverpages.org/userInterfaceXML html

82

Interac¢ao 2006

Concepedo e Desenvolvimento

Structure :: parts : Partx

id: [ID]

source: String

how: [SourceModes]
export: [ExportOptions]

inv s = uniquelDs(s);

In order to certify semantic rules on operators utilization,
several VDM-SL invariants were created, as described in
the code excerpts. The code below represents an excerpts
of one of such definitions.

UniquelIDs: UIMLElements -> Bool
UniquelIDs(t) =
case t:
mk-UIML(-,-) ->
rng allIDs(t)={1},
mk-Peers(-,-,-,-,) =>
rang peersIDs([t],{->})={},

All the VDM-SL specifications respect the actual UIML
XML Schema[Harmonia 02]. Due to the extension of
UIML language, some particularities were not considered
on this work, mainly rules associated to template and prop-
erty elements.

The resultant VDM-SL specification, will be tested using a
table object.

5 Table VDM-SL specification

To better understand OLAP methods behavior (functions,
operators or transformers), they must be considered as at-
tributes if they support column and row characteristics
(ex. column name, column width, etc.); operators if they
work with table structure (addRow, delRow, etc.); func-
tions if they support data calculus (sum, avg, sort, etc.)
or even transformers if they manipulate the original table
structure (hideCol, drill-down, rotation, etc.).

Following excerpts of VDM-SL code specify some imple-
mented table operators. For instance, the operator respon-
sible from table creation - mkTable - was defined as:

mkTable : Style x Rows -> T
mkTable (s,r) = mk-(s,r);

For example, the dT default table creation, with no rows
and no graphical information (background color, cell spac-
ing, etc.), could be obtained by the following expression:

mkTable("dT", {},{] - >});
Another table 7 could start its construction using:
mkTable(, "r1" | - > mk_(, "Mark" | - > mk_(, "Ford")));

The hideRow operator, which hides a particular row:

hideRow : T x Rid -> T
hideRow (t,rid) =
mk-(t.#1,markRow (t.#2,rid,"h"))
pre rid 2 dom (t.#2);

The delRow operator, which delete a particular table row,

delRow : T X Rid -> T
delRow (t,rid) = mk-(t.#1,{rid}<-t.#2);

In our example, the expression
delRow(t, "r1")
will remove all Black Ford information concerning.

A similar process was done for all others implemented op-
erators.

6 Prototype and Supporting Tools

In order to experiment the animation of VDM methods,
mainly OLAP functions, we have decided to create an
HTML prototype whereby we can visualize all table trans-
formations. This application uses our VDM specifications,
UIMLSpec and UIMLSpecTab. From CGI HTML forms
behavior, the VDM-SL methods are called, then UIML is
generated and rendered again to HTML. Figure 1 depicts
the prototype architecture.

/ UIMLSpec /

vdm-sl //

HT WL, Applet

Figure 1. Prototype architecture

As supporting tools used on the four phases of the process,
on Phase 1 - Transcoding UIML to VDM-SL, we generated
a XML StyleSheet (uiml2vdm xsl)to transform UIML into
VDM-SL. Next we created directly in VDM-SL, a Pretty-
Print tool - vdm2uiml.vdm - which works as a script and
executes a parsing process over VDM-SL specifications. It
generates a correspondent UIML syntax for each specified
element.

In Phase 2 - Verifier, was created a verifier to support the
validation phase of our process. This validation allows to
test the consistency of the VDM-SL generated code along
the transcoding process, verifying the ”similarity” between
both UIML codes.

The Phase 3 - Abstraction, has not been completely de-
veloped. All reasoning implicit in it is sketched in Future
Work. The process starts from VDM-SL table abstraction
towards the creation of a visual components library.

This work should show that it is possible to perform trans-
formations by calculation. Then it is necessary to find dif-
ferent candidate implementation objects. This is a natural
property of adaptable interfaces.

In our case study, the idea stays as “it is possible to get
a new UIML interface description” which represents the
same.

In Phase 4 - Rendering UIML, we used the actual
UIML rendering engines, from Harmonia®, which supports

3http://www.harmonia.com

Interac¢do 2006

83

several platforms, with several programming languages
(JAVA, HTML, WML, VoiceXml, etc.), rendering widgets
and events specified in UIML <presentation> elements.
The goal was to generate UI from an UIML specification.

For instance, in order to convert our table specification
(UIMLSpecTab) to our base specification (UIMLSpec), we
created the function TabUIML2UIML. Considering this,
the expression

UIMLSpecTab* TabUIML2 UIML(UIMLSpecTab‘t)

will result in an UIML element corresponding to our table
t.

Once in the UIML code, the following shell commands will
respond for the rest of the process:

1. u2h table.wiml table.html

Generates HTML code for browser platforms. The
render u2h works over HTML vocabulary.

2. u2ji table.uiml table.java

Generates Java code associated to UIML descrip-
tions, ready to be used on Java platforms. The u2ji
render works over Java vocabulary.

3. u2w table.uiml table.wml

Generates WML code for WAP devices. The render
u2w works over WML vocabulary.

7 Conclusions and Future Work

The main focus of this work is the user interfaces graph-
ical design which support current software applications.
For the sake of rigor, it addresses the application of formal
methods to recent UI markup language support technolo-
gies. The application of formal semantics techniques to
user interface development, imposes scientific rigor on the
whole development process: specification, validation and
transformation.

Despite the existence of several research projects focused
on this, there are still questions which remain unanswered.
One of these questions is as basic as follows: are markup
languages, even developed with important objectives, the
best idea to support this process? Further than a portable
and platform independent description technique, XML
subscribes to an enormous vocabulary set, which demands
parser and validation mechanisms.

Our UIML VDM-SL specification leads us to believe that
there is room for some conceptual simplification. This
conclusion is sustained by observing the achieved abstract
specification, where several replicated elements and re-
peated patterns can be identified.

Concepgao e Desenvolvimento

Considering this, an interesting path for future work is that
of UIML’s refactoring process towards a simpler specifica-
tion.

Another interesting focus topic for future developments is
that of creating a formal Visual Component Library - VCL.
Our table specification is but the beginning of one such
repository of useful graphical interaction objects (I0). The
aim should be the construction of new interfaces by reusing
existent components. Once made available, a VCL would
contribute to answering another quite common question:
“What is the best 10 to represent this particular piece of
data?”, Ideally, a “matching” process should become avail-
able for searching the library and retrieving all adequate
components.

As a matter of fact, our research has included some work in
these two vectors - UIML abstract syntax refactoring and
visualization. However, the outcome cannot be regarded
as finished work. Despite their incompleteness, perhaps
our results can still be useful to anyone wishing to pursue
them.

8. ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor José
Nuno Oliveira, member of DI (Department of Informat-
ics, Minho University4), who encouraged all formal meth-
ods research and initiatives at the University, for his useful
support and advice during this work. I am also grateful to
Marc Abrams and James Helms Harmonia members, for
their enthusiastic support along this research as well for
the availability of their UIML supporting tools.

References

[Brad 98] Myers Brad. A brief history of Human
Computer Interaction Technology, 1998.
http://citeseer.nj.nec.com/myers98brief.html.

[Harmonia 02] Inc. Harmonia. User Interface Markup
Language UIML Specification. Techni-
cal report, Harmonia Inc., 2002.

[Oliveira 03] J. Nuno Oliveira. An introduction to
Data Refinement. Formal Methods II,
2003.

[Pfaff 85] G.E. Pfaff. User Interface Management

Systems: Proceedings of the Seeheim
Workshop, 1985.

UIML: A
Interface

[Phanouriou 00] Constantinos Phanouriou.
Device-Independent ~ User
Markup Language, 2000.

“http://www.di.uminho pt

84

Interac¢ao 2006

