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Abstract 
ln this artic/e, severa/ algorithms for the collision detection between a point and a polygon on a plane are 
presented. Coverings by triangles and barycentric coordinates are used. Temporal and geometric coherence are 
usedfor reducing their performance times. A study of times has been carried out; it shows that these simple and 
robust algorithms are efficient. Also, these algorithms can be used for non convex figures and they have the 
advantage of being easily extended to JD. 
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1. INTRODUCTION 

The problem of collision detection among objects in 
motion is essential in severa! application fields, such as in 
simulations of the physical world, robotics, animation, 
manufacture, navigation by virtual worlds, etc. Apart 
from giving to scenes a more realistic appearance, it is 
necessary that the objects belonging to it, interact, so as 
objects do not collide, and if they do, a suitable response 
is obtained (objects change their trajectory or their shape, 
etc.) So, the development of efficient algorithms is 
necessary for the collision detection among objects, with 
the aim of improving the bottleneck that implies the 
checking of ai! pairs of features among objects of the 
scene, which have a performance time of O (n m p), 
being n and m, the number of features of objects, and p, 
the number of movements or frames in the simulation. 

ln previous works, a characterization of the collision 
detection problem and the strategies used to solve it were 
carried out [Jiménez02]. Other authors have also made a 
revision ofthis problem [JimThoOl]. 

ln this work, severa! algorithms for the collision detection 
between a point and a polygon on a plane are presented. 
The algorithms displayed try to determine if, given a 
point in motion, it gets in a polygon or not. We will try to 
reduce the number of features to deal with on each 
movement of objects by using the temporal coherence in 
their movement, as well as their geometric coherence. 

Gradually we will show different algorithms, firstly for 
the inclusion of points in polygons (static collision 
detection), and then for the collision detection of points 
in motion in polygons (collision detection in the strict 
sense). 

We will use a covering ofthe polygon by triangles with a 
common point on its barycenter and barycentric 
coordinates in arder to determine the point inclusion in 
the polygon [Badouel90]. We have developed algorithms 
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for different types of polygons : convex and non-convex 
ones, and within these last ones, algorithms for polygons 
with a covering of positive triangles. 

The advantage of these algorithms is that they can be 
used for non-convex figures, that can be extended to 3D, 
and have showed they are robust and efficient regarding 
operations carried out by using a covering of triangles 
and operations with signs [SeguraOl]. 

Firstly, we will establish the working basis of the 
algorithms we propose, and then, we will present 
algorithms for the inclusion of a point in a polygon and 
the point-polygon collision detection. We will see how 
these methods have been implemented and a study of 
times that show whether they are effective or not will be 
carried out. Finally, possible extensions of algorithms 
and the work that is being carried out by the authors will 
be shown in the conclusion. 

2. PREVIOUS DEFINITIONS 

Definition 1 :Let x be a real number. We define the sign 
function, sign (x), as follows : 

sign(x) = 
{ ~I 

ifx>O 

ifx=O 

ifx <O 

Definition 2 : Let three points be A,B,C e Rº, for n=2, 
the coordinates of which on the plane are A (xA,YA), B 
(xa,y8 ), C (xc,yc), the signed area of these three points is 
defined as : 

IABCI = Yi * YA 

1 

Xe 

Ye 
. 1 

Xc 

Yc 

1 

The signed area of these three points can be negative, 
depending on the points arder. For counter-clockwise 
ordering can be easily demonstrated that the signed area 
is positive, and zero ifthe three points are aligned. 
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Oefinition 3: A triangle Tis positive if sign (jTl)=I, and 
negative if sign (jTI)= -1. 

Theorem : Let points be A,B,C E R2
, and Iet's suppose 

they are not collinear. Let another point be P E R2
. Then, 

there are s,t,u E R, so that s + t + u = 1 and P = sA + tB + 
uC, that mean : 

s = IBCPI / IABCI 

t = ICAPI / IABCI 

u = IABPI / IABCI 

Numbers s,t,u defined in the above theorem are the 
barycentric coordinates of P with regard to points A, B 
ande. 

Lemma : Let a point be P E R2 with barycentric 
coordinates (s, t, u) in relation to points A, B, e E R", it 
is said that point P is inside the triangle defined by points 
A, 8, C, if and only if [Badouel90) : 

o$ s, t, u $ 1 

Corollary : Likewise, we define point P is outside the 
triangle A, B, C, if and only if: 

s$0vt$0vu$0 

Geometric interpretation of barycentric coordinates of a 
point with regard to three vertices : If barycentric 
coordinates of a point P in relation to S, T, U ares, t, u, then 
a point with sign(s)=+ 1 will be placed on the sarne side 
as S, as for the infinite line that goes through U and T. If 
sign(s)=-1, it will be on the opposite side; if sign(s)=O, it 
will be on the Iine (Fig.1) 

s >=o 

t>= O 

u>= O 

P = sS + tT+ uU 

Fig. 1. Geometric interpretation of barycentric coordinates 
of a point with regard to a triangle 

The algorithms displayed here use a covering of the 
objects by triangles with origin on the polygons 
barycenter. That is, different triangles appear with a 
common vertex (the polygon barycenter) and each of the 
n edges of the polygon. This covering uses a O(n) time 
and it is carried out as a pre-processing when 
constructing the figures . This generator system is valid 
for any kind of 20 polygon (and its extension to 
polyhedral solids in 30), being either manifold or non­
manifold, with or without holes, concave or convex. 

3. POINT-POL YGON INCLUSION ALGORITHMS 

A previous step before obtaining a collision detection 
algorithm consists in revising the point-polygon inclusion 
algorithms that represent the static collision detection 
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(objects that do not move). This problem can be solved in 
different ways [Haine94]. The crossings tests 
[Lasszlo96], winding number [Preparata85] , signed area 
[Hoffmann89] and [Feito95] algorithms, are some of the 
most representative, being the crossings test algorithm 
the fastest one. 

We will develop algorithms based on a covering by 
triangles and barycentric coordinates. So, we will 
compare them with typical inclusion algorithms 
(crossings test and signed area ones [Feito95]) and with 
those of collision detection of section 4, in order to see 
how making use of coherence, algorithms are faster. 

3.1. lnclusion Test of a Point on a Triangle 

Once we have seen the above definitions, in order to 
determine whether a point is included in a triangle or not, 
we have only to check if barycentric coordinates of the 
point with regard to coordinates that form a triangle, are 
ali in the interval [O, 1 ], or what is the sarne, we have only 
to check if any of the barycentric coordinates is negative. 

The calculations necessary to compute the barycentric 
coordinates of the point can be accelerated by calculating 
only two of the three barycentric coordinates, as s + t + u 
= 1, u = 1 - s- t. We can also accelerate the detenninant 
calculation for a triangle area by the next formula which 
only implies 5 subtractions, 2 multiplications and 1 
division : 

IABq = [(xs-xA) (Yc-YA)- (Xc-XA) (Ys-YA)] /2 

We can obviate the division by 2 in numerator and 
denominator, as the area of two triangles is divided for ali 
the barycentric coordinates : 

s = IBCPI / IABq = 

det(BCP)/2 / det(ABC)/2 = det(BCP) / det(ABC) 

The point-triangle inclusion algorithm (Algorithm !) is 
presented in the appendix. The receiver object is a 
triangle and it retums whether a point is inside or outside 
the triangle. Besides, ifthe point is inside, it retums either 
if it is on a vertex (giving information about it), or on an 
outside or inside edge, if it occurs. 

The performance time of this algorithm is good enough 
compared with [Feito95] algorithm, as it can determine if 
a point is outside the triangle in near half the time used 
by the algorithm in [Feito95]. 

3.2. lnclusion Test of a Point on a Convex 
Polygon 

ln this case, the covering is formed by triangles that do 
not overlap ( disjoint). ln order to check the inclusion of a 
point on a polygon, the inclusion of the point on each 
triangle is verified sequentially. The point is considered 
to be inside the polygon if the inclusion test is positive in 
any of the triangles ; it is externai to the polygon if it is 
outside ali the triangles. 

We can accelerate the test by considering only the 
barycentric coordinate s relative to the common vertex S, 
to ali triangles of the covering. The point is inside the 
polygon if and only if the sign of ali coordinates s with 
regard to the triangles of the covering is positive or zero; 
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it is outside if at least one of the signs of coordinates s is 
negative (Algorithm 2). 

Once more, we can see a remarkable improvement as for 
algorithm in [Feito95], as when we find a negative 
coordinate s , we establish the point is outside and do not 
go on with the rest of covering triangles. ln relation to the 
crossings test algorithm, the algorithm presented here, 
has a very similar behaviour, although with slightly 
higher times. 

3.3. lnclusion Test of a Point on a Non-convex 
Polygon 

ln this case we determine the inclusion of the point on 
any of triangles of the covering according to [Feito95] 
algorithm, but then we use our inclusion test based on 
barycentric coordinates, as seen in the previous section 
(Algorithm 3). 

4. ALGORITHMS OF POINT-POL YGON 
COLLISION DETECTION 

Then we will see algorithms that determine whether there 
is collision between a point and a polygon or not. For 
that, we start a simulation on which the point moves 
round the scene and we try to determine whether the 
point enters the polygon or not. ln order to accelerate the 
calculations, we make use of the temporal and geometric 
coherence. 

4.1. Collision Detection Test between a Point 
and a Convex Polygon 

If we deal with a point in motion and a convex polygon, 
we can determine whether there is collision or not at a 
certain time, making use of the information in the 
previous instants of time. Firstly, we determine whether 
the point is inside the polygon or not by the static test. 
For this, we have calculated the s barycentric coordinate 
of the point as for ali triangles of the covering. lf the 
point is outside the polygon, it will have one or more s 
negative coordinates. ln fact, we are considering the 
zones that determine the sides of the polygon (and not the 
sides of the triangles of the covering that do not belong to 
the border) (Fig.2). 

Fig. 2. Sign change of s barycentric coordinate 

We choose one of the triangles with s negative 
coordinate. Whenever the point moves, we will only 
calculate the value of that coordinate with regard to that 
triangle. When the sign changes or it becomes zero, we 
will again calculate whether it is inside the polygon or 
not by the static convex point-polygon inclusion test; and 
we start again. We can make good use of temporal 
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coherence if the first edges we consider in the static 
inclusion test are close to the studied edge. Then, we 
modify the algorithm of convex point-polygon inclusion 
test, so that it starts from the present edge and it returns 
the following edge with s negative barycentric 
coordinate. (See Algorithm 4). 

4.2. Collision Detection Test between a Point 
and a Polygon with Positive Covering 

ln case we had a non-convex polygon, but with positive 
covering (ali triangles of covering had a positive sign), 
we could not use this algorithm, but we could use the 
following one, which obviously is valid for convex 
polygons. 

The algorithm basis is as follows: in case of having a 
positive covering, we can divide the space into zones, 
making use of the barycentric coordinates of a point. 
These zones determine whether a point is inside the 
corresponding triangle or not, and whether it is inside the 
complete polygon or not (Fig.3). 

------

/ 

/ 
/ 

/ 

• p 

------

Fig. 3. Zones into which a figure with positive covering is 
divided 

ln figure 3, the point is on a zone where the signs of 
barycentric coordinates with regard to triangle 1 are (-1 , 
+ 1, + 1) that is, the point is outside the externai side ofthe 
triangle and inside the inner sides of it. 

By making use of temporal coherence, the point will 
move a little from one frame to another. So, the most 
probable is that the point stays in the sarne zone, and then 
it will continue outside; therefore, we will not have to 
calculate the barycentric coordinates in relation to the rest 
of triangles of the covering in order to detemiine if the 
point is outside. Let's imagine the sign of barycentric 
coordinates changes. If the sign of the first coordinate (s) 
is either positive or zero, it shows us the point is inside 
the triangle and the polygon. If it is one of the other two 
coordinates (t or u) which changes its sign, it shows us it 
has moved and changed its zone; we check it and 
consider the new zone from now (See Algorithm 6). The 
time used for the algorithm is O(n) to determine the zone 
where the point is initially (See Algorithm 5) and O(k) (k 
is a constant) on each movement, as a consequence of 
coherence. 

4.3. Collision Detection Test between a Point 
and a non Convex Polygon 

We could use the static collision detection test on each 
movement of the point, but we would not make good use 
of coherence. ln this case we propose an algorithm which 
does not need to calculate ali the barycentric coordinates 
of a point with regard to ali triangles of the covering and 
uses the coherence. 
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Let's suppose we are calculating if a point is inside one 
ofthe covering triangles. We calculate its coordinate s; if 
it is positive, we go on with coordinate t. If t is also 
positive, we calculate coordinate u (since the point is 
outside the triangle if s<O or t<O or u>O) 

As we have n triangles in the covering, we can extend it 
to all of them simultaneously, that is, firstly we calculate 
all the coordinates s with regard to all triangles, then we 
only calculate those coordinates t having sign(t)= 1, and 
then coordinates u with s ign(t)= 1. So, we only calculate 
all coordinates (s, t, u) for those triangles where the point 
is, and multiply it by the triangle sign. 

We can do it by a mask of bits. The bits, from left to 
right, represent each triangle of the covering. Firstly, all 
bits are O, showing the point is not inside any triangle. 
We calculate the first coordinate s for all triangles and 
change to 1 the bit ofthe mask for those with sign(s)>=O. 
Then we calculate coordinate t only for those triangles 
with bit=l in their mask. If sign(t)=-1, we change the bit 
to O; if not, we do not change it. We do the sarne with 
coordinate u. ln the end, we find a bit equal to l in the 
positions corresponding to the triangles where the point is 
(Fig.4). We only multiply by the sign of each triangle as 
it is made in the static detection test, in order to 
determine whether the point is inside the polygon or not. 

.... 5 
, , Order 123456 .... .... , , 

' , , Sign +-++++ 
' ' ,," 4 

' " coord. s 110111 6 ,,,,.~~----- coord. t 11-000 

3 
coord. u 11----
Result: inside 1,2 

outside Pol 

Fig. 4. Masks of bits of a point 

Up to now, we have not used coherence. We can see what 
happens if a point is outside the polygon and enters it. 
There is a variation in the sign of coordinate s as for the 
triangle of the edge it goes o ver (Fig.5). 

6 

---------
---------

Order 123456 123456 123456 123456 
Sign +-++++ +-++++ +-++++ +-++++ 
coord. s 110111 110011 110011 111111 
coord. t 11-000 10--01 100100 
coord. u 11---- 1----0 0-100 
state outside outside equal inside 

Fig. 5. Calculation of masks of bits of a point in motion 

So, we must keep these sign changes. If no change 
occurs, it is not necessary to calculate coordinates t and u. 
When it does, the algorithm will behave as it has been 
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described in the previous paragraph. This implies that 
most of the time, movements occur in the sarne zone and 
we have only to calculate one of the three barycentric 
coordinates (See Algorithm 7). 

4.3.1. Algorithm improvements 

With this algorithm we have to calculate one of the 
barycentric coordinates for all triangles of the covering 
whenever we move the point. We can accelerate the 
calculations if we succeed in reducing the number of 
triangles involved in the calculation of each movement. 
Our reasoning is as follows: 

Firstly, whether the point is inside or outside the polygon 
is determined ; for that, the inclusion test is used. If the 
point is outside, edges that the point "sees" from its 
position are calculated, that is, the triangles edges of the 
covering, having the point a negative area in relation with 
them, are calculated. 

IPA;A;@11 = BarycentricCoordS(P, A;A;E&i) * sign(T;) 

This is kept in a mask of bits on which value O tells us 
that the edge "is not seen'', and value l that the edge "is 
seen" (Fig.6). 

./ 
./ 

., 5 ·, ., // 

6 :~··-. ·-

Edges 
Mask 

3 

123456 
011000 

4 
1 
1 

61 
1 
1 
1 
1 
1 
1 
1 

/ 1 / ,, 
• 

' ' 

/ 
/ 

5 ./ 
./ 

' ~ ;,,,,.· 
·.~·- . ._ 

i 3 

\ 

123456 
101001 

Fig. 6. Mask of bits of edges a point can see 

./ 

4 

Then, the point moves and only the triangle area formed 
by the point with the edges the point saw a moment ago 
is checked (those which have l in the mask of bits). If a 
change occurs (that is, the point does not see an edge), we 
have to verify with the static inclusion test whether the 
point is inside the polygon or not, and then to calculate 
again the edges "seen" by the point from its new position 
(See Algorithm 8). 

5. IMPLEMENTATION DETAILS 

We have used an object-oriented approach in the 
implementation of classes which represent a Polygon. We 
have the Polygon Class, as a superclass, and Convex­
Polygon and non-Convex-Polygon classes, which 
represent a convex and non-convex Polygon respectively. 
We have showed a Positive-Polygon C/ass, which is a 
particular case with a positive covering (e.g. star-shaped 
figures). This cl~ss has not been implemented, but has 
been included in this article in order to aid the algorithrns 
comprehension. Actually, the Polygon c/ass, detects the 
type of covering and then it works by choosing a method 
or another one. 

We have initially carried out the covering of polygons, 
keeping the sign of triangles. For a higher efficiency, 
barycentric coordinates are calculated when it is only 
necessary and sometimes, previous calculations are used. 
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The calculation of sign function and involved 
determinants have been optimized. 

It has been used the programming language C++ and the 
OpenGL graphic library on a Linux system. 

6. TEMPORAL STUDY 

We have compared the inclusion algorithms obtained in 
this work with the crossings test inclusion Algorithm 
[Haines94] and with signed area one [Feito95]. At the 
sarne time, we have compared these static algorithms 
with those of collision detection developed in order to 
show that these offer better times than their static 
versions, because ofthe use of coherence in movement. 

Severa! tests have been made with different types of 
polygons. First, for convex polygons (Fig. 7a); then, for 
non-convex polygons, and within them, star-shaped ones 
(with positive covering) (Fig.7.b); contour polygons (e.g. 
maps) (Fig.7c); and completely irregular and random 
polygons (Fig.7.d). 

a) Convex figure b) Star-shaped figure 

e) Contour Figure d) Non-convex figure (Irregular) 

Fig. 7. Different types of Polygons used in tests 

For ai! types of polygons, the number of vertices has 
changed gradually from 3 to l,QOO; it has not occurred 
with contour polygons (maps), on which vertices are 
between l O and 1,000. 

ln ai! tests a point has been moved round a polygon, the 
nearest to its contour ; it has surrounded it completely (it 
has retumed to its initial position). This movement has 
been formed by 90,000 positions in ai! cases. 

The results obtained can be seen in the following figures, 
on which a logarithmic scale has been used, for both axes 
(x,y). 

For convex polygons we have applied the crossings-test 
inclusion test, signed area one, barycentric coordinates 
and barycentric coordinates applied to positive covering; 
we have also applied collision detection tests for convex 
polygons, polygons with positive covering and non­
convex polygons ones (Fig.8). 
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1co.m~------COf'NEXPOLYGON. _______ _ 

f 1.00 

! 

0,10 

0.01 

3 10 "' 50 100 1000 

.... • Potygon:·sçnedArealrdusionTest -e-eonvexPofygon:1ndumnTest 

positivePolygon;:k'ld1.&ionTest -O- CROSSINGSTEST 
-+-ConvexPolygon. .colllsionTest -+- positivePolygon::collisiaiTest 
- · nonConvexPotygon. ·improvedCollisionTest 

Fig. 8. Times graph for convex polygons 

Undoubtedly, the collision detection algorithm for 
convex figures (Algorithm 4) is the fastest method, 
because after the first point calculation (pre-processing), 
it gets a lineal time. The optimized algorithm for non­
convex figures (Algorithm 8) gets better times than the 
crossings test algorithm for figures with less than 20 
vertices; for figures with more vertices, it approaches 
quite well, although with worse times. 

Moreover, we can see that in general, algorithms for 
positive coverings (Algorithm 6) are slower than the 
others for this case, and signed area inclusion algorithm 
[Feito95] is the one that obtains the worse time. 

For the case of non-convex polygons, we start seeing the 
results for star-shaped polygons (Fig.9). 

NON CONl/EX POLYGON: STAR-SHAPEO 
100,00~---------~--~----

-+-potitrvePolygon:eolhionT.c 
~lrdu9onTell 

"' 50 100 1000 

---~..rd.llic:nTest 

-~:.o::illltonTest 

- ·~;irrp"owdeolllionT• 

Fig. 9. Times graph for star-shaped polygons 

Crossings test algorithm is the fastest one, followed by 
the collision detection optimized algorithm for non­
convex figures (Algorithm 8), and figures with less than 
150 vertices. For figures with more than 150 vertices, the 
collision detection algorithm for figures with positive 
covering (Algorithm 6), is faster than the last one. 

For non-convex and completely irregular polygons 
(Fig. l O), we can see that after the crossings test 
algorithm, the best one is the improved algorithm for 
non-convex polygons (Algorithm 8), followed by the 
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non-convex collision detection algorithm without any 
improvement (Algorithm 7). 

10 20 50 100 ---+-"""'9r< :~rdJslanTest 
...,._~jn::IJsionTest 

cx:GSIN:l5TE5T 
--~:colsionTest 

200 

- .. ~:irrp'cMl<:ColsiTest 

500 1<XXJ 

Fig. 10. Times graph for irregular polygons 

ln the case of contour non-convex polygons (Fig.11), we 
notice the improvement of the optimized collision 
detection algorithm (Algorithm 8) as for the algorithm 
without any improvement (Algorithm 7). 

NON CONVEX POLYGON: CONTOUR 
UX>.00~-----------------

-CROSSINGSTEST 
- nonConvexPotygon::collis5onTest 

nonConvelCP on:: vedCollisk>nTest 

Fig. 11. Times graph for contour polygons 

7. CONCLUSIONS 

We have obtained a group of algorithms for the collision 
detection, which make use of temporal coherence. They 
have proved to be faster if they use this characteristic. 
The improved collision detection algorithm for non­
corivex polygons (Algorithm 8) is efficient in most 
situations, being only excelled by the crossings test 
algorithm in the case of non-convex polygons, and 
although times are higher, they are quite near. 

Other algorithms which are efficient in certain situations 
have been developed : the collision detection algorithm 
for convex polygons (Algorithm 4) with a lineal time 
(after the first point calculation) excels ali algorithms 
with a logarithmic behaviour. Another algorithm 
developed for polygons with positive covering 
(Algorithm 6) shows better for polygons with a high 
number of vertices. 
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The collision detection algorithm for convex polygons 
can be used in a bounding volumes hierarchy in a 
different detail levei for non-convex polygons, so that we 
exclude pairs of objects in a simulatión by using these 
bounding volumes. ln this way, we can have a first levei 
bounding volume, e.g. a rectangle, a second levei one, the 
convex hull, a third one, a covering of positive triangles, 
and a forth one, the polygon itself. 

ln general, these algorithms, although they are not better 
in 2D, because of their possibility of extension to 3D 
together with their robustness, relative simplicity and 
their usefulness . for any type of polygons, are suitable for 
severa) applications where time is very important. 

Nowadays, we are working on the improvement of 
algorithrns presented in this article, as for the masks of 
bits control (concerning their hardware implementation) . 
We are also developing algorithms for the collision 
detection among polygons and their extension to 3D for 
complex polyhedral figures. 
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10. APPENDIX: ALGORITHMS 

int triangle::inclusionTest(point p) 
sO = sign(BarycentricBO(p)) 
if (s0<0) return OUT 
sl = sign(BarycentricBl(p)) 
if (sl<O) return OUT 
s2 = sign(BarycentricB2(p)) 
if (s2<0) return OUT 
if (s0==0) { 

if (sl==O) 
return VERTEX_V2; 

else if (s2==0) 
return VERTEX_Vl; 

else 
return EDGE_EXTERNAL; 

} else 
if (sl==O) { 

if (s2==0) 
return VERTEX_VO; 

els e 
return EDGE_LEFT; 

} else 
if (s2==0) 

return EDGE_RIGHT; 

return IN; 

Algorithm 1. Point-Triangle inclusion test. 

int convexPolygon::inclusionTest(point p) { 
exit = FALSE 
i = o 
while (i < triangleNumber AND exit==FALSE) { 

s = Triangle[i]->sign(BarycentricBO(p)) 
if (S<O) exit = TRUE 
i++ 

if (exit==TRUE) return OUT 
else return IN 

Algorithm 2. Point-convex Polygon inclusion test. 

int nonConvexPolygon::inclusionTest(point p) { 

exit = FALSE 

sum O 

i = o 
while (i < triangleNumber AND exit==FALSE) { 

is_in = Triangle[i]->inclusionTest(p) 

if (is_in==EDGE_EXTERNAL OR is_in==VERTEX_Vl OR is in==VERTEX_V2) 

exit = TRUE 

els e 

i++ 

if ( is_in==IN) 

els e 

sum += 2*Triangle[i]->sign() 

if (is_in==EDGE_RIGHT j 1 is_in==EDGE_LEFT) 

sum += Triangle[i]->sign() 

if (exit==TRUE OR sum==2) return IN 

else return OUT 

Algorithm 3. Point-non convex Polygon inclusion test. 
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llstatic inclusion test 
is in = inclusionTest(point, edge) 
while (simulation goes on) { 

move point 
llcollision detection test 
res = collisionTest(point, edge) 
print res 

int convexPolygon::collisionTest(point p, int edge) 
s = Triangle[edge]-> sign(BarycentricBO(p)) 
if (S>=O ) { 

is_in = inclusionTest(p, edge) 
li it returns the following zone related to an edge where the point is 
if (is_in == IN) return IN 

return OUT 

Algorithm 4. Point-convex Polygon collision detection test. 

int positivePolygon::inclusionTest(point p, int edge) { 
edge = -1 
exit = FALSE 
i = o 
while (i < triangleNumber AND exit == FALSE) { 

sO = Triangle[i]->sign(BarycentricBO(p)) 
if (sO<O) 

sl = Triangle[i]->sign(BarycentricBl(p)) 
s2 = Triangle[i]->sign(BarycentricB2(p)) 
if (sl>=O AND S2>=0) 

i++ 

edge i 
exit = TRUE 

if (edge==-1) return IN, edge 
else return OUT, edge 

Algorithm 5. Point-Polygon with positive covering inclusion test. 

llstatic inclusion test 
is in = inclusionTest(point,edge) 
while (simulation goes on) { 

move point 
llcollision detection test 
resTmp = collisionTest(point, edge) 
if (resTmp<>EQUAL_STATE) 

res = resTmp 
print res 

int positivePolygon::collisionTest(point p, int edge) 
sO Triangle[edge]->sign(BarycentricBO(p)) 
sl = Triangle[edge]->sign(BarycentricBl(p)) 
s2 = Triangle[edge]->sign(BarycentricB2(p)) 
if (SO<O AND Sl>=O AND S2>=0) 

return EQUAL_STATE, edge 
if (S0>=0 AND Sl>=O AND S2>=0) 

return IN, edge 
i=O; 
while (i<triangleNumber-1) { 

if (sl<O) index = (edge+i+l) % triangleNumber 
if (s2<0) index = (edge-i-1) % triangleNumber 
sO' Triangle[index]->sign(BarycentricBO(p)) 
sl' = Triangle[index]->sign(BarycentricBl(p)) 
s2' = Triangle[index]->sign(BarycentricB2(p)) 
if (s0'<0 AND sl'>=O AND s2'>=0) 

return OUT, index 
if (s0' >=0 AND sl'>=O AND s2'>=0) 

return IN, index 
i++ 

Algorithm 6. Point-Polygon with positive covering collision detection test. 
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is_in = inclusionTest(point) //static inclusion test 
while (simulation goes on) { 

move point 
resTmp = collisionTest(point, mask) //collision detection test 
if (resTmp<>EQUAL_STATE) 

res = resTmp 
print res 

int nonConvexPolygon::collisionTest(point *p, int *mask) { 
maskBO = maskBl = maskB2 O 

is in 
while 

} 

sum = O ; i = O 
while (i<triangleNumber) 

s = Triangle[i]->sign(BarycentricBO(p)) 
if (S>=O) maskBO[i] = 1 
i++ 

if (maskBO == mask) return EQUAL_STATE 
mask = maskBO 
i=O 
while (i<triangleNumber) { 

if (maskBO [i] > O) 
s = Triangle[i]->sign(BarycentricBl(p)) 
if (s==O) sum+=Triangle[i]->sign() 
if (S>=O) maskBl[i] = 1 

i++ 

i=O 
while (i<triangleNumber) { 

if (maskBl[i] >O) 
s = Triangle[i]->sign(BarycentricB2(p)) 
if (s==O) sum+=Triangle[i]->sign() 
if (S>=O) maskB2 (i] = 1 

i++ 

maskPos 
maskNeg 
i=O 
while 

maskB2 & maskSign // mask of bits of triangles covering signs 
maskB2 & (-maskSign) 

(i<triangleNumber) { 
if (maskPos [i] > O) 
if (maskNeg[i] > O) 
i++ 

if (sum==2) return IN 
else return OUT 

sum += 2 
sum 2 

Algorithm 7. Point-non convex Polygon collision detection test. 

inclusionTest(point) //static inclusion test 
(simulation goes on) { 

move point 
resTmp = improvedCollisionTest(point, mask) //collision detection test 
if (resTmp<>EQUAL_STATE) 

res = resTmp 
print res 

int nonConvexPolygon::improvedCollisionTest(point p, int *mask) { 
exit = FALSE ; i = O 
while (i < triangleNumber AND exit == FALSE) 

if (mask[i] == 0) 

i++ 

s = Triangle[i]->sign(TriangleBO(p)) 
if (S>=O) 

exit = TRUE 

if (exit==FALSE) return EQUAL_STATE 
els e 

if (inclusionTest(p)==IN) 
mask = o 
return IN, mask 

} else { 

//static inclusion test 

collisionTestGetMask(p,mask) //bit-mask obtaining for collision test 
return OUT, mask 

Algorithm 8. Point-non convex Polygon improved collision detection test. 
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