
SJACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Sketching User Interfaces with Visual Patterns

Anabela Caetano Neri Goulart Manuel Fonseca Joaquim Jorge
Department of Information Systems and Computer Science

INESC-ID/ISTffechnical University of Lisbon
R. Alves Redol, 9, 1000-029 Lisboa, Portugal

atc@rnega.is t. utl. pt, nfcg@mega. ist. utl. pt,

m j f@i nesc-id. pt, jorgej @acm.org

Abstract
This paper presents an approach to layout static components of user interfaces as hand-drawn compositions of
simple geometric shapes, using sketch recognition and visual languages. The system uses a visual grammar built
from drawings collectedfrom users. We tried to understand how people sketch interfaces and what combinations of
shapes they are more likely to used when sketching widgets. From there we implemented a prototype system, for .
creating user interfaces through hand-drawn geometric shapes, identified by a gesture recognizer. This prototype
generates a Java interface, whose layout can be beautified using an a posteriori set of grammar rufes (e.g. to
align and group objects, etc.). We have conducted usability assessments with ten users to compare our approach
with a commercial system (JBuilder). Besides a measurable speed advantage in drawing interfaces, users found
our system more comfortable, satisfactory and efficient to use than the commercial product, as demonstrated by
post-experiment questionnaires.

Keywords
Calligraphic Interfaces, Task Analysis, Usability Evaluation, Visual Parsing

1. DEVELOPING USER INTERFACES

Designing and coding the user interface represents a sig­
nificant percentage of the total time spent when creating
applications. Even though interface builders reduce the
amount of time needed as compared to manual design,
they focus on the final result, rather than allowing users
to rapidly explore design ideas [9]. This emphasis on the
final result inhibits the creativity of interface designers, be­
cause it suggests false commitment to a particular solu­
tion, discouraging users from exploring other alternatives.
We believe, as other authors [12, 7], that better computer­
based design tools should support sketching as the primary
means to outline and diagram user interfaces.

Since paper and penei) are the designer's choices to quickly
sketch new ideas and shapes, we try and approach this en­
vironment by proposing a visual method based on com­
posing hand-drawn geometric shapes. ln this manner, we
exploit designer's natural ability at sketching and drawing.

Our approach combines the usability and ftexibility of pa­
per with the plasticity and interactivity of electronic media.
To this end, we are exploring a new generation of visual in­
terfaces organized around sketches and visual languages,
which we call Calligraphic Interfaces.

The rest of the paper is organized as follows. ln section 2
we describe related work about sketching user interfaces.

271

The next section addresses fundamental distinctions be­
tween sketch-based and direct manipulation applications.
Section 4 describes the task analysis performed to iden­
tify the "best" visual grammar. The next section presents
the prototype architecture and describes the gesture rec­
ognizer, the visual language used to define widgets and
the a posteriori grammar used to beautify the (inal result.
Finally, we describe our experimental evaluation and we
present some conclusions.

2. RELATED WORK

Calligraphic Interfaces predate some of the most estab­
lished work in Graphical User Interfaces by many years.
ln 1963, Sketchpad, the first interactive system was devel­
oped by Ivan Sutherland [16] using a light pen to draw
directly on a computer screen.

Wittenburg and Weitzman [17] presented an approach to
automatic document layout based on parsing and syntax­
directed translation through relational grammars. Their
system included an interactive editor to capture document
composition and layout styles through visual grammars.

Gross and Do [7, 8] describe a system based on sketches
that are partially interpreted for use in architectural draw­
ings, using a stroke recognizer considerably simpler and
less robust than ours. Their work does not address visual
ambiguity also. ln general, work in this area does not prop-

SlACG 2002 - lst Jbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Figure 1. Ambiguity in sketched shapes

erly handle the ambiguous nature of visual input. Even
when visual ambiguity is addressed, the solutions devised
are often based on syntax manipulation or resort to impos­
ing arbitrary thresholds on parameters.

Meyer describes EtchaPad [14], a too! for sketching wid­
gets in the Pad++ system, including layout operations such
as beautifying. Our system tries to accomplish much
of this automatically, in the vein of ideas put forth by
Pavlidis [15].

Landay [13] describes a sketch-based approach (SILK) for
the early stages of user interface design. His work uses
electronic sketching to allow designers to quickly record
design ideas in a tangible form, obviating the need to spec­
ify too much detail too early in the process. His electronic
sketches possess the advantages normally associated with
computer-based tools, making them well suited to user in­
terface design. While the main focus of our work is the
static component of the interface, Landay focuses on dy­
namic behavior of interfaces, using storyboards to illus­
trate sequences between screens. SILK keeps the initial
sketch visible while we identify the sketch and replace it by
a beautified version (but not the final widget) while editing.

Even though Landay's too! supports the design of the static
component of the user interface, it is not very clear how the
grammar productions are defined for each widget and what
parsing approach is used. Also, it is not clear how input er­
rors and misrecognitions are handled, an ever-present is­
sue in recognition-based applications.

3. SKETCHING DOCUMENTS

Most systems surveyed in the previous section combine
sketch recognition with direct manipulation commands to
achieve their results. ln our approach direct manipulation
commands are only used to carry out the most infrequent
tasks (opening a file, saving, generating code, etc.). Almost
everything else is achieved through gestures aild sketch
recognition.

However, this poses problems from a visual language pars­
ing standpoint in that conventional parsing cannot be ap­
plied throughout the system. lndeed, visual grammars re­
quire that a start symbol be eventually "recognized" to ac­
cept its corresponding visual sentence. This is not adequate
for interactive input, in which users construct many dif­
ferent individually valid visual sentences but no coherent
whole (visual sentence) until the very last stages of a given
design. The idea of partia! grammars was suggested by

272

dom

Very
Thin Thin

O O,__ ____ _._ ___ _._ ___ _. Her /Wer

0.06 0.08 0.4 0.45

Figure 2. Fuzzy sets representing Thinness .

Wittenburg and Weitzman [17] who noted this fenomenon .
ln the sarne vein, we decided to use what we cal! partia[
goals or fragments of grammars that can be accepted sep­
arately. Parsing becomes as a two step procedure. To rec­
ognize shapes and combine these into widgets we use a
bottom-up approach. To recognize higher-level constructs
(and beautify layouts as side effect) we use a top-down
pos-processing step before generating Java code.

One of the problems recognizing hand drawn sketches lies
in identifying individual shapes. This requires resolving
ambiguous shapes from a set of visually relatcd symbols.
Ambiguity exists, for instance, between Rectangles
and Diamonds, Ellipses and Circles, Lines and
WavyLines, as Figure 1 shows.

Composing geometric shapes using visual relationships
and spatial constraints illustrates another source of ambi­
guity. Quite often the assessment of qualitative properties
of shapes yields ambiguous results. An example, arises
when we use the slope of a sketched line to classify it
as vertical, oblique or horizontal. Traditional reasoning
tends to assign one and only one meaning to each drawn
line. However, hand-drawn sketches present less clear­
cut choices, due to the sloppy nature of informal hand­
drawings. Clearly, a more graduated approach is required
to process these kinds of information.

Humans solve the natural ambiguity associated with
sketched visual symbols, their properties and visual ar­
rangements, by identifying more than one possible charac­
terization and using context cues and externai explanations
to select one possible interpretation.

To address these problems we use Fuzzy Relational Gram­
mars. These are described in [11] and in [l]. Their main
advantage is to combine fuzzy logic and spatial relation
syntax in a single unified formalism. We address impreci­
sion and ambiguity both at the lexical and syntactical lev­
eis. At the lexical levei, our recognizer uses fuzzy logic to
deal with ambiguous shapes as illustrated in Figure 1. For
example the production below describes how to identify
Lines, regardless of rotation and scale:

IF Stroke IS VERY THIN
THEN

Shape IS Line

Fuzzy grammar rules allow us to quantify attributes on
objects such as VERY THIN through Linguistic Vari­
ables [18]. This particular instance describes the fact that
lines are geometrically thin (i.e. their enclosing rectangles

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Figure 3. Valid and invalid sketches for Ra­
dioButtons

have a very low Height (Her) to Width (Wer) ratio). Fig­
ure 2 illustrates this. Contrarily to crisp logic rules which
depend on arbitrary thresholds, linguistic variables allow
us to model user and context variations in an elegant and
flexible way.

We deal with visual ambiguity in a similar way, i.e. when it
is not possible to univocally identify a shape, the recogni­
tion subsystem returns a list of possible candidates. The
application can then choose the "best" candidate using
context information.

Finally, at the syntax (grammar) levei, fuzzy spatial re­
lations allow us to deal with imprecise spatial combina­
tions of geometric shapes. E.g. the rules below de­
scribe productions used to identify the TextField and
RadioButton widgets.

IF X-Line INSIDE Rectangle
ANO Rectangle IS THIN
ANO X-Line IS HORIZONTAL

WHERE X-Line IS Line OR WavyLine
THEN

Widget IS TextField

IF X-Line RIGHT-OF X-Circle
ANO Circle IS SMALL
ANO X-Line IS HORIZONTAL

WHERE X-Line IS Line OR WavyLine
AND X-Circle IS Circle OR Ellipse

THEN
Widget IS RadioButton

ln the productions above the spatial relation RIGHT-OF
maps spatial arrangements of objects into fuzzy sets to al­
low imprecisely drawn arrangements to be flexibly recog­
nized. Figure 3 shows some of these arrangements, some
of which are recognized (a, b, e) and some (d, e, f) are
not. d) fails, because the Ellipse is not small. e) fails, be­
cause the RIGHT-OF relation does not hold, contrary to
e) since the degree of spatial overlap is excessive. Finally,
the line in f) is too slanted for the production to tire. Fuzzy
logic allows us to percolate degrees of certainty from the
right-hand-sides to the left-hand-side of productions and
upa parse tree to reflect a "goodness-of-fit" of sketches to
grammar entities. Recognition of compound objects hap­
pens as a side-effect of certain non-terminals being recog­
nized by the parser. We can handle ambiguity at the user
interface levei by backtracking on the choice of symbols

273

j ,//
Line

º ("> o Q /~) ~
,_. l_• ~

Oi~º;~. ~D O é -~'.~> tJ
Rectangle Diamond

c:z::-~v '• Triangle Delate

V/\ ><
11\.avyli ne MOYe

C_:)Un
Cross Copy

Figure 4. Shapes identified by the recognizer

although this currently only works at the recognizer inter­
face .

Fuzzy Logic and parsing alone cannot guarantee success
in addressing users' drawing styles. To identify the "right"
visual grammars, we asked Iikely users of our system, as
described in the next section.

4. STUDYING USERS and TASKS

Specifying user interfaces using a paper like interface can
be fast , easy and natural. However, to capitalize on users'
acquired experience using familiar metaphors and princi­
pies to make the interface simple and easy to learn, we
must know how users sketch interface widgets, Only then
we can define a visual grammar which provides a good
match with users' mental models.

We started our task analysis by inquiring ten likely users
of our system (undergraduate Comp Sei students) about
the best way to representa widget using a combination of
sketches. The inquiry was composed of two parts. ln the
first, we asked users to sketch a representation for each
widget without any restriction. ln the second part, we
asked the sarne thing, but now restricted to a set of geomet­
ric shapes (see Figure 4). From the responses we selected
the two or three most drawn combinations of figures for
each widget and we defined our visual grammar, which is
depicted in Figure 5.

After this experiment we counted how many of the user­
drawn widgets matched entries in our lexicon. The results
are shown in percentage in Figure 6. A cursory examina­
tion of those results reveals that over half of the widgets
were drawn in a way that matched our preset configura­
tions at least 50% of the time. Further, we found out that

