
SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Algorithms for Point-Polygon Collision Detection in 2D
Juan J. Jiménez Delgado Rafael J. Segura Sánchez Francisco R. Feito Higueruela

Departamento de Informática. Escuela Politécnica Superior. Universidad de Jaén

Av. de Madrid, 35. 23071 Jaén. Spain

{juanjo,rsegura,ffeito}@ujaen.es

Abstract
ln this artic/e, severa/ algorithms for the collision detection between a point and a polygon on a plane are
presented. Coverings by triangles and barycentric coordinates are used. Temporal and geometric coherence are
usedfor reducing their performance times. A study of times has been carried out; it shows that these simple and
robust algorithms are efficient. Also, these algorithms can be used for non convex figures and they have the
advantage of being easily extended to JD.

Keywords
Collision detection, inc/usion test, animation, simulation, coherence.

1. INTRODUCTION

The problem of collision detection among objects in
motion is essential in severa! application fields, such as in
simulations of the physical world, robotics, animation,
manufacture, navigation by virtual worlds, etc. Apart
from giving to scenes a more realistic appearance, it is
necessary that the objects belonging to it, interact, so as
objects do not collide, and if they do, a suitable response
is obtained (objects change their trajectory or their shape,
etc.) So, the development of efficient algorithms is
necessary for the collision detection among objects, with
the aim of improving the bottleneck that implies the
checking of ai! pairs of features among objects of the
scene, which have a performance time of O (n m p),
being n and m, the number of features of objects, and p,
the number of movements or frames in the simulation.

ln previous works, a characterization of the collision
detection problem and the strategies used to solve it were
carried out [Jiménez02]. Other authors have also made a
revision ofthis problem [JimThoOl].

ln this work, severa! algorithms for the collision detection
between a point and a polygon on a plane are presented.
The algorithms displayed try to determine if, given a
point in motion, it gets in a polygon or not. We will try to
reduce the number of features to deal with on each
movement of objects by using the temporal coherence in
their movement, as well as their geometric coherence.

Gradually we will show different algorithms, firstly for
the inclusion of points in polygons (static collision
detection), and then for the collision detection of points
in motion in polygons (collision detection in the strict
sense).

We will use a covering ofthe polygon by triangles with a
common point on its barycenter and barycentric
coordinates in arder to determine the point inclusion in
the polygon [Badouel90]. We have developed algorithms

253

for different types of polygons : convex and non-convex
ones, and within these last ones, algorithms for polygons
with a covering of positive triangles.

The advantage of these algorithms is that they can be
used for non-convex figures, that can be extended to 3D,
and have showed they are robust and efficient regarding
operations carried out by using a covering of triangles
and operations with signs [SeguraOl].

Firstly, we will establish the working basis of the
algorithms we propose, and then, we will present
algorithms for the inclusion of a point in a polygon and
the point-polygon collision detection. We will see how
these methods have been implemented and a study of
times that show whether they are effective or not will be
carried out. Finally, possible extensions of algorithms
and the work that is being carried out by the authors will
be shown in the conclusion.

2. PREVIOUS DEFINITIONS

Definition 1 :Let x be a real number. We define the sign
function, sign (x), as follows :

sign(x) =
{ ~I

ifx>O

ifx=O

ifx <O

Definition 2 : Let three points be A,B,C e Rº, for n=2,
the coordinates of which on the plane are A (xA,YA), B
(xa,y8), C (xc,yc), the signed area of these three points is
defined as :

IABCI = Yi * YA

1

Xe

Ye
. 1

Xc

Yc

1

The signed area of these three points can be negative,
depending on the points arder. For counter-clockwise
ordering can be easily demonstrated that the signed area
is positive, and zero ifthe three points are aligned.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Oefinition 3: A triangle Tis positive if sign (jTl)=I, and
negative if sign (jTI)= -1.

Theorem : Let points be A,B,C E R2
, and Iet's suppose

they are not collinear. Let another point be P E R2
. Then,

there are s,t,u E R, so that s + t + u = 1 and P = sA + tB +
uC, that mean :

s = IBCPI / IABCI

t = ICAPI / IABCI

u = IABPI / IABCI

Numbers s,t,u defined in the above theorem are the
barycentric coordinates of P with regard to points A, B
ande.

Lemma : Let a point be P E R2 with barycentric
coordinates (s, t, u) in relation to points A, B, e E R", it
is said that point P is inside the triangle defined by points
A, 8, C, if and only if [Badouel90) :

o$ s, t, u $ 1

Corollary : Likewise, we define point P is outside the
triangle A, B, C, if and only if:

s$0vt$0vu$0

Geometric interpretation of barycentric coordinates of a
point with regard to three vertices : If barycentric
coordinates of a point P in relation to S, T, U ares, t, u, then
a point with sign(s)=+ 1 will be placed on the sarne side
as S, as for the infinite line that goes through U and T. If
sign(s)=-1, it will be on the opposite side; if sign(s)=O, it
will be on the Iine (Fig.1)

s >=o

t>= O

u>= O

P = sS + tT+ uU

Fig. 1. Geometric interpretation of barycentric coordinates
of a point with regard to a triangle

The algorithms displayed here use a covering of the
objects by triangles with origin on the polygons
barycenter. That is, different triangles appear with a
common vertex (the polygon barycenter) and each of the
n edges of the polygon. This covering uses a O(n) time
and it is carried out as a pre-processing when
constructing the figures . This generator system is valid
for any kind of 20 polygon (and its extension to
polyhedral solids in 30), being either manifold or non­
manifold, with or without holes, concave or convex.

3. POINT-POL YGON INCLUSION ALGORITHMS

A previous step before obtaining a collision detection
algorithm consists in revising the point-polygon inclusion
algorithms that represent the static collision detection

254

(objects that do not move). This problem can be solved in
different ways [Haine94]. The crossings tests
[Lasszlo96], winding number [Preparata85] , signed area
[Hoffmann89] and [Feito95] algorithms, are some of the
most representative, being the crossings test algorithm
the fastest one.

We will develop algorithms based on a covering by
triangles and barycentric coordinates. So, we will
compare them with typical inclusion algorithms
(crossings test and signed area ones [Feito95]) and with
those of collision detection of section 4, in order to see
how making use of coherence, algorithms are faster.

3.1. lnclusion Test of a Point on a Triangle

Once we have seen the above definitions, in order to
determine whether a point is included in a triangle or not,
we have only to check if barycentric coordinates of the
point with regard to coordinates that form a triangle, are
ali in the interval [O, 1], or what is the sarne, we have only
to check if any of the barycentric coordinates is negative.

The calculations necessary to compute the barycentric
coordinates of the point can be accelerated by calculating
only two of the three barycentric coordinates, as s + t + u
= 1, u = 1 - s- t. We can also accelerate the detenninant
calculation for a triangle area by the next formula which
only implies 5 subtractions, 2 multiplications and 1
division :

IABq = [(xs-xA) (Yc-YA)- (Xc-XA) (Ys-YA)] /2

We can obviate the division by 2 in numerator and
denominator, as the area of two triangles is divided for ali
the barycentric coordinates :

s = IBCPI / IABq =

det(BCP)/2 / det(ABC)/2 = det(BCP) / det(ABC)

The point-triangle inclusion algorithm (Algorithm !) is
presented in the appendix. The receiver object is a
triangle and it retums whether a point is inside or outside
the triangle. Besides, ifthe point is inside, it retums either
if it is on a vertex (giving information about it), or on an
outside or inside edge, if it occurs.

The performance time of this algorithm is good enough
compared with [Feito95] algorithm, as it can determine if
a point is outside the triangle in near half the time used
by the algorithm in [Feito95].

3.2. lnclusion Test of a Point on a Convex
Polygon

ln this case, the covering is formed by triangles that do
not overlap (disjoint). ln order to check the inclusion of a
point on a polygon, the inclusion of the point on each
triangle is verified sequentially. The point is considered
to be inside the polygon if the inclusion test is positive in
any of the triangles ; it is externai to the polygon if it is
outside ali the triangles.

We can accelerate the test by considering only the
barycentric coordinate s relative to the common vertex S,
to ali triangles of the covering. The point is inside the
polygon if and only if the sign of ali coordinates s with
regard to the triangles of the covering is positive or zero;

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

it is outside if at least one of the signs of coordinates s is
negative (Algorithm 2).

Once more, we can see a remarkable improvement as for
algorithm in [Feito95], as when we find a negative
coordinate s , we establish the point is outside and do not
go on with the rest of covering triangles. ln relation to the
crossings test algorithm, the algorithm presented here,
has a very similar behaviour, although with slightly
higher times.

3.3. lnclusion Test of a Point on a Non-convex
Polygon

ln this case we determine the inclusion of the point on
any of triangles of the covering according to [Feito95]
algorithm, but then we use our inclusion test based on
barycentric coordinates, as seen in the previous section
(Algorithm 3).

4. ALGORITHMS OF POINT-POL YGON
COLLISION DETECTION

Then we will see algorithms that determine whether there
is collision between a point and a polygon or not. For
that, we start a simulation on which the point moves
round the scene and we try to determine whether the
point enters the polygon or not. ln order to accelerate the
calculations, we make use of the temporal and geometric
coherence.

4.1. Collision Detection Test between a Point
and a Convex Polygon

If we deal with a point in motion and a convex polygon,
we can determine whether there is collision or not at a
certain time, making use of the information in the
previous instants of time. Firstly, we determine whether
the point is inside the polygon or not by the static test.
For this, we have calculated the s barycentric coordinate
of the point as for ali triangles of the covering. lf the
point is outside the polygon, it will have one or more s
negative coordinates. ln fact, we are considering the
zones that determine the sides of the polygon (and not the
sides of the triangles of the covering that do not belong to
the border) (Fig.2).

Fig. 2. Sign change of s barycentric coordinate

We choose one of the triangles with s negative
coordinate. Whenever the point moves, we will only
calculate the value of that coordinate with regard to that
triangle. When the sign changes or it becomes zero, we
will again calculate whether it is inside the polygon or
not by the static convex point-polygon inclusion test; and
we start again. We can make good use of temporal

255

coherence if the first edges we consider in the static
inclusion test are close to the studied edge. Then, we
modify the algorithm of convex point-polygon inclusion
test, so that it starts from the present edge and it returns
the following edge with s negative barycentric
coordinate. (See Algorithm 4).

4.2. Collision Detection Test between a Point
and a Polygon with Positive Covering

ln case we had a non-convex polygon, but with positive
covering (ali triangles of covering had a positive sign),
we could not use this algorithm, but we could use the
following one, which obviously is valid for convex
polygons.

The algorithm basis is as follows: in case of having a
positive covering, we can divide the space into zones,
making use of the barycentric coordinates of a point.
These zones determine whether a point is inside the
corresponding triangle or not, and whether it is inside the
complete polygon or not (Fig.3).

/

/
/

/

• p

Fig. 3. Zones into which a figure with positive covering is
divided

ln figure 3, the point is on a zone where the signs of
barycentric coordinates with regard to triangle 1 are (-1 ,
+ 1, + 1) that is, the point is outside the externai side ofthe
triangle and inside the inner sides of it.

By making use of temporal coherence, the point will
move a little from one frame to another. So, the most
probable is that the point stays in the sarne zone, and then
it will continue outside; therefore, we will not have to
calculate the barycentric coordinates in relation to the rest
of triangles of the covering in order to detemiine if the
point is outside. Let's imagine the sign of barycentric
coordinates changes. If the sign of the first coordinate (s)
is either positive or zero, it shows us the point is inside
the triangle and the polygon. If it is one of the other two
coordinates (t or u) which changes its sign, it shows us it
has moved and changed its zone; we check it and
consider the new zone from now (See Algorithm 6). The
time used for the algorithm is O(n) to determine the zone
where the point is initially (See Algorithm 5) and O(k) (k
is a constant) on each movement, as a consequence of
coherence.

4.3. Collision Detection Test between a Point
and a non Convex Polygon

We could use the static collision detection test on each
movement of the point, but we would not make good use
of coherence. ln this case we propose an algorithm which
does not need to calculate ali the barycentric coordinates
of a point with regard to ali triangles of the covering and
uses the coherence.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Let's suppose we are calculating if a point is inside one
ofthe covering triangles. We calculate its coordinate s; if
it is positive, we go on with coordinate t. If t is also
positive, we calculate coordinate u (since the point is
outside the triangle if s<O or t<O or u>O)

As we have n triangles in the covering, we can extend it
to all of them simultaneously, that is, firstly we calculate
all the coordinates s with regard to all triangles, then we
only calculate those coordinates t having sign(t)= 1, and
then coordinates u with s ign(t)= 1. So, we only calculate
all coordinates (s, t, u) for those triangles where the point
is, and multiply it by the triangle sign.

We can do it by a mask of bits. The bits, from left to
right, represent each triangle of the covering. Firstly, all
bits are O, showing the point is not inside any triangle.
We calculate the first coordinate s for all triangles and
change to 1 the bit ofthe mask for those with sign(s)>=O.
Then we calculate coordinate t only for those triangles
with bit=l in their mask. If sign(t)=-1, we change the bit
to O; if not, we do not change it. We do the sarne with
coordinate u. ln the end, we find a bit equal to l in the
positions corresponding to the triangles where the point is
(Fig.4). We only multiply by the sign of each triangle as
it is made in the static detection test, in order to
determine whether the point is inside the polygon or not.

.... 5
, , Order 123456 , ,

' , , Sign +-++++
' ' ,," 4

' " coord. s 110111 6 ,,,,.~~----- coord. t 11-000

3
coord. u 11----
Result: inside 1,2

outside Pol

Fig. 4. Masks of bits of a point

Up to now, we have not used coherence. We can see what
happens if a point is outside the polygon and enters it.
There is a variation in the sign of coordinate s as for the
triangle of the edge it goes o ver (Fig.5).

6

Order 123456 123456 123456 123456
Sign +-++++ +-++++ +-++++ +-++++
coord. s 110111 110011 110011 111111
coord. t 11-000 10--01 100100
coord. u 11---- 1----0 0-100
state outside outside equal inside

Fig. 5. Calculation of masks of bits of a point in motion

So, we must keep these sign changes. If no change
occurs, it is not necessary to calculate coordinates t and u.
When it does, the algorithm will behave as it has been

256

described in the previous paragraph. This implies that
most of the time, movements occur in the sarne zone and
we have only to calculate one of the three barycentric
coordinates (See Algorithm 7).

4.3.1. Algorithm improvements

With this algorithm we have to calculate one of the
barycentric coordinates for all triangles of the covering
whenever we move the point. We can accelerate the
calculations if we succeed in reducing the number of
triangles involved in the calculation of each movement.
Our reasoning is as follows:

Firstly, whether the point is inside or outside the polygon
is determined ; for that, the inclusion test is used. If the
point is outside, edges that the point "sees" from its
position are calculated, that is, the triangles edges of the
covering, having the point a negative area in relation with
them, are calculated.

IPA;A;@11 = BarycentricCoordS(P, A;A;E&i) * sign(T;)

This is kept in a mask of bits on which value O tells us
that the edge "is not seen'', and value l that the edge "is
seen" (Fig.6).

./
./

., 5 ·, ., //

6 :~··-. ·-

Edges
Mask

3

123456
011000

4
1
1

61
1
1
1
1
1
1
1

/ 1 / ,,
•

' '

/
/

5 ./
./

' ~ ;,,,,.·
·.~·- . ._

i 3

\

123456
101001

Fig. 6. Mask of bits of edges a point can see

./

4

Then, the point moves and only the triangle area formed
by the point with the edges the point saw a moment ago
is checked (those which have l in the mask of bits). If a
change occurs (that is, the point does not see an edge), we
have to verify with the static inclusion test whether the
point is inside the polygon or not, and then to calculate
again the edges "seen" by the point from its new position
(See Algorithm 8).

5. IMPLEMENTATION DETAILS

We have used an object-oriented approach in the
implementation of classes which represent a Polygon. We
have the Polygon Class, as a superclass, and Convex­
Polygon and non-Convex-Polygon classes, which
represent a convex and non-convex Polygon respectively.
We have showed a Positive-Polygon C/ass, which is a
particular case with a positive covering (e.g. star-shaped
figures). This cl~ss has not been implemented, but has
been included in this article in order to aid the algorithrns
comprehension. Actually, the Polygon c/ass, detects the
type of covering and then it works by choosing a method
or another one.

We have initially carried out the covering of polygons,
keeping the sign of triangles. For a higher efficiency,
barycentric coordinates are calculated when it is only
necessary and sometimes, previous calculations are used.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

The calculation of sign function and involved
determinants have been optimized.

It has been used the programming language C++ and the
OpenGL graphic library on a Linux system.

6. TEMPORAL STUDY

We have compared the inclusion algorithms obtained in
this work with the crossings test inclusion Algorithm
[Haines94] and with signed area one [Feito95]. At the
sarne time, we have compared these static algorithms
with those of collision detection developed in order to
show that these offer better times than their static
versions, because ofthe use of coherence in movement.

Severa! tests have been made with different types of
polygons. First, for convex polygons (Fig. 7a); then, for
non-convex polygons, and within them, star-shaped ones
(with positive covering) (Fig.7.b); contour polygons (e.g.
maps) (Fig.7c); and completely irregular and random
polygons (Fig.7.d).

a) Convex figure b) Star-shaped figure

e) Contour Figure d) Non-convex figure (Irregular)

Fig. 7. Different types of Polygons used in tests

For ai! types of polygons, the number of vertices has
changed gradually from 3 to l,QOO; it has not occurred
with contour polygons (maps), on which vertices are
between l O and 1,000.

ln ai! tests a point has been moved round a polygon, the
nearest to its contour ; it has surrounded it completely (it
has retumed to its initial position). This movement has
been formed by 90,000 positions in ai! cases.

The results obtained can be seen in the following figures,
on which a logarithmic scale has been used, for both axes
(x,y).

For convex polygons we have applied the crossings-test
inclusion test, signed area one, barycentric coordinates
and barycentric coordinates applied to positive covering;
we have also applied collision detection tests for convex
polygons, polygons with positive covering and non­
convex polygons ones (Fig.8).

257

1co.m~------COf'NEXPOLYGON. _______ _

f 1.00

!

0,10

0.01

3 10 "' 50 100 1000

.... • Potygon:·sçnedArealrdusionTest -e-eonvexPofygon:1ndumnTest

positivePolygon;:k'ld1.&ionTest -O- CROSSINGSTEST
-+-ConvexPolygon. .colllsionTest -+- positivePolygon::collisiaiTest
- · nonConvexPotygon. ·improvedCollisionTest

Fig. 8. Times graph for convex polygons

Undoubtedly, the collision detection algorithm for
convex figures (Algorithm 4) is the fastest method,
because after the first point calculation (pre-processing),
it gets a lineal time. The optimized algorithm for non­
convex figures (Algorithm 8) gets better times than the
crossings test algorithm for figures with less than 20
vertices; for figures with more vertices, it approaches
quite well, although with worse times.

Moreover, we can see that in general, algorithms for
positive coverings (Algorithm 6) are slower than the
others for this case, and signed area inclusion algorithm
[Feito95] is the one that obtains the worse time.

For the case of non-convex polygons, we start seeing the
results for star-shaped polygons (Fig.9).

NON CONl/EX POLYGON: STAR-SHAPEO
100,00~---------~--~----

-+-potitrvePolygon:eolhionT.c
~lrdu9onTell

"' 50 100 1000

---~..rd.llic:nTest

-~:.o::illltonTest

- ·~;irrp"owdeolllionT•

Fig. 9. Times graph for star-shaped polygons

Crossings test algorithm is the fastest one, followed by
the collision detection optimized algorithm for non­
convex figures (Algorithm 8), and figures with less than
150 vertices. For figures with more than 150 vertices, the
collision detection algorithm for figures with positive
covering (Algorithm 6), is faster than the last one.

For non-convex and completely irregular polygons
(Fig. l O), we can see that after the crossings test
algorithm, the best one is the improved algorithm for
non-convex polygons (Algorithm 8), followed by the

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

non-convex collision detection algorithm without any
improvement (Algorithm 7).

10 20 50 100 ---+-"""'9r< :~rdJslanTest
...,._~jn::IJsionTest

cx:GSIN:l5TE5T
--~:colsionTest

200

- .. ~:irrp'cMl<:ColsiTest

500 1<XXJ

Fig. 10. Times graph for irregular polygons

ln the case of contour non-convex polygons (Fig.11), we
notice the improvement of the optimized collision
detection algorithm (Algorithm 8) as for the algorithm
without any improvement (Algorithm 7).

NON CONVEX POLYGON: CONTOUR
UX>.00~-----------------

-CROSSINGSTEST
- nonConvexPotygon::collis5onTest

nonConvelCP on:: vedCollisk>nTest

Fig. 11. Times graph for contour polygons

7. CONCLUSIONS

We have obtained a group of algorithms for the collision
detection, which make use of temporal coherence. They
have proved to be faster if they use this characteristic.
The improved collision detection algorithm for non­
corivex polygons (Algorithm 8) is efficient in most
situations, being only excelled by the crossings test
algorithm in the case of non-convex polygons, and
although times are higher, they are quite near.

Other algorithms which are efficient in certain situations
have been developed : the collision detection algorithm
for convex polygons (Algorithm 4) with a lineal time
(after the first point calculation) excels ali algorithms
with a logarithmic behaviour. Another algorithm
developed for polygons with positive covering
(Algorithm 6) shows better for polygons with a high
number of vertices.

258

The collision detection algorithm for convex polygons
can be used in a bounding volumes hierarchy in a
different detail levei for non-convex polygons, so that we
exclude pairs of objects in a simulatión by using these
bounding volumes. ln this way, we can have a first levei
bounding volume, e.g. a rectangle, a second levei one, the
convex hull, a third one, a covering of positive triangles,
and a forth one, the polygon itself.

ln general, these algorithms, although they are not better
in 2D, because of their possibility of extension to 3D
together with their robustness, relative simplicity and
their usefulness . for any type of polygons, are suitable for
severa) applications where time is very important.

Nowadays, we are working on the improvement of
algorithrns presented in this article, as for the masks of
bits control (concerning their hardware implementation) .
We are also developing algorithms for the collision
detection among polygons and their extension to 3D for
complex polyhedral figures.

8. ACKNOWLEDGEMENTS

This work has been partially granted by the Ministry of
Science and Technology of Spain and the European
Union by means of the ERDF funds, under the research
project TIC2001-2003-C03-03.

9. REFERENCES

[Badouel90] Badouel, F. An efficient Ray-Polygon
intersection. Graphics Gems. Academic Press, 390-
393, 1990

[Feito95] Feito, F; Torres, J.C.; Urefla, L.A. Orientation,
Simplicity and lnclusion Test for Planar Polygons.
Computer & Graphics, Vol. 19, N 4, 1995

(Haines94] Haines, E. Pomt in Polygon Strategies.
Graphics Gems IV. Academic Press, 1994.

[Hoffmann89] Hoffrnann, C. Geometric and Solid
Modelling. An lntroduction. Morgan Kaufrnann
Publishers, 1989.

[JimThoOl] Jiménez, P.; Thomas, F. ; Torras, C. 3D
collision detection: a survey. Computer & Graphics
25 (2001) 269-285

[Jiménez02] Jiménez, J.J. ; Segura, R.J. ; Feito, F.R.
Tutorial sobre Detección de Colisiones en
Informática Gráfica. Accepted for its publication in
Novatica, Spain, 2002

[Laszlo96] Laszlo, M. Computational Geometry and
Computer Graphics in C++. Prentice Hall, 1996

[Preparata85] Preparata, F. ; Shamos, M. Computational
Geometry. An introduction. Springer-Verlag, 1985

[SeguraOl] Segura, R.J. Modelado de sólidos mediante
recubrimientos simpliciales. Ph. D. Thesis. Depto.
Lenguajes y Sistemas Informáticos. V.Granada, 2001

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

10. APPENDIX: ALGORITHMS

int triangle::inclusionTest(point p)
sO = sign(BarycentricBO(p))
if (s0<0) return OUT
sl = sign(BarycentricBl(p))
if (sl<O) return OUT
s2 = sign(BarycentricB2(p))
if (s2<0) return OUT
if (s0==0) {

if (sl==O)
return VERTEX_V2;

else if (s2==0)
return VERTEX_Vl;

else
return EDGE_EXTERNAL;

} else
if (sl==O) {

if (s2==0)
return VERTEX_VO;

els e
return EDGE_LEFT;

} else
if (s2==0)

return EDGE_RIGHT;

return IN;

Algorithm 1. Point-Triangle inclusion test.

int convexPolygon::inclusionTest(point p) {
exit = FALSE
i = o
while (i < triangleNumber AND exit==FALSE) {

s = Triangle[i]->sign(BarycentricBO(p))
if (S<O) exit = TRUE
i++

if (exit==TRUE) return OUT
else return IN

Algorithm 2. Point-convex Polygon inclusion test.

int nonConvexPolygon::inclusionTest(point p) {

exit = FALSE

sum O

i = o
while (i < triangleNumber AND exit==FALSE) {

is_in = Triangle[i]->inclusionTest(p)

if (is_in==EDGE_EXTERNAL OR is_in==VERTEX_Vl OR is in==VERTEX_V2)

exit = TRUE

els e

i++

if (is_in==IN)

els e

sum += 2*Triangle[i]->sign()

if (is_in==EDGE_RIGHT j 1 is_in==EDGE_LEFT)

sum += Triangle[i]->sign()

if (exit==TRUE OR sum==2) return IN

else return OUT

Algorithm 3. Point-non convex Polygon inclusion test.

259

SlACG 2002 - 1 st lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

llstatic inclusion test
is in = inclusionTest(point, edge)
while (simulation goes on) {

move point
llcollision detection test
res = collisionTest(point, edge)
print res

int convexPolygon::collisionTest(point p, int edge)
s = Triangle[edge]-> sign(BarycentricBO(p))
if (S>=O) {

is_in = inclusionTest(p, edge)
li it returns the following zone related to an edge where the point is
if (is_in == IN) return IN

return OUT

Algorithm 4. Point-convex Polygon collision detection test.

int positivePolygon::inclusionTest(point p, int edge) {
edge = -1
exit = FALSE
i = o
while (i < triangleNumber AND exit == FALSE) {

sO = Triangle[i]->sign(BarycentricBO(p))
if (sO<O)

sl = Triangle[i]->sign(BarycentricBl(p))
s2 = Triangle[i]->sign(BarycentricB2(p))
if (sl>=O AND S2>=0)

i++

edge i
exit = TRUE

if (edge==-1) return IN, edge
else return OUT, edge

Algorithm 5. Point-Polygon with positive covering inclusion test.

llstatic inclusion test
is in = inclusionTest(point,edge)
while (simulation goes on) {

move point
llcollision detection test
resTmp = collisionTest(point, edge)
if (resTmp<>EQUAL_STATE)

res = resTmp
print res

int positivePolygon::collisionTest(point p, int edge)
sO Triangle[edge]->sign(BarycentricBO(p))
sl = Triangle[edge]->sign(BarycentricBl(p))
s2 = Triangle[edge]->sign(BarycentricB2(p))
if (SO<O AND Sl>=O AND S2>=0)

return EQUAL_STATE, edge
if (S0>=0 AND Sl>=O AND S2>=0)

return IN, edge
i=O;
while (i<triangleNumber-1) {

if (sl<O) index = (edge+i+l) % triangleNumber
if (s2<0) index = (edge-i-1) % triangleNumber
sO' Triangle[index]->sign(BarycentricBO(p))
sl' = Triangle[index]->sign(BarycentricBl(p))
s2' = Triangle[index]->sign(BarycentricB2(p))
if (s0'<0 AND sl'>=O AND s2'>=0)

return OUT, index
if (s0' >=0 AND sl'>=O AND s2'>=0)

return IN, index
i++

Algorithm 6. Point-Polygon with positive covering collision detection test.

260

SIACG 2002 - Ist Jbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

is_in = inclusionTest(point) //static inclusion test
while (simulation goes on) {

move point
resTmp = collisionTest(point, mask) //collision detection test
if (resTmp<>EQUAL_STATE)

res = resTmp
print res

int nonConvexPolygon::collisionTest(point *p, int *mask) {
maskBO = maskBl = maskB2 O

is in
while

}

sum = O ; i = O
while (i<triangleNumber)

s = Triangle[i]->sign(BarycentricBO(p))
if (S>=O) maskBO[i] = 1
i++

if (maskBO == mask) return EQUAL_STATE
mask = maskBO
i=O
while (i<triangleNumber) {

if (maskBO [i] > O)
s = Triangle[i]->sign(BarycentricBl(p))
if (s==O) sum+=Triangle[i]->sign()
if (S>=O) maskBl[i] = 1

i++

i=O
while (i<triangleNumber) {

if (maskBl[i] >O)
s = Triangle[i]->sign(BarycentricB2(p))
if (s==O) sum+=Triangle[i]->sign()
if (S>=O) maskB2 (i] = 1

i++

maskPos
maskNeg
i=O
while

maskB2 & maskSign // mask of bits of triangles covering signs
maskB2 & (-maskSign)

(i<triangleNumber) {
if (maskPos [i] > O)
if (maskNeg[i] > O)
i++

if (sum==2) return IN
else return OUT

sum += 2
sum 2

Algorithm 7. Point-non convex Polygon collision detection test.

inclusionTest(point) //static inclusion test
(simulation goes on) {

move point
resTmp = improvedCollisionTest(point, mask) //collision detection test
if (resTmp<>EQUAL_STATE)

res = resTmp
print res

int nonConvexPolygon::improvedCollisionTest(point p, int *mask) {
exit = FALSE ; i = O
while (i < triangleNumber AND exit == FALSE)

if (mask[i] == 0)

i++

s = Triangle[i]->sign(TriangleBO(p))
if (S>=O)

exit = TRUE

if (exit==FALSE) return EQUAL_STATE
els e

if (inclusionTest(p)==IN)
mask = o
return IN, mask

} else {

//static inclusion test

collisionTestGetMask(p,mask) //bit-mask obtaining for collision test
return OUT, mask

Algorithm 8. Point-non convex Polygon improved collision detection test.

261

