
SIACG 2002 • lst Ibero-American Symposium on Computer Graphics
1 -5 July 2002, Guimarães· Portugal

Determining orientation

of Laser scanned surfaces

João Fradinho Oliveira Anthony Steed
Department of Computer Science, University College London

Gower Street, WC1 E 6BT London
{Joao.Oliveira, A.Steed}@cs.ucl.ac.uk

Abstract
Real 3D data acquired from scanning techno/ogy provide interesting 3D models for research and industrial
applications. However before these models can be used, a surface needs to be jitted to a point cloud of an
unknown object, this process might create some undesirable properties, such as triangle normais pointing in
incorrect directions. We present a robust algorithm that reliably fixes these triangle normal problems on non­
manifold, and self-interesting surfaces of scanned objects.

Keywords
Normalfixing, vertex ordering, non-manifold, self-intersection, Complex Boundary vertex

1. INTRODUCTION
Fitting and orienting• a 3D surface to a point cloud that
comes from an unknown scanning <levice can pose a
difficult problem. This is particularly the case when the
scanner retums only point location information and not
range data or surface direction~. ln practice even non­
scanned objects, modelled by hand can have problems
with inconsistent normais.

However in Computer Graphics one often renders only
triangles that are facing the viewer to speed up the
rendering. ln such systems having inconsistent normais
produces visually incorrect results (Figure 12, leftmost
colurnn, and Figure 13, rightmost colurnn, show white
gaps in the original model where the triangle normais are
pointing inwards to the model). Some 3D software
viewers avoid this problem simply by rendering both
front-facing and back-facing triangles but clearly this is
not ideal since the rendering speed is halved.

Since the object is a scan, it should be possible to get the
correct visual result by rendering each triangle from only
one of its two sides. Techniques that can attempt to de­
termine which side is the correct side often rely on count­
ing surface intersections of rays to determine in­
side/outside directions. These techniques face a difficult
problem with non-manifold and self-intersecting surfaces
since it is often the case that clusters of degenerate sur-

• Triangles specified with vertex order consistent with the right
hand rule, point in the direction ofthe thumb.

~ this is particularly likely if the data was obtained from a sys­
tem with severa! different sensors, such as the whole body
scanner described in [Horiguchi98])

281

faces float inside an object where for example the surface
did not have enough sample data.

Some previous work is mentioned in section 2. ln this
paper we present a robust algorithm that reliably fixes
normais of degenerate surface scans in section 3. ln sec­
tion 4 we present some implementation issues. ln section
5 we present results. Finally in section 6 we conclude and
lay out future work .

2. PREVIOUS WORK
A collection of points on a flat surface can be given an
arbitrary global surface orientation, depending on which
side ofthe surface was used when applying the right hand
rule. With a closed surface the decision is no longer arbi­
trary, because there is an orientation where all the trian­
gles are specified to point towards the outside and thus
only the exterior is rendered when back-face culling.
Therefore it becomes important to reliably determine
what direction is inwards, and what is outwards. Simply
using a triangle normal to intersect the rest of the object,
and counting the number of intersections, could give an
idea of whether for example a triangle normal is pointing
outwards (one triangle intersection), or inwards (two tri­
angle intersections, possibly more), but problems arise
when there are multiple disconnected surfaces in the ob­
ject which cross these intersection paths. Self-intersecting
surfaces resulting from noisy data can also limit the reli­
ability of this test. For example consider a flat surface,
completely defined by counter clockwise order. lfthis flat
surface intersects and shares geometry with other surfaces
that are noise artefacts, then the side criteria could swap
at those locations and locally inconsistent normais will be
produced. There is not much published work on fixing
inconsistent normais. There are commercial tools avail-

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

able but unfortunately no details on their operation or
quality when dealing with real data such as that of laser
scans. Furthermore, some solutions require the user to
choose the directions manually. This can be quite tedious
if the object is composed of hundreds of patches, located
dispersedly in the model. We compare our results with a
widely free distributed too! called ivnorm [Bell95] in
section 5.

3. DETERMINING ORIENTATION
Our algorithm has three distinct phases. The first one,
described in section 3.1 creates normal groups, removing
the problems of non-manifold parts. The second in
section 3.2 in which rays are used in conjunction of
opposite directed rays to find a reliable test for the normal
group direction. And the third in 3.3 where we triangulate
holes created from deleting non-manifold parts.

3.1 Normal group creation
Non-manifold edges, e.g. edges that are shared by more
than two triangles, create a problem when performing
surface connectivity queries such as determining the
adj acent connected triangle of another triangle at an edge.
This ambiguity can generate problems when trying to
group a large area of connected triangles. Often these
inconsistencies in surface scans are the line of contact of
severa! noisy small surfaces. These edges can cause
fragmented smaller groups of triangles, which increase
the computation demands of determining more correct
orientations for those groups. Furthermore they can
inconsistently propagate vertex-order criteria of a given
direction. To overcome this problem we sirnply remove
ali triangles connected to non-manifold edges, and we
tlag the vertices that became borders in result of these
deletions. This flag at vertex levei allows us to preserve
holes of the original model, and only fill created holes.
For determining non-manifold edges we use the
connectivity/marking data structure adopted by
[Garland99]. Figure 1, illustrates the procedure. For every
edge in the model, we zero the face markers of every
triangle connected to each ofthe edge's vertices. One can
build lists of faces at vertex levei by taking one triangle at
a time, and adding the triangle índex to each of it's three
vertices own face lists. Next we increment by one the face
markers of every triangle associated with the fust vertex
of the edge. Finally we increment by one ali the face
markers of the triangles associated with the second vertex
of the edge. If there are more than two triangles with a
face mark value of 2, then we delete ali the triangles with
a face mark value of2.

Once the triangles associated with non-manifold edges
are deleted, we pick the first triangle ofthe object, mark it
with the current number of the group, retrieve the three
adjacent triangles and force the vertex order on them to
be consistent with the picked triangle, and recursively
apply the sarne procedure to the retrieved triangles that
have not been marked yet. When there are no more
connected triangles, the recursion will stop and return to
the main loop, where the triangles that have been marked
are skipped until an unmarked one starts a new group.

282

Figure 1: Detecting non manifold edges

void fixallnormals(GObject *theobject) {

deletenonmanifoldregions(theobject); fgroup= 1;

for(i=O; i<theobject->farray->s ize; i++) {

f=atFaceArray(theobject->farray, i) ;

if(f->wt=O) { /*first ever vertex order specification•/

fixvertexnormals(theobject,f, fgroup); fgroup++;

void fixvertexnormals(GObject *theobject, Face •f, int fgroup) {

f->wt=fgroup; vi id=f->first->i; v2id=f->first->next->i;

v3id=f->first->next->next->i;

nfl =getadjacentfaceatedge(v 1 id, v2id, f, theobject);

forcevertexorder(f, nfl);

nt2=getadjacentfaceatedge(v2id, v3id, f, theobject);

forcevertexorder(f, nf2);

nf3=getadjacentfaceatedge(v3id, vi id, f, theobject);

forcevertexorder(f, nf3);

if(nfl ->wt=O) { fixvertexnormals(theobject,nfl ,f group); }

if(nf2->wt=O) { fixvertexnormals(theobject,nf2,fgroup); }

if(n 13->wt=O) { fixvertexnormals(theobject,nf3,fgroup); }

Figure 2: Pseudo-code of normal grouping

3.2 Reliable ray tests
The previous phase, on average, successfully groups 98%
of the model into one surface group (Table 1, 2"d and 4th
column). Given that one test can potentially determine the
orientation of the whole group, this allows for some
freedom to choose reliable test rays for ali our tests. For
simplicity a ray is defined with two points: a starting
point (Cx,Cy,Cz) and a second point (Bx,By,Bz)

following a particular triangle orientation 1J' or -1/, see
Figure 3. A point (Px,Py,Pz) on the ray can be found
with the following equations:

Px=Cx+ a(Bx-Cx)

Py=Cy+a(By-Cy)

P==Cz+a(Bz-Cz), where O $;a<+oo

(1)

SlACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

ln our case we are interested in finding a point of the ray
that intersects a plane:

d..Px)+ b(Py)+c(P=)+ d= O

substituting (1) in (2),

(2)

ci..Cx+ a(Bx-Cx))+b(Cy+ a(By-Cy))+c(C=+ a(B=-C=))+ d=O

and solving for a:

(
-a(Cx)-b(Cy)-c(Cz)-d l (3)

a= a(Bx-Cx)+b(By-Cy)+c(Bz-Cz)J

Care needs to be taken with the denominator of (3), as the
ray might be parallel to the plane and not intersect,
yielding a zero dot product between the plane normal and
the ray's orientation.

The outline of our test strategy is as follows:

1. For each normal group, choose one triangle to tire a
ray from.

2. For the picked triangle create 3 random barycentric
coordinates for the starting point C ofthe ray. Make
sure the random point is not on one of the edges of
the triangle as this would count as two intersections.
Continue to create random barycentric coordinates if
they fali on an edge.

3. Use the triangle normal 1J' to calculate the second
point A, that determines the direction ofthe ray.

4. Intersect the ray with ali the triangles ofthe model. If
you have a spatial data structure, query the data
structure. If the ray hits an edge, go back to 2, with
the sarne triangle. If not, record the number of hits
(hitsA). If hitsA is one, proceed with the next group.
Goto step 1.

5. Use the triangle normal to calculate a ray with the

opposite direction -"h ofthe created in 3.

6. The sarne as 4, compute two new rays for the sarne
triangle if it hits an edge. If not, record the number of
hits separately (hitsB).

7. Check to see if either hitsA or hitsB has the value of
one. If hitsA has a value of one, it means that the
group was oriented correctly, and we proceed with a
triangle ofthe next group. IfhitsA has not gota value
of one, but hitsB has, then we reverse the vertex
order for ali the triangles in the group, and proceed to
the triangle of the next group.

8. If neither hitsA or hitsB has a value of one, we go
back to step 2, with another triangle of the sarne
group. Hopefully this new triangle will be positioned
in a more reliable location, away from self­
intersecting surfaces. ln principie, with surface mod­
els, it should be possible to find a triangle in the
group, where one of the rays hits only one triangle,
the one it started from. We also keep a count of how
many triangles we have tried, and if we have tried ali
the triangles in the group, we reason with smallest
value between hitsA and hitsB. If hitsA has the
smallest value, and it is odd, then we proceed with

283

the triangle of the next group. If it was even, we in­
vert the vertex order of ali the triangles in the group,
as we do if hitsB had the smallest value and it is odd.
Finally if hitsB has the smallest value and it is even,
we do not invert the vertex order of the group and
proceed to step 1 .

Care needs to be taken to avoid double counting of
triangle intersections when a ray hits an edge. Shooting
systematically the rays from the centre of a triangle is a
bad strategy as illustrated in Figure 3. We use random
barycentric coordinates described in the next section to
generate our starting point for the ray. Note that in step 8,
if neither hitsA or hitsB has a value of one, then either: a)
the triangle is positioned in a way that it's rays hit another
part of the surface (e.g. with a scanned upright human, the
rays from one ankle could genuinely hit triangles in the
opposite leg) or b) we are dealing with a triangle that is
inside the model, in the context of laser surface scans, this
would typically be a self intersection of the fited mesh.
Since it is not possible to distinguish between the two
cases, ultimately our search for a reliable one hit ray,
allows us to cope with these degeneracies. We present
results on four scanned models in section 5.

A

Figure 3: Ray B-C, originates from the centre of the
top triangle and hits an edge in the bottom triangles.

3.3 Hole triangulation
Finally we triangulate holes resulting from the initial
deletion oftriangles around non-manifold edges. The first
step of the hole triangulation process is to retrieve border
edges that have their vertices flagged from the initial
deletion process. These border edges can be found with a
marking strategy similar to the one illustrated in Figure 1,
with the difference being that an edge is classified as a
border edge if there is only one triangle that shares the
edge with the value of 2. Lists are made to track these
detected border edges, and they are sorted according to
the smallest índex value of the vertex pair. This allows
one to easily follow a connected edge sequence in the Iist.
When the sequence is broken, e.g. an edge shares no val­
ues with the previous edge in the list, this indicates the
start of a different hole in the model. It would be desir­
able to correct initial non-manifold configurations when

SlACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

triangulating their holes, one way to try to achieve this,
would be to only triangulate a sequence of connected
border edges whose border triangles were classitied into
the sarne normal group. This situation is illustrated in
Figure 4. New triangles are created with the vertices of
the border edges and the centroid "P".

Figure 4: left: border vertices witb border-edge
valence of 2, rigbt: bole triangulation

Connecting the border vertices to the centroid, does not
ensure non-self intersection of the resulting surface.
Unfortunately neither does it ensure non-manifold edge
creation. Figure 5 shows a connected edge border
sequence whose border triangles were tagged to the sarne
normal group " 1 ". The vertex A, has a valence of 4
border edges connected to it, instead of 2 as in border
vertices in Figure 4. Although the border edge sequence
is valid, the border vertex sequence is not. The image on
the right shows four darkened triangles that share the
resulting non-manifold edge P-A.

Figure 5: left: Complex Boundary vertex "A" witb
border-edge valence of 4, rigbt: bole triangulation

witb non manifold edge P A

We have tried to triangulate sequences that stopped at
border vertices with valence higher than 2, Complex
Boundary vertices. But unfortunately in ali the scanned
models, ali the resulting border vertices have a valence of
4. An object that similarly exhibits this property is the
Sierpinski triangle (Figure 6), where ali but the three cor­
ners on the silhouette of the object have a border edge
valence of 4. It is not clear what benefits other hole trian­
gulation schemes such as [HeldO 1] and [Schroeder92] can
offer in this situation. Border vertices that have a border­
edge valence higher than 2 are likely to create non­
manifold contigurations. For completeness we would Iike
to add the vertex classitication: Complex Boundary to
Schroeder's tive: Simple, Complex, Boundary, Interior
Edge, Comer. We note that Complex Boundary vertices
were created through the decimation of a complete edge,
and that although they don ' t have non-manifold edges

284

connected, they are complex. ln the end we consider that
the initial mesh in these cases is already non-manifold and
choose to accept non-manifold edge creation, using our
robust centroid triangulation scheme, to avoid visible
holes in the model.

Figure 6: Sierpinski triangle, border edge valence > 2

4. IMPLEMENTATION ISSUES
As mentioned in the previous section, one needs to be
careful with ray edge hit condition. A classical problem in
raytracing is illustrated in Figure 7.

ray

Figure 7: Multiple ray edge bit

ln the situation above, tive triangles are hit, where it
should count only as one. We detect edge hits between a
ray and a triangle by forming two vectors vl and v2 with
the intersection point and two vertices of the triangle
(Figure 8), if either angle 81, 02 or 83 formed between
one of these vectors and an edge is smaller or equal to
half a degree, we classify the intersection as an edge hit,
and discard the ray. Figure 8 illustrates the two vectors vl
and v2, and how an initial random starting point is
computed. We call a random number generator three
times, and divide each number by the sum of the three. A
point can then be calculated by:

P(l31, 132, 133)=P1+132*(P2-PI)+l33*(P3-Pl) (4)

where, 131+132+133= 1 (5)

PI (1.0,0)

Figure 8: Barycentric coordinate point and edge
nearness tolerance

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

5. RESULTS
We have tested our algorithm in severa! surface models
(Figure 9, 1 O) and in larger laser scanned models, with
simple topology (Figure 11) and more complex (Figure
12, 13). ln this work we have used data from a
Hamamatsu Body Lines scanner which offers 1-2 mm
accuracy over approximately regular samples at 5 mm
spacing over 400 horizontal slices of the body
[Horiguchi98]. We have also used a surface
reconstruction software called Cocone, freely available at
[Dey02], based on [AmentaOO] to fit a surface to the
scanned point cloud. The experiments were carried out on
a PowerBookG4 500MHz, 1 Gb RAM. This computer is
capable of computing 1 million ray triangle intersections
in - 7 seconds (including the edge hit test). Numerical
results for ali the models can be found in Table 1. The
table shows that reliable tests from our algorithm are
affordable even with larger models. The time increases
with how degenerate the model was, for instance Igor2
(fifth row ofTable 1), has fewer triangles than Igor3, but
has more normal groups (column 3) and takes longer. We
expect that with even larger scanned models, the number
of mesh degeneracies will remain the dominant time
factor. The third column of Table 1 shows that the
problem of real data is finding the orientation relationship
between severa) surfaces and not just one. The fifth
columns indicates how easy it is to get the intersection
counts wrong with a one ray strategy as it is very likely to
hit an edge in a dense model, and considering the number
of groups to test. The sixth column, shows how useful it
was to use our two opposing orientation rays strategy, it
shows that calculating the ray opposite to a triangle
normal was determinant in finding the correct orientation
ofhalf ofthe normal groups.

The following figure presents an inconsistent symmetrical
object on the left and shows results after applying our
algorithm on the right.

Figure 9: left: inconsistent normais, right: normais
after applying our algorithm

#Normal # triangles
Model name triangles Groups in largest group

Cube 12 1 12

Mobius strip 120 1 120

Mannequin 31662 18 31544

Igorl 66164 44 65806

lgor2 62982 80 62280

Igor3 68590 58 67977

Figure 1 O shows a Mobius strip with inconsistent normais
(top), and results after applying our algorithm (below).
The transition of the normais from outside to inside can
clearly be seen. The object is completely front facing
from this view, and completely invisible on the other side
facing the viewer.

, - ··

Figure 10: from top: Mobius strip with inconsistent
normais, wireframe results after applying our algo­
rithm, flat shading results, Gourard shading results

ray # opposite orien- # rays Time

starts on edge tation rays with shot (s)
single hits

1 o 12 <I

1 1 240 <I

55 6 2461786 20

89 20 8703944 69

160 43 16182298 126

116 26 11445967 91

Table l - Numerical results

285

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

6. FUTURE WORK
As mentioned in the beginning of section 3.2, the fact that
more than 90% of the triangle's orientation can be
determined with a few ray tests allows for extra ray tests
to find a reliable test. Although we generate new random
points when a ray starts at an edge, or hits an edge, we
have not explored more exhaustive searching on the
triangle to find a position that would yield a one triangle
hit ray. We plan to use a spatial data structure [Arvo87]
to query only specific parts of a model with our rays, and
hope that the time saved will allow for more tests in small
problematic areas such as concavities, with internai
surfaces inside, where a particular starting ray position
could determine a reliable one hit triangle test. Currently
the worst case situation of our algorithm would be if the
model had a double hull, which does not occur in surface
scans. Nevertheless our algorithm can be changed in step
8, to not fallback and try ali the triangles in a group,
instead it could just rely on the last part of step 8, using
the first pair of edge hit free rays calculated for the group
to compute an answer for generic models. Finally,
regarding the initial deletion of non manifold triangles, it
would be interesting to attempt to separate the connecting
surfaces by creating new vertices with small shifts in
coordinates for each surface, hence eliminating non
manifold configurations without deletion, and small error.

7. ACKNOWLEDGEMENTS
The authors would like to thank Hamamatsu for the Joan
of the Body Lines scanner to the Department. ln addition,
one of us [JFO] would like to thank the Fundação
Calouste Gulbenkian and JNICT/PRAXISXXI, for

'!

financial support. Finally we would like to thank Dr. W.
B. Langdon for some advice on the random barycentric
coordinate generator, Francis Gioia for his comments and
Tamal Dey for providing Cocone. For the models we
would like to thank Jorge Fradinho Oliveira for the lgor
scans, Bernhard Spanlang for the manequin scan, and
Richard Marsden for the mobius strip model.

8. REFERENCES
[AmentaOO] N. Amenta, S. Choi, T. K. Dey and N.
Leekha. "A simple algorithm for homeomorphic surface
reconstruction".Proc. 16th ACM Symposium on
Computational Geometry, 213-222.

[Arvo87] Arvo, J., and D. Kirk, "Fast Ray Tracing by
Ray Classification", SIGGRAPH 87, 55-64.

[Bell9 5] www.webhistory.org/www. lists/www-
vrml.1995q2/1779 .html, accessed 21 st March 2002.

[Dey02] www.cis.ohio-state.edu/~tamaldey/cocone.html

[Garland99], Michael Garland, Quadric-Based Polygonal
Surface Simplification, Ph.D. Thesis, Tech. Rept. CMU­
CS-99-105.

[HeldOl] M Held, "FIST: Fast Industrial-Strength
Triangulation of Polygons", A/gorithmica 30(4): 563-596.

[Horiguchi98] Horiguchi C, Hamamatsu, BL (Body Line)
Scanner, Internationa/ Archives of Photogrammetry and
Remate Sensing, Vol XXXII, Part5.

[Schroeder92] Schroeder W J, Zarge J A, and Lorensen
E, "Decimation of Triangle Meshes", Proceedings of
SJGGRAPH 92, 65-70.

··-·

Figure 11: Mannequin (top: front bottom: back)- from left to right: original model, lvnorm[default], Iv­
norm[counterclockwise], lvnorm[clockwise], our result.

286

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

~ (~
· ·. •

Figure 12: Igor 1, 2, 3 (front)- from left to right: original model, Ivnorm[default], Ivnorm[counterclockwise),
Ivnormf clockwise), our result.

287

SIACG 2002 - lst fbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Figure 13: Igor 1, 2, 3 (back)- from left to right: our result, lvnorm[clockwise), lvnorm[counterclockwise),
lvnorm[default), original model.

288

