
SJACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Sketching User Interfaces with Visual Patterns

Anabela Caetano Neri Goulart Manuel Fonseca Joaquim Jorge
Department of Information Systems and Computer Science

INESC-ID/ISTffechnical University of Lisbon
R. Alves Redol, 9, 1000-029 Lisboa, Portugal

atc@rnega.is t. utl. pt, nfcg@mega. ist. utl. pt,

m j f@i nesc-id. pt, jorgej @acm.org

Abstract
This paper presents an approach to layout static components of user interfaces as hand-drawn compositions of
simple geometric shapes, using sketch recognition and visual languages. The system uses a visual grammar built
from drawings collectedfrom users. We tried to understand how people sketch interfaces and what combinations of
shapes they are more likely to used when sketching widgets. From there we implemented a prototype system, for .
creating user interfaces through hand-drawn geometric shapes, identified by a gesture recognizer. This prototype
generates a Java interface, whose layout can be beautified using an a posteriori set of grammar rufes (e.g. to
align and group objects, etc.). We have conducted usability assessments with ten users to compare our approach
with a commercial system (JBuilder). Besides a measurable speed advantage in drawing interfaces, users found
our system more comfortable, satisfactory and efficient to use than the commercial product, as demonstrated by
post-experiment questionnaires.

Keywords
Calligraphic Interfaces, Task Analysis, Usability Evaluation, Visual Parsing

1. DEVELOPING USER INTERFACES

Designing and coding the user interface represents a sig­
nificant percentage of the total time spent when creating
applications. Even though interface builders reduce the
amount of time needed as compared to manual design,
they focus on the final result, rather than allowing users
to rapidly explore design ideas [9]. This emphasis on the
final result inhibits the creativity of interface designers, be­
cause it suggests false commitment to a particular solu­
tion, discouraging users from exploring other alternatives.
We believe, as other authors [12, 7], that better computer­
based design tools should support sketching as the primary
means to outline and diagram user interfaces.

Since paper and penei) are the designer's choices to quickly
sketch new ideas and shapes, we try and approach this en­
vironment by proposing a visual method based on com­
posing hand-drawn geometric shapes. ln this manner, we
exploit designer's natural ability at sketching and drawing.

Our approach combines the usability and ftexibility of pa­
per with the plasticity and interactivity of electronic media.
To this end, we are exploring a new generation of visual in­
terfaces organized around sketches and visual languages,
which we call Calligraphic Interfaces.

The rest of the paper is organized as follows. ln section 2
we describe related work about sketching user interfaces.

271

The next section addresses fundamental distinctions be­
tween sketch-based and direct manipulation applications.
Section 4 describes the task analysis performed to iden­
tify the "best" visual grammar. The next section presents
the prototype architecture and describes the gesture rec­
ognizer, the visual language used to define widgets and
the a posteriori grammar used to beautify the (inal result.
Finally, we describe our experimental evaluation and we
present some conclusions.

2. RELATED WORK

Calligraphic Interfaces predate some of the most estab­
lished work in Graphical User Interfaces by many years.
ln 1963, Sketchpad, the first interactive system was devel­
oped by Ivan Sutherland [16] using a light pen to draw
directly on a computer screen.

Wittenburg and Weitzman [17] presented an approach to
automatic document layout based on parsing and syntax­
directed translation through relational grammars. Their
system included an interactive editor to capture document
composition and layout styles through visual grammars.

Gross and Do [7, 8] describe a system based on sketches
that are partially interpreted for use in architectural draw­
ings, using a stroke recognizer considerably simpler and
less robust than ours. Their work does not address visual
ambiguity also. ln general, work in this area does not prop-

SlACG 2002 - lst Jbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Figure 1. Ambiguity in sketched shapes

erly handle the ambiguous nature of visual input. Even
when visual ambiguity is addressed, the solutions devised
are often based on syntax manipulation or resort to impos­
ing arbitrary thresholds on parameters.

Meyer describes EtchaPad [14], a too! for sketching wid­
gets in the Pad++ system, including layout operations such
as beautifying. Our system tries to accomplish much
of this automatically, in the vein of ideas put forth by
Pavlidis [15].

Landay [13] describes a sketch-based approach (SILK) for
the early stages of user interface design. His work uses
electronic sketching to allow designers to quickly record
design ideas in a tangible form, obviating the need to spec­
ify too much detail too early in the process. His electronic
sketches possess the advantages normally associated with
computer-based tools, making them well suited to user in­
terface design. While the main focus of our work is the
static component of the interface, Landay focuses on dy­
namic behavior of interfaces, using storyboards to illus­
trate sequences between screens. SILK keeps the initial
sketch visible while we identify the sketch and replace it by
a beautified version (but not the final widget) while editing.

Even though Landay's too! supports the design of the static
component of the user interface, it is not very clear how the
grammar productions are defined for each widget and what
parsing approach is used. Also, it is not clear how input er­
rors and misrecognitions are handled, an ever-present is­
sue in recognition-based applications.

3. SKETCHING DOCUMENTS

Most systems surveyed in the previous section combine
sketch recognition with direct manipulation commands to
achieve their results. ln our approach direct manipulation
commands are only used to carry out the most infrequent
tasks (opening a file, saving, generating code, etc.). Almost
everything else is achieved through gestures aild sketch
recognition.

However, this poses problems from a visual language pars­
ing standpoint in that conventional parsing cannot be ap­
plied throughout the system. lndeed, visual grammars re­
quire that a start symbol be eventually "recognized" to ac­
cept its corresponding visual sentence. This is not adequate
for interactive input, in which users construct many dif­
ferent individually valid visual sentences but no coherent
whole (visual sentence) until the very last stages of a given
design. The idea of partia! grammars was suggested by

272

dom

Very
Thin Thin

O O,__ ____ _._ ___ _._ ___ _. Her /Wer

0.06 0.08 0.4 0.45

Figure 2. Fuzzy sets representing Thinness .

Wittenburg and Weitzman [17] who noted this fenomenon .
ln the sarne vein, we decided to use what we cal! partia[
goals or fragments of grammars that can be accepted sep­
arately. Parsing becomes as a two step procedure. To rec­
ognize shapes and combine these into widgets we use a
bottom-up approach. To recognize higher-level constructs
(and beautify layouts as side effect) we use a top-down
pos-processing step before generating Java code.

One of the problems recognizing hand drawn sketches lies
in identifying individual shapes. This requires resolving
ambiguous shapes from a set of visually relatcd symbols.
Ambiguity exists, for instance, between Rectangles
and Diamonds, Ellipses and Circles, Lines and
WavyLines, as Figure 1 shows.

Composing geometric shapes using visual relationships
and spatial constraints illustrates another source of ambi­
guity. Quite often the assessment of qualitative properties
of shapes yields ambiguous results. An example, arises
when we use the slope of a sketched line to classify it
as vertical, oblique or horizontal. Traditional reasoning
tends to assign one and only one meaning to each drawn
line. However, hand-drawn sketches present less clear­
cut choices, due to the sloppy nature of informal hand­
drawings. Clearly, a more graduated approach is required
to process these kinds of information.

Humans solve the natural ambiguity associated with
sketched visual symbols, their properties and visual ar­
rangements, by identifying more than one possible charac­
terization and using context cues and externai explanations
to select one possible interpretation.

To address these problems we use Fuzzy Relational Gram­
mars. These are described in [11] and in [l]. Their main
advantage is to combine fuzzy logic and spatial relation
syntax in a single unified formalism. We address impreci­
sion and ambiguity both at the lexical and syntactical lev­
eis. At the lexical levei, our recognizer uses fuzzy logic to
deal with ambiguous shapes as illustrated in Figure 1. For
example the production below describes how to identify
Lines, regardless of rotation and scale:

IF Stroke IS VERY THIN
THEN

Shape IS Line

Fuzzy grammar rules allow us to quantify attributes on
objects such as VERY THIN through Linguistic Vari­
ables [18]. This particular instance describes the fact that
lines are geometrically thin (i.e. their enclosing rectangles

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Figure 3. Valid and invalid sketches for Ra­
dioButtons

have a very low Height (Her) to Width (Wer) ratio). Fig­
ure 2 illustrates this. Contrarily to crisp logic rules which
depend on arbitrary thresholds, linguistic variables allow
us to model user and context variations in an elegant and
flexible way.

We deal with visual ambiguity in a similar way, i.e. when it
is not possible to univocally identify a shape, the recogni­
tion subsystem returns a list of possible candidates. The
application can then choose the "best" candidate using
context information.

Finally, at the syntax (grammar) levei, fuzzy spatial re­
lations allow us to deal with imprecise spatial combina­
tions of geometric shapes. E.g. the rules below de­
scribe productions used to identify the TextField and
RadioButton widgets.

IF X-Line INSIDE Rectangle
ANO Rectangle IS THIN
ANO X-Line IS HORIZONTAL

WHERE X-Line IS Line OR WavyLine
THEN

Widget IS TextField

IF X-Line RIGHT-OF X-Circle
ANO Circle IS SMALL
ANO X-Line IS HORIZONTAL

WHERE X-Line IS Line OR WavyLine
AND X-Circle IS Circle OR Ellipse

THEN
Widget IS RadioButton

ln the productions above the spatial relation RIGHT-OF
maps spatial arrangements of objects into fuzzy sets to al­
low imprecisely drawn arrangements to be flexibly recog­
nized. Figure 3 shows some of these arrangements, some
of which are recognized (a, b, e) and some (d, e, f) are
not. d) fails, because the Ellipse is not small. e) fails, be­
cause the RIGHT-OF relation does not hold, contrary to
e) since the degree of spatial overlap is excessive. Finally,
the line in f) is too slanted for the production to tire. Fuzzy
logic allows us to percolate degrees of certainty from the
right-hand-sides to the left-hand-side of productions and
upa parse tree to reflect a "goodness-of-fit" of sketches to
grammar entities. Recognition of compound objects hap­
pens as a side-effect of certain non-terminals being recog­
nized by the parser. We can handle ambiguity at the user
interface levei by backtracking on the choice of symbols

273

j ,//
Line

º ("> o Q /~) ~
,_. l_• ~

Oi~º;~. ~D O é -~'.~> tJ
Rectangle Diamond

c:z::-~v '• Triangle Delate

V/\ ><
11\.avyli ne MOYe

C_:)Un
Cross Copy

Figure 4. Shapes identified by the recognizer

although this currently only works at the recognizer inter­
face .

Fuzzy Logic and parsing alone cannot guarantee success
in addressing users' drawing styles. To identify the "right"
visual grammars, we asked Iikely users of our system, as
described in the next section.

4. STUDYING USERS and TASKS

Specifying user interfaces using a paper like interface can
be fast , easy and natural. However, to capitalize on users'
acquired experience using familiar metaphors and princi­
pies to make the interface simple and easy to learn, we
must know how users sketch interface widgets, Only then
we can define a visual grammar which provides a good
match with users' mental models.

We started our task analysis by inquiring ten likely users
of our system (undergraduate Comp Sei students) about
the best way to representa widget using a combination of
sketches. The inquiry was composed of two parts. ln the
first, we asked users to sketch a representation for each
widget without any restriction. ln the second part, we
asked the sarne thing, but now restricted to a set of geomet­
ric shapes (see Figure 4). From the responses we selected
the two or three most drawn combinations of figures for
each widget and we defined our visual grammar, which is
depicted in Figure 5.

After this experiment we counted how many of the user­
drawn widgets matched entries in our lexicon. The results
are shown in percentage in Figure 6. A cursory examina­
tion of those results reveals that over half of the widgets
were drawn in a way that matched our preset configura­
tions at least 50% of the time. Further, we found out that

SIACG 2002 - Ist Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Wldget Sketch

Text

LTextField 1-::::;:::J ,_
1 Tex!Area

;cRadloButton 1 < •·-~- D-- C)---~ C:l--

!rcheci<Box 1 tJ,...·--- ...

1 Comb~ . ___ .,_]

-)

Copy

Figure 5. Visual constructs used to define
widgets

this set is easily memorable in another experiment. Al­
though we retained the lexicon thus developed for the re­
mainder of this work, it is easy to add more productions
to the basic grammar to accommodate different ways of
drawing the sarne data. Moreover, most subjects com­
mented that they appreciated the economy of strokes and
gestures. afforded by our vocabulary.

Even though some combinations from our grammar were
different from users' selections, they found our constructs
easy to learn. We consider this result to be encouraging,
proving there is a reasonable "user-independent" set of
representations. Another usability test conducted with four
users found out that they retained o ver 90% of the "correct"
shape combinations after one month not using our system.

Figure 6. Percentage of sketches by users
similar to our constructs

274

Sketch

Points

Sketch
Recognizer

Tokens

Bottom·up
Parser

Java Widgets

Java Code

Java
Application

Visual Grammar

Beaut. Rules

Figure 7. JavaSketchlt architecture

5. OUR SYSTEM

The prototype we built is able to identify ten different user
interface widgets and supports three editing commands
(copy, move and delete), using a subset of the gestures rec­
ognizable using CALI (see next section). To this end users
sketch shapes using a pen on a digitizing tablet. The sys­
tem tries to identify each shape as soon as it is drawn. After
identifying a shape, the system tries to combine it with pre­
viously inserted shapes, using basic spatial and adjacency
relationships.

The information about shapes and their spatial relation­
ships is then fed to a bottom-up parser system, which uses
basic knowledge about the structure and patterns of user in­
terface layout to infer which graphic element was intended.
The inference rules are grouped into a grammatical spec­
ification of a visual language for user interface design. ln
this visual language symbols are sketches built by com­
bining simple shapes from a subset of those presented in
Figure4.

Finally, when the user requests to see the generated Java
code, the user interface just sketched is submitted to a top­
down beautification stage, which applies a set of beautifi­
cation rules to group, align or center widgets.

The system components and their relations are depicted in
Figure 7 and described in the following sections.

5.1. Individual Shape Recognizer

The individual shapes drawn by the user are processed
by a simple shape classifier. This was developed using
CALI [5, 6], a software library for the development of
Calligraphic Interfaces, organized around a simple Shape
Recognizer. The recognizer uses a fast, simple and com-

SIACG 2002 - Ist Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

1
1
1
1
1
1
1
1
1

-----------------~

Collect
Points

Process
Gestures 1

1
1

: Application : L-----------------
Platform Dependent

Strokes
Compute
Features

1

1

l 1

1
ldentify

Shapes Gestures
1
1

1 Recognizer 1 L-----------------
Platform lndependent

Figure 8. A simplified version of the CALI
architecture

pact approach to identify Scribbles (multi-stroke geomet­
ric shapes) drawn with a stylus on a digitizing tablet. The
method is able to identify shapes of different sizes and ro­
tated at arbitrary angles, drawn with dashed, continuous
strokes or overlapping lines.

The recognition process is based on three main ideas.
Firstly, it uses entirely global geometric properties ex­
tracted from input shapes. Since we are mainly inter­
ested in identifying geometric entities, the recognizer relies
mainly on geometric information. Secondly, to enhance
recognition performance, we use a set of filters either to
identify shapes or to filter out unwanted shapes using dis­
tinctive criteria. Finally, to overcome uncertainty and im­
precision in shape sketches, we use fuzzy logic to associate
degrees of certainty to recognized shapes, thereby handling
ambiguities naturally.

This algorithm recognizes elemenlary geometric shapes,
such as Triangles, Rectangles, Diamonds,
Circles, Ellipses, Lines and Arrows, and tive
gesture commands, Delete, Cross, WavyLine, Move
and Copy, as depicted in Figure 4. Shapes are recognized
independently of changes in rotation, size or number of in­
dividual strokes. Commands are shapes drawn using a sin­
gle stroke, except the Cross which requires two strokes.
The recognizer works by looking up values of specific fea­
tures in fuzzy sets associated to each shape and command.
This process yields a list of plausible shapes ordered by
degree of certainty.

The set of shapes selected and presented in Figure 4 are
the basic elements to construct technical diagrams, such
as electric or logic circuits, ftowcharts or architectural
sketches. These diagrams also require distinguishing be­
tween solid, dash and bold depictions of shapes in lhe sarne
family. Some aulhors notice that the majority of diagrams
were built of ellipses, rectangles and lines [2]. Another au­
lhor [4] states that designers use a small set of symbols and
lhat they share drawing conventions, so there is coherence
between symbols used by different designers.

The recognizer has a recognition rate of 96%. It is fast:
each scribble requires, on average, less than 50 ms (us-

275

CIRecognizer 1--~---1

- rccognize Use

1 . . *

CIGesture

- gctGestureType
- getNamc
- getScribble
- getDom
- clone
- eva!F eatures

CIShape

- setUp
- isDashed
- isOpen
- isBold

1 CILine j ...

CIScribble

- addStroke
- popStroke
- getNumStrokes
- getStrokcs
- getLcn
- convexHull
- boundingBox
- largcstTrianglc
- largcstQuad
- cnclosingRect
- readFrom
-writeTo

1

1 .. *

CIStroke

- addPoint
- gctNumPoints
- gctPoints

ctLen

1 .. *
CIPoint

-x
-y
- getTime

Figure 9. Class diagram

ing a Pentium II @ 233 MHz) to be recognized, from fea­
ture vector computation to final classification. The fast
response characteristic makes it very usable in interactive
applications. We are currently working on a trainable ver­
sion of the recognizer. The approach presented here ex­
tends and improves Kimura's work [2], which recognized
a small number of shapes and did not distinguish rolated,
open/closed, dashed and bold shapes.

5.1.1. CALI architecture

The CAL! library was developed to be platform indepen­
dent. Actually there are two packages available [5], one
for Linux and another for MS Windows.

Figure 8 shows the main blocks of the recog.nizer as well
as the blocks to develop on lhe application side. One of the
blocks, on the application side, is responsible for collecting
lhe individual points of the strokes, while the other is re­
sponsible for receive and manipulate the gestures relumed
by the recognizer. The code developed on the application
side is machine dependent.

The first block of lhe recognizer receives the sketch from
lhe application and computes the corresponding geometric
features. The second identifies the correct gesture or ges­
tures based on the values computed before. The recognized
gestures are inserted in a list arder by degree of certainty,
and retumed to lhe applicalion.

5.1.2. Class description

CIRecognizer Main component of the library, that inler­
acl directly wilh calligraphic applications, idenlifying
hand drawn scribbles. This class implements a rec­
ognizer of geometric shapes and gesture commands
based mainly on geometric informalion.

SIACG 2002 - lst lbero-Arnerican Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

~.r-'"\
\}\

L_~
,.,.__.,._,...._

-.-.._

,_______..-JB
~leal

Figure 1 O. A sketch of an user interface

CIGesture Defines ali the recognized entities, shapes and
commands. The objects of this class have associated
to them the original scribble and the recognition de­
gree of certainty.

CIShape A Shape is a special case of gesture, that models
ali geometric shapes (Line, Circle, Rectangle, etc.).
Ali instances of this class have attributes, like open,
dashed or bold, and a geometric definition (a set of
points).

CICommand A special case of gesture, but without at­
tributes nor geometric definition. Commands do not
have a visual representation and usually trigger an ac­
tion. ln that they are different from shapes, since of­
ten there are not tokens in the grammar ascribed for
commands. These tend to be directly executed after
recognition. However, interface builders can choose
to incorporate command processing in their gram­
mars. We tend to Jook on this as a matter of policy,
which should be the concern of the client application,
rather than mechanism, which CALI provides.

CIScribble This class represents a scribble, which is build
from a set of strokes. From a scribble we can compute
some special polygons, Iike the Bounding Box, the
Convex Hull, the Largest Triangle, etc., used during
the recognition process.

CIStroke Defines a stroke composed by a set of points.
It has methods to add points, to know the number
of points, to get the points and to compute the total
Jength of the stroke.

CIPoint Models a bidimensional point with a time stamp.

5.2. Visual Parsing

Individual shapes recognized by CALI, are then assembled
by a bottom-up parsing procedure. A visual grammar de­
fines rules of composition of individual elements as de-

276

Figure 11. The user interface in Java

scribed in (11]. We use a simplified version ofthe bottom­
up parsing approach described in (10]. With the excep­
tion of depictions of text widgets, ali other widgets are de­
fined by grammatical rules joining two tokens (recognized
shapes). Whenever a shape is recognized, we check to see
whether there is a grammar production that uses that fig­
ure. For each such production, we add an item to a list of
candidate rules to fire. When the next shape is drawn by
the user and recognized we check it to see if it matches the
"missing elements" in one or more candidate rules. If it
does, we check the constraints associated with each candi­
date rule that can fire. From here, three things can happen:

1. The newly sketched shape does not satisfy the con­
straints associated with any of the productions. ln this
case, we create a new candidate list for productions
which contain this shape in their right-hand-side.

2. A single rule matches both the shapes and constraints.
We create its corresponding widget and show its rep­
resentation on the screen.

3. More than one production matches. For each pro­
duction that can fire, we compute its degree of like­
lihood as the Jeast of the degrees of likelihood of the
right-hand-side symbols and the constraints associ­
ated with this production. The system then alerts the
user that there are severa) candidates to match the in­
put thus drawn and then shows the interpretation with
highest degree of Iikelihood. The user can then either
accept this interpretation or cycle through the other
interpretations by taping on the figure displayed.

5.3. Beautification

Besides the composition rules defined for the interface lay­
out, we also have a set of "beautification" rules to be ap­
plied a posteriori. These rules are defined also as gram­
mar productions but they are parsed top-<lown rather than
bottom-up (as the grammar rules that identify widgets and
primitives).

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

....
,.._.,..__, l'!'f•_._, -~-
,, - ~ J L.., , .. .;.;.;u:;.;.;..;.;.;..._ _ __, ...
Figure 12. Simple task: Final result with
JavaSketchit (left) and JBuilder

These rules are used to group widgets such as radio
but tons or check boxes (ifthey are neareach other),
to align text and text fields or text areas, to
center a caption below its associated image or to align
bu t tons. Figure 11 shows the final result of an user in­
terface sketched (see Figure 10) using our prototype, where
the beautification rules were applied.

Again these rules exemplify the ftexibility and expressive
power afforded by Fuzzy Logic and approximate matching
in that we can naturally express concepts such as "A and B
are approximately aligned" or "B and C are approximately
concentric" where A and B are right-hand-side symbols in
a grammar production. The beautification occurs as a side­
effect of parsing after the left-hand-side is reduced, by en­
forcing the spatial relationships to hold exactly, through
changing attributes of right-hand-side items. Code gener­
ation happens also as a side effect of parse-tree traversal:
the portion of the visual sentence which forms a correct
visual sentence (i.e. is reachable from the start symbol) is
traversed to produce Java code for each non-terminal node
in its corresponding parse-tree.

6. EXPERIMENTAL EVALUATION

We performed an usability assessment to check user accep­
tance and performance of our prototype and to compare it
with the JBuilder editor. The study was done by ten sub­
jects (seven males and three females) using a pen-based
computer SONY VAIO LX900, which features an inte-

.., , -
Figure 13. Complex task (sketch)

277

grated digitizing tablet and display screen. White the user
sample is small, we believe that it adequately represents
the target group (Computer Science students and interface
developers). The goal of the experiment was to evaluate
user acceptance and to check to see how quickly and ac­
curately users would be able to create simple interface de­
signs using our system as compared to a more conventional
approach.

Our usability study was performed in three steps. First,
a preliminary questionnaire allowed us to get some infor­
mation about the users, their background and experience
with pen-based interfaces and to see how they sketched
each of the different widgets using the set of shapes shown
in Figure 4. ln the second part of the experience, users
were asked to perform the sarne task using our system and
JBuilder. To this end, we provided them with basic in­
structions about our prototype and about JBuilder. After
the training stage, users were asked to draw the sarne user
interface using both systems. We selected randomly which
system should be used first, in order not to bias the timing
results. Figure 12 shows the user interface that users were
asked to create using both systems. On the left we see a
typical interface created with J avaSketchit. On the right we
see the a typical result achieved with JBuilder. As we can
see, the results are not exactly similar, in that the layouts
are qualitatively the sarne, but the figures differ in minor
details. We decided to accept as a success user interfaces
in which the correct elements were present and the spatial
relations matched the drawing presented as an example.
Since we wanted to evaluate ease of prototyping, we de­
cided that minor details were not relevant. Moreover, users
were happy with the possibility to have low-level layout
details handled by the beautifier. We feel that automatic
beautification accounted for about 50% of the performance
advantage we witnessed. Finally, we asked test subjects to
fill in a post-experiment questionnaire, to get feedback on
diverse items such as, satisfaction, preferences, compara­
tive advantages, disadvantages, etc .. During our study we
measured the time needed to complete each task, the num­
ber of errors and the number of times a users had to consult

, __ , p

......,, ... - '""'· --r • , r-, ... , r 1.,.., ,.. __ _
r---· 1 -·-'

Figure 14. Complex task (result in Java)

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

[[)JavaSketchit •Jll<Jilder [

150

! 100 +----------­
E
I=

Slmple Complex

Figure 15. Time spent building simple and
complex user interfaces

the manual.

From the first questionnaire we learnt that half of the users
were not familiar with pen-based computers and that they
usually design user interfaces. Additionally, we confirmed
that our representation for widgets is reasonably familiar,
since more than 50% of the sketches spontaneously drawn
matched ours (see Figure 6).

The practical part of our usability test revealed that for sim­
ple tasks (see Figure 12) our system was as fast as JBuilder,
but for more complex interfaces (as the one in Figure 14)
users took less time to finish the task with JavaSketchlt.
Figure 15 shows the time spent on each task using both
applications.

We applied t-Student tests to experimental data and found
out that the difference in average times to complete the
simple task are not statistically significant. However, the
differences for the more complex case are statistically sig­
nificant with at least 90% confidence, that is our system
performed significantly better than JBuilder for more com­
plex tasks, which is encouraging even with the small pop­
ulation sample we used. Furthermore, by looking at Fig­
ure 12 we can observe that JavaSketchit seems to help
building better-looking layouts than JBuilder with a com­
parable effort.

We also did a test to check the ease of learning (learnabil­
ity) of our system. This test consisted in comparing the

1 a i:litial • Final 1

Figure 16. Time spent on the first task and
last task, showing the learning evolution

278

jakiitia1 •Anat j

c1 r.J1 .r1 u .IL

Figure 17. Errors made during the construc­
tion of an interface

time and the number of errors from Task 1 and Task 4. The
results, as we can see in Figures 16 and 17, show that users
took less time and made less errors in the last task. Though,
after using our systemjust for a while, users seemingly had
not trouble leaming the visual grammar and were able to
create user interfaces without too many errors.

Finally, the last questionnaire revealed that on a subjective
assessment, users considered our application very easy to
use and to learn and that the combination of figures (gram­
mar) used to define widgets is reasonably understood by
users, matching their expectations about half of the time,
which we think is a good score. The comparison of both
applications revealed that JavaSketchlt provides a famil­
iar way of sketching interfaces and feels more friendly and
simpler to use than its commercial counterpart.

7. CONCLUSIONS and FUTURE WORK

We described a prototype to sketch user interfaces using
combinations of simple shapes identified by a gesture rec­
ognizer. Before specifying the grammar that defines wid­
gets, we used task analysis to check how users combine
shapes to draw widgets. From the results of this study we
built our grammar and implemented a prototype. To val­
idate our approach, we made a usability assessment and
compared our system with a commercial product, JBuilder.
The results shown that our system was very well accepted
by users and that they felt comfortable using it. Further,
our sketch-based approach was considerably faster than
its commercial counterpart for the more complex drawings
which we consider to be an encouraging omen for calli­
graphic interfaces. We plan to expand our system in the
future to use richer shape combinations, improve interac­
tive parsing of ambiguous constructs through backtracking
at the parser levei. Finally we want to extend the beauti­
fication approach by a richer set of productions, operators
and the possible inclusion of constraint satisfaction mech­
anisms [3].

ACKNOWLEDGMENTS

This work was funded in part by the Portuguese Founda­
tion for Science and Technology and the European Com­
mission.

SIACG 2002 - Is! Jbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

References

[1] Maria P. Albuquerque, Manuel J. Fonseca, and
Joaquim A. Jorge. Visual Languages for Sketching
Documents. ln Proceedings of the IEEE Symposium
on Visual Languages (Vl 'OO), Seattle, USA, Septem­
ber 2000.

[2] Ajay Apte, Van Vo, and Takayuki Dan Kimura. Rec­
ognizing Multistroke Geometric Shapes: An Exper­
imental Evaluation. ln Proc. ACM UIST'93, pages
121-128, Atlanta, GA, 1993.

[3] Alan Borning, Richard Lin, and Kim Marriott. Con­
straints for the Web. ln ACM Multimedia 97. ACM,
1997.

[4] Ellen Y. Do. The right too! at the right time. PhD
thesis, Georgia lnstitute of Technology, September
1998.

[5] M. Fonseca and J. Jorge. CALI: A Software Library
for Calligraphic Interfaces. INESC-ID, available at
http: / / irnmi. inesc-id .pt/ cali/, 2000.

[6] Manuel J. Fonseca and Joaquim A. Jorge. Exper­
imental Evaluation of an on-line Scribble Recog­
nizer. Pattern Recognition letters, 22(12) : 1311-
1319, 2001.

[7] Mark D. Gross. The Electronic Cocktail Napkin - A
computational environment for working with design
diagrams. Design Studies, 17(1):53-69, 1996.

[8] Mark D. Gross and Ellen Yi-Luen Do. Drawing on
the back of an envelope: a framework for interact­
ing with application programs by freehand drawing.
Computers & Graphics, 24(6):835-849, 2000.

[9] Marti A. Hearst, Mark D. Gross, James A. Landay,
and Thomas F. Stahovich. Sketching Intelligent Sys­
tems. IEEE Intelligent Systems, 13(3):10-19, 1998.

[10) J. Jorge and E. P. Glinert. Online Parsing of Visual
Languages Using Adjacency Grammars. ln Proceed­
ings of the IEEE Symposium on Visual Languages
(Vl '95) , Darmstadt, Germany, September 1995.

[11] Joaquim A. Jorge. Parsing Adjacency Grammarsfor
Calligraphic Interfaces. PhD thesis, Rensselaer Poly­
technic lnstitute, Troy, New York - USA, December
1994.

[12] J.A. Landay and B.A. Myers. Interactive Sketching
for the Early Stages of User Interface. ln Proceed­
ings of the Conf on Human Factors in Comp. Syst.
(CH/'95), pages 43-50. ACM Press, 1995.

[13] James A. Landay and Brad A. Myers. Sketching in­
terfaces: Toward more human interface design. IEEE
Computer, 34(3):56-64, March 2001.

279

[14) Jonathan Meyer. Etchapad - disposable sketch based
interfaces. ln Proc. ACM SIGCH/'96 - short papers,
1996.

[15] Theo Pavlidis and Christopher J. Van Wyk. An au­
tomatic beautifier for drawings and illustrations. ln
SIGGRAPH'85 Proceedings, pages 225-234. ACM,
1985.

[16) Ivan E. Sutherland. Sketchpad: A Man-Machine
Graphical Communication System. ln Spring Joint
Computer Conference, pages 2-19. AFIPS Press,
1963.

[17) Louis Weitzman and Kent Wittenburg. Automatic
presentation of multimedia documents using rela­
tional grammars. ln ACM Multimedia 94. ACM
Press, 1994.

[18] Lofti A. Zadeh. Fuzzy seis. Information and Contrai,
8:338-353, 1965.

