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Abstract 
Real 3D data acquired from scanning techno/ogy provide interesting 3D models for research and industrial 
applications. However before these models can be used, a surface needs to be jitted to a point cloud of an 
unknown object, this process might create some undesirable properties, such as triangle normais pointing in 
incorrect directions. We present a robust algorithm that reliably fixes these triangle normal problems on non­
manifold, and self-interesting surfaces of scanned objects. 
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1. INTRODUCTION 
Fitting and orienting• a 3D surface to a point cloud that 
comes from an unknown scanning <levice can pose a 
difficult problem. This is particularly the case when the 
scanner retums only point location information and not 
range data or surface direction~. ln practice even non­
scanned objects, modelled by hand can have problems 
with inconsistent normais. 

However in Computer Graphics one often renders only 
triangles that are facing the viewer to speed up the 
rendering. ln such systems having inconsistent normais 
produces visually incorrect results (Figure 12, leftmost 
colurnn, and Figure 13, rightmost colurnn, show white 
gaps in the original model where the triangle normais are 
pointing inwards to the model). Some 3D software 
viewers avoid this problem simply by rendering both 
front-facing and back-facing triangles but clearly this is 
not ideal since the rendering speed is halved. 

Since the object is a scan, it should be possible to get the 
correct visual result by rendering each triangle from only 
one of its two sides. Techniques that can attempt to de­
termine which side is the correct side often rely on count­
ing surface intersections of rays to determine in­
side/outside directions. These techniques face a difficult 
problem with non-manifold and self-intersecting surfaces 
since it is often the case that clusters of degenerate sur-

• Triangles specified with vertex order consistent with the right 
hand rule, point in the direction ofthe thumb. 

~ this is particularly likely if the data was obtained from a sys­
tem with severa! different sensors, such as the whole body 
scanner described in [Horiguchi98]) 
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faces float inside an object where for example the surface 
did not have enough sample data. 

Some previous work is mentioned in section 2. ln this 
paper we present a robust algorithm that reliably fixes 
normais of degenerate surface scans in section 3. ln sec­
tion 4 we present some implementation issues. ln section 
5 we present results. Finally in section 6 we conclude and 
lay out future work . 

2. PREVIOUS WORK 
A collection of points on a flat surface can be given an 
arbitrary global surface orientation, depending on which 
side ofthe surface was used when applying the right hand 
rule. With a closed surface the decision is no longer arbi­
trary, because there is an orientation where all the trian­
gles are specified to point towards the outside and thus 
only the exterior is rendered when back-face culling. 
Therefore it becomes important to reliably determine 
what direction is inwards, and what is outwards. Simply 
using a triangle normal to intersect the rest of the object, 
and counting the number of intersections, could give an 
idea of whether for example a triangle normal is pointing 
outwards (one triangle intersection), or inwards (two tri­
angle intersections, possibly more), but problems arise 
when there are multiple disconnected surfaces in the ob­
ject which cross these intersection paths. Self-intersecting 
surfaces resulting from noisy data can also limit the reli­
ability of this test. For example consider a flat surface, 
completely defined by counter clockwise order. lfthis flat 
surface intersects and shares geometry with other surfaces 
that are noise artefacts, then the side criteria could swap 
at those locations and locally inconsistent normais will be 
produced. There is not much published work on fixing 
inconsistent normais. There are commercial tools avail-
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able but unfortunately no details on their operation or 
quality when dealing with real data such as that of laser 
scans. Furthermore, some solutions require the user to 
choose the directions manually. This can be quite tedious 
if the object is composed of hundreds of patches, located 
dispersedly in the model. We compare our results with a 
widely free distributed too! called ivnorm [Bell95] in 
section 5. 

3. DETERMINING ORIENTATION 
Our algorithm has three distinct phases. The first one, 
described in section 3.1 creates normal groups, removing 
the problems of non-manifold parts. The second in 
section 3.2 in which rays are used in conjunction of 
opposite directed rays to find a reliable test for the normal 
group direction. And the third in 3.3 where we triangulate 
holes created from deleting non-manifold parts. 

3.1 Normal group creation 
Non-manifold edges, e.g. edges that are shared by more 
than two triangles, create a problem when performing 
surface connectivity queries such as determining the 
adj acent connected triangle of another triangle at an edge. 
This ambiguity can generate problems when trying to 
group a large area of connected triangles. Often these 
inconsistencies in surface scans are the line of contact of 
severa! noisy small surfaces. These edges can cause 
fragmented smaller groups of triangles, which increase 
the computation demands of determining more correct 
orientations for those groups. Furthermore they can 
inconsistently propagate vertex-order criteria of a given 
direction. To overcome this problem we sirnply remove 
ali triangles connected to non-manifold edges, and we 
tlag the vertices that became borders in result of these 
deletions. This flag at vertex levei allows us to preserve 
holes of the original model, and only fill created holes. 
For determining non-manifold edges we use the 
connectivity/marking data structure adopted by 
[Garland99]. Figure 1, illustrates the procedure. For every 
edge in the model, we zero the face markers of every 
triangle connected to each ofthe edge's vertices. One can 
build lists of faces at vertex levei by taking one triangle at 
a time, and adding the triangle índex to each of it's three 
vertices own face lists. Next we increment by one the face 
markers of every triangle associated with the fust vertex 
of the edge. Finally we increment by one ali the face 
markers of the triangles associated with the second vertex 
of the edge. If there are more than two triangles with a 
face mark value of 2, then we delete ali the triangles with 
a face mark value of2. 

Once the triangles associated with non-manifold edges 
are deleted, we pick the first triangle ofthe object, mark it 
with the current number of the group, retrieve the three 
adjacent triangles and force the vertex order on them to 
be consistent with the picked triangle, and recursively 
apply the sarne procedure to the retrieved triangles that 
have not been marked yet. When there are no more 
connected triangles, the recursion will stop and return to 
the main loop, where the triangles that have been marked 
are skipped until an unmarked one starts a new group. 
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Figure 1: Detecting non manifold edges 

void fixallnormals(GObject *theobject) { 

deletenonmanifoldregions(theobject); fgroup= 1; 

for(i=O; i<theobject->farray->s ize; i++) { 

f=atFaceArray(theobject->farray, i) ; 

if(f->wt=O) { /*first ever vertex order specification•/ 

fixvertexnormals(theobject,f, fgroup); fgroup++; 

void fixvertexnormals(GObject *theobject, Face •f, int fgroup) { 

f->wt=fgroup; vi id=f->first->i; v2id=f->first->next->i; 

v3id=f->first->next->next->i; 

nfl =getadjacentfaceatedge(v 1 id, v2id, f, theobject); 

forcevertexorder(f, nfl ); 

nt2=getadjacentfaceatedge(v2id, v3id, f, theobject); 

forcevertexorder(f, nf2); 

nf3=getadjacentfaceatedge(v3id, vi id, f, theobject); 

forcevertexorder(f, nf3); 

if(nfl ->wt=O) { fixvertexnormals(theobject,nfl ,f group ); } 

if(nf2->wt=O) { fixvertexnormals(theobject,nf2,fgroup ); } 

if(n 13->wt=O) { fixvertexnormals(theobject,nf3,fgroup ); } 

Figure 2: Pseudo-code of normal grouping 

3.2 Reliable ray tests 
The previous phase, on average, successfully groups 98% 
of the model into one surface group (Table 1, 2"d and 4th 
column). Given that one test can potentially determine the 
orientation of the whole group, this allows for some 
freedom to choose reliable test rays for ali our tests. For 
simplicity a ray is defined with two points: a starting 
point (Cx,Cy,Cz) and a second point (Bx,By,Bz) 

following a particular triangle orientation 1J' or -1/, see 
Figure 3. A point (Px,Py,Pz) on the ray can be found 
with the following equations: 

Px=Cx+ a(Bx-Cx) 

Py=Cy+a(By-Cy) 

P==Cz+a(Bz-Cz), where O $;a<+oo 

(1) 
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ln our case we are interested in finding a point of the ray 
that intersects a plane: 

d..Px)+ b(Py)+c(P=)+ d= O 

substituting (1) in (2), 

(2) 

ci..Cx+ a(Bx-Cx))+b(Cy+ a(By-Cy))+c(C=+ a(B=-C=))+ d=O 

and solving for a: 

( 
-a(Cx)-b(Cy)-c(Cz)-d l (3) 

a= a(Bx-Cx)+b(By-Cy)+c(Bz-Cz)J 

Care needs to be taken with the denominator of (3), as the 
ray might be parallel to the plane and not intersect, 
yielding a zero dot product between the plane normal and 
the ray's orientation. 

The outline of our test strategy is as follows: 

1. For each normal group, choose one triangle to tire a 
ray from. 

2. For the picked triangle create 3 random barycentric 
coordinates for the starting point C ofthe ray. Make 
sure the random point is not on one of the edges of 
the triangle as this would count as two intersections. 
Continue to create random barycentric coordinates if 
they fali on an edge. 

3. Use the triangle normal 1J' to calculate the second 
point A, that determines the direction ofthe ray. 

4. Intersect the ray with ali the triangles ofthe model. If 
you have a spatial data structure, query the data 
structure. If the ray hits an edge, go back to 2, with 
the sarne triangle. If not, record the number of hits 
(hitsA). If hitsA is one, proceed with the next group. 
Goto step 1. 

5. Use the triangle normal to calculate a ray with the 

opposite direction -"h ofthe created in 3. 

6. The sarne as 4, compute two new rays for the sarne 
triangle if it hits an edge. If not, record the number of 
hits separately (hitsB). 

7. Check to see if either hitsA or hitsB has the value of 
one. If hitsA has a value of one, it means that the 
group was oriented correctly, and we proceed with a 
triangle ofthe next group. IfhitsA has not gota value 
of one, but hitsB has, then we reverse the vertex 
order for ali the triangles in the group, and proceed to 
the triangle of the next group. 

8. If neither hitsA or hitsB has a value of one, we go 
back to step 2, with another triangle of the sarne 
group. Hopefully this new triangle will be positioned 
in a more reliable location, away from self­
intersecting surfaces. ln principie, with surface mod­
els, it should be possible to find a triangle in the 
group, where one of the rays hits only one triangle, 
the one it started from. We also keep a count of how 
many triangles we have tried, and if we have tried ali 
the triangles in the group, we reason with smallest 
value between hitsA and hitsB. If hitsA has the 
smallest value, and it is odd, then we proceed with 
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the triangle of the next group. If it was even, we in­
vert the vertex order of ali the triangles in the group, 
as we do if hitsB had the smallest value and it is odd. 
Finally if hitsB has the smallest value and it is even, 
we do not invert the vertex order of the group and 
proceed to step 1 . 

Care needs to be taken to avoid double counting of 
triangle intersections when a ray hits an edge. Shooting 
systematically the rays from the centre of a triangle is a 
bad strategy as illustrated in Figure 3. We use random 
barycentric coordinates described in the next section to 
generate our starting point for the ray. Note that in step 8, 
if neither hitsA or hitsB has a value of one, then either: a) 
the triangle is positioned in a way that it's rays hit another 
part of the surface ( e.g. with a scanned upright human, the 
rays from one ankle could genuinely hit triangles in the 
opposite leg) or b) we are dealing with a triangle that is 
inside the model, in the context of laser surface scans, this 
would typically be a self intersection of the fited mesh. 
Since it is not possible to distinguish between the two 
cases, ultimately our search for a reliable one hit ray, 
allows us to cope with these degeneracies. We present 
results on four scanned models in section 5. 

A 

Figure 3: Ray B-C, originates from the centre of the 
top triangle and hits an edge in the bottom triangles. 

3.3 Hole triangulation 
Finally we triangulate holes resulting from the initial 
deletion oftriangles around non-manifold edges. The first 
step of the hole triangulation process is to retrieve border 
edges that have their vertices flagged from the initial 
deletion process. These border edges can be found with a 
marking strategy similar to the one illustrated in Figure 1, 
with the difference being that an edge is classified as a 
border edge if there is only one triangle that shares the 
edge with the value of 2. Lists are made to track these 
detected border edges, and they are sorted according to 
the smallest índex value of the vertex pair. This allows 
one to easily follow a connected edge sequence in the Iist. 
When the sequence is broken, e.g. an edge shares no val­
ues with the previous edge in the list, this indicates the 
start of a different hole in the model. It would be desir­
able to correct initial non-manifold configurations when 
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triangulating their holes, one way to try to achieve this, 
would be to only triangulate a sequence of connected 
border edges whose border triangles were classitied into 
the sarne normal group. This situation is illustrated in 
Figure 4. New triangles are created with the vertices of 
the border edges and the centroid "P". 

Figure 4: left: border vertices witb border-edge 
valence of 2, rigbt: bole triangulation 

Connecting the border vertices to the centroid, does not 
ensure non-self intersection of the resulting surface. 
Unfortunately neither does it ensure non-manifold edge 
creation. Figure 5 shows a connected edge border 
sequence whose border triangles were tagged to the sarne 
normal group " 1 ". The vertex A, has a valence of 4 
border edges connected to it, instead of 2 as in border 
vertices in Figure 4. Although the border edge sequence 
is valid, the border vertex sequence is not. The image on 
the right shows four darkened triangles that share the 
resulting non-manifold edge P-A. 

Figure 5: left: Complex Boundary vertex "A" witb 
border-edge valence of 4, rigbt: bole triangulation 

witb non manifold edge P A 

We have tried to triangulate sequences that stopped at 
border vertices with valence higher than 2, Complex 
Boundary vertices. But unfortunately in ali the scanned 
models, ali the resulting border vertices have a valence of 
4. An object that similarly exhibits this property is the 
Sierpinski triangle (Figure 6), where ali but the three cor­
ners on the silhouette of the object have a border edge 
valence of 4. It is not clear what benefits other hole trian­
gulation schemes such as [HeldO 1] and [Schroeder92] can 
offer in this situation. Border vertices that have a border­
edge valence higher than 2 are likely to create non­
manifold contigurations. For completeness we would Iike 
to add the vertex classitication: Complex Boundary to 
Schroeder's tive: Simple, Complex, Boundary, Interior 
Edge, Comer. We note that Complex Boundary vertices 
were created through the decimation of a complete edge, 
and that although they don ' t have non-manifold edges 
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connected, they are complex. ln the end we consider that 
the initial mesh in these cases is already non-manifold and 
choose to accept non-manifold edge creation, using our 
robust centroid triangulation scheme, to avoid visible 
holes in the model. 

Figure 6: Sierpinski triangle, border edge valence > 2 

4. IMPLEMENTATION ISSUES 
As mentioned in the previous section, one needs to be 
careful with ray edge hit condition. A classical problem in 
raytracing is illustrated in Figure 7. 

ray 

Figure 7: Multiple ray edge bit 

ln the situation above, tive triangles are hit, where it 
should count only as one. We detect edge hits between a 
ray and a triangle by forming two vectors vl and v2 with 
the intersection point and two vertices of the triangle 
(Figure 8), if either angle 81, 02 or 83 formed between 
one of these vectors and an edge is smaller or equal to 
half a degree, we classify the intersection as an edge hit, 
and discard the ray. Figure 8 illustrates the two vectors vl 
and v2, and how an initial random starting point is 
computed. We call a random number generator three 
times, and divide each number by the sum of the three. A 
point can then be calculated by: 

P(l31, 132, 133)=P1+132*(P2-PI)+l33*(P3-Pl) (4) 

where, 131+132+133= 1 ( 5) 

PI (1.0,0) 

Figure 8: Barycentric coordinate point and edge 
nearness tolerance 
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5. RESULTS 
We have tested our algorithm in severa! surface models 
(Figure 9, 1 O) and in larger laser scanned models, with 
simple topology (Figure 11) and more complex (Figure 
12, 13). ln this work we have used data from a 
Hamamatsu Body Lines scanner which offers 1-2 mm 
accuracy over approximately regular samples at 5 mm 
spacing over 400 horizontal slices of the body 
[Horiguchi98]. We have also used a surface 
reconstruction software called Cocone, freely available at 
[Dey02], based on [AmentaOO] to fit a surface to the 
scanned point cloud. The experiments were carried out on 
a PowerBookG4 500MHz, 1 Gb RAM. This computer is 
capable of computing 1 million ray triangle intersections 
in - 7 seconds (including the edge hit test). Numerical 
results for ali the models can be found in Table 1. The 
table shows that reliable tests from our algorithm are 
affordable even with larger models. The time increases 
with how degenerate the model was, for instance Igor2 
(fifth row ofTable 1), has fewer triangles than Igor3, but 
has more normal groups (column 3) and takes longer. We 
expect that with even larger scanned models, the number 
of mesh degeneracies will remain the dominant time 
factor. The third column of Table 1 shows that the 
problem of real data is finding the orientation relationship 
between severa) surfaces and not just one. The fifth 
columns indicates how easy it is to get the intersection 
counts wrong with a one ray strategy as it is very likely to 
hit an edge in a dense model, and considering the number 
of groups to test. The sixth column, shows how useful it 
was to use our two opposing orientation rays strategy, it 
shows that calculating the ray opposite to a triangle 
normal was determinant in finding the correct orientation 
ofhalf ofthe normal groups. 

The following figure presents an inconsistent symmetrical 
object on the left and shows results after applying our 
algorithm on the right. 

Figure 9: left: inconsistent normais, right: normais 
after applying our algorithm 

# #Normal # triangles 
Model name triangles Groups in largest group 

Cube 12 1 12 

Mobius strip 120 1 120 

Mannequin 31662 18 31544 

Igorl 66164 44 65806 

lgor2 62982 80 62280 

Igor3 68590 58 67977 

Figure 1 O shows a Mobius strip with inconsistent normais 
(top), and results after applying our algorithm (below). 
The transition of the normais from outside to inside can 
clearly be seen. The object is completely front facing 
from this view, and completely invisible on the other side 
facing the viewer. 

, - ·· 

Figure 10: from top: Mobius strip with inconsistent 
normais, wireframe results after applying our algo­
rithm, flat shading results, Gourard shading results 

# ray # opposite orien- # rays Time 

starts on edge tation rays with shot (s) 
single hits 

1 o 12 <I 

1 1 240 <I 

55 6 2461786 20 

89 20 8703944 69 

160 43 16182298 126 

116 26 11445967 91 

Table l - Numerical results 
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6. FUTURE WORK 
As mentioned in the beginning of section 3.2, the fact that 
more than 90% of the triangle's orientation can be 
determined with a few ray tests allows for extra ray tests 
to find a reliable test. Although we generate new random 
points when a ray starts at an edge, or hits an edge, we 
have not explored more exhaustive searching on the 
triangle to find a position that would yield a one triangle 
hit ray. We plan to use a spatial data structure [Arvo87] 
to query only specific parts of a model with our rays, and 
hope that the time saved will allow for more tests in small 
problematic areas such as concavities, with internai 
surfaces inside, where a particular starting ray position 
could determine a reliable one hit triangle test. Currently 
the worst case situation of our algorithm would be if the 
model had a double hull, which does not occur in surface 
scans. Nevertheless our algorithm can be changed in step 
8, to not fallback and try ali the triangles in a group, 
instead it could just rely on the last part of step 8, using 
the first pair of edge hit free rays calculated for the group 
to compute an answer for generic models. Finally, 
regarding the initial deletion of non manifold triangles, it 
would be interesting to attempt to separate the connecting 
surfaces by creating new vertices with small shifts in 
coordinates for each surface, hence eliminating non 
manifold configurations without deletion, and small error. 
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Figure 11: Mannequin (top: front bottom: back)- from left to right: original model, lvnorm[default], Iv­
norm[counterclockwise], lvnorm[clockwise], our result. 
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Figure 12: Igor 1, 2, 3 (front)- from left to right: original model, Ivnorm[default], Ivnorm[counterclockwise), 
Ivnormf clockwise), our result. 
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Figure 13: Igor 1, 2, 3 (back)- from left to right: our result, lvnorm[clockwise), lvnorm[counterclockwise), 
lvnorm[default), original model. 
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