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ln this paper the visualization of hybrid scenes that contain volume data anda fitted extracted surface is addressed. 
The proposed algorithm is based on a integrated octree-based representation: the "Hybrid Octree ". The Hybrid 
Octree allows to obtain multiresolution representation of the volume data and it also maintains a decimated surjace 
codification. The proposed visualization approach uses 3D-textures for the visualization of the volume data and 
integrates the surface polygons using the information represented in the octree structure. The main characteristics 
of the method are: its capabilities to perform multiresolution hybrid visualizations and its efficient use of texture 
memory space. 
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INTRODUCTION 

The incorporation of volumetric and geometric objects, ei­
ther synthetic (i .e. modeled with CAD tools) or fitted (i .e. 
extracted from volume data), into one scene is a process 
referred to as Hybrid Modeling . Hybrid Modeling plays an 
important role in a large number of scientific visualization 
applications. 

Two main approaches have been proposed to deal with hy­
brid scenes. The first reduces surface and volume data to a 
common codification scheme and applies classical surface 
and volume data visualization strategies [9, 10, 11, 21, 25]. 
The second maintains surface and volume data in their 
original representation schemes and defines specialized 
renderers able to combine ali the data. ln this last case 
the data integration step is part of the visualization process 
which requires surface and volume data to be composed in 
depth sorted order [15, 24, 12, 26, 13]. 

Following the second strategy we present a novel 3D 
texture-based hybrid visualization function able to com­
bine surface and volume data. The proposed visualization 
function exploits the 3D texture graphics hardware capa­
bilities and it is able to perform multiresolution hybrid vi­
sualizations which guarantee an efficient use of the texture 
memory space. The two key points of this visualization 
function are: 

• The data structure used to represent surjace and vol­
ume data. The Hybrid Octree (HO), a hierarchical 
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data structure based on an octree representation that 
maintains surface and volume data simultaneously 
and implicitly ordered [2]. 

• The policy applied to represent volume data in texture 
memory. To perform hybrid visualization we propose 
an extension of the multiresolution texture memory 
assignation policy presented in [ 4]. This strategy uses 
a compressed representation of homogeneous regions 
and no importance areas of the volume data in order to 
reduce the texture memory space required to maintain 
the data and therefore, improve rendering speed. 

The paper is structured as follows. Section 2 reviews the 
HO, the data structure used to maintain the hybrid scene, 
giving a description of its construction process. Section 
3 describes the main considerations that have to be taken 
into account to deal with hybrid scenes. The proposed vi­
sualization function is presented in Section 4. Section 5 
presents and discusses the results on severa! practical ex­
amples. Finally, Conclusions and Future Work are given in 
Section 6. 

2 OCTREE BASED CODIFICATIONS 

The octree model , originally introduced for solid represen­
tations [17, 22, 20] , is a tree that codes the recursive subdi­
vision of a finite cubic universe. The root of the tree repre­
sents the universe, a cube with 2n edge length. This cube 
is divided into eight identical cubes, called octants, with an 
edge length of 2n- 1 . Each octant is represented by one of 
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the eight descendants of the root. This subdivision process 
is repeated recursively until octants contain data that can 
be represented exactly (named Terminal Octree Nodes) or 
octants have a minimum edge length (Minimal Resolution 
Nodes). 

Since the earliest work from Meagher [17) concerning 3D 
data representation based on the octree scheme, many ap­
plications of this hierarchical representation have appeared 
over the years, e.g., to improve rendering speed, to manage 
easily large data sets, or to obtain error bounded renderings 
[15, 14, 29, 30). ln surface rendering applications, they 
have been used in combination with the Marching Cubes 
(MC) algorithm [ 16] for accelerating the surface extraction 
process or as a surface simplification method for adaptive 
isosurface extraction [23, 27) . 

ln our previous work we focused our interest in how octree 
data structures can be exploited to maintain surface and 
volume data. ln particular we propose the three octree­
based data structures presented in the following sections. 

2.1 The Volume Octree. 

The Volume Octree[ 4], (VO), is an octree-based data struc­
ture used to code homogeneous regions of 3D regular sam­
pled data in a compressed way. For each VO node we 
maintain information of the maximum error which is in­
troduced if each sample data inside its associated octant is 
approximated by a trilinear interpolation of the eight val­
ues represented on the corners of the octant. This error, 
denoted the nodal errar (€0 ), is used to obtain multiresolu­
tion volume representations by applying error-driven adap­
tive traversals. 

Being Eu the user required degree of accuracy VO nodes 
for which their nodal error éo ~ Eu are selected and used 
to define a multiresolution representations of the volume 
in texture space. This compressed representation reduces 
the space of texture memory required to obtain 3D texture­
based volume data visualizations. 

2.2 The Surface Octree. 

The Surface Octree [5], (SO) is an octree-based codifica­
tion used to maintain a decimated codification of a fitted 
surface obtained by the Discretized Marching Cubes al­
gorithm (DiscMC) [18, 19). Additionally to the classical 
black, white and grey nodes [22), the SO introduces tive 
new terminal nodes able to codify any DiscMC surface(see 
figure 1). 

The SO codification reduces the number of faces of the fit­
ted surface without introducing any error [5] and provides 
a framework able to support multiresolution surface recon­
structions [6]. 

2.3 The Hybrid Octree 

The HO presented in [3] is the integration of a VO and a 
SO. The HO construction algorithm is based on the follow­
ing steps: 

1. Volume Data lntegration This phase starts with the 
construction of a VO. For each node ni of the octree 
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Figure 1. Terminal Surface nodes added to 
the classical octree. 

we maintain: (i) the maximum max and minimum 
min values of the region covered by the node (they 
are used to improve the surface extraction process re­
quired in the next phase [29]); (ii) a list of nodal er­
rors (see subsection 2.1.) that represents the degree of 
homogeneity of the area covered by the node. 

2. Surface Data lntegration This phase detects the termi­
nal nodes intersected by the surface (terminal nodes 
such that max ~ isovalue ::::; min, where isovalue 
identifies the surface) and codifies them with the cor­
responding Terminal Surface pattern (see· figure 1). 
Subsequently, a surface compression process is ap­
plied to reduce the number of faces . To guarantee the 
continuity of the surface severa! tests are carried out 
during the compression process. 

At the end of this construction process the HO maintains 
an exact representation of a surface and an error-based vol­
ume data codification. 

Note that given a node of the HO we are able to identify ali 
the surface polygons contained in this node and we are able 
to represent the volume data of this node with an Eu degree 
of accuracy. Moreover, the hierarchical nature of the HO 
facilitates the generation of multiresolution hybrid scenes 
just selecting HO nodes distributed at different leveis of 
the HO. For the visualization of these hybrid scenes we 
propose the 3D texture-based hybrid visualization function 
presented in Section 4. 

3 HYBRID VISUALIZATIONS 

Severa! approaches have been proposed to combine sur­
face and volume data in a single image, based on an im­
age order ray-tracing [15, 24) or on a projective approach 
[12, 26, 13). The critical point of ali of them falis on the 
composition process that is required to visualize the data 
in the correct depth sorted order. A detailed description of 
this process is given in next section. 

3.1 Volume and Surface data lntegration 

Let us consider the situation represented in figure 2(a) as 
an example to describe the problem behind the integration 
of surface and volume data on a single image. ln this il­
lustration a scene composed of a volume model (the white 
ellipse) anda surface (the dashed tine) are casted by a ray. 
ln order to determine the color and opacity values of the 
final image pixel , independent samples of surface and vol­
ume data have to be combined 2(b)(c). The accumulated 
opacity and color can be expressed as the back-to-front re­
cursive formulae [15): 



SIACG 2002 - lst Ibero-American Symposium on Computer Graphics 
1-5 July 2002, Guimarães - Portugal 

....... 

~I · ~ ::>"-L .J'. 
~ (C,olpho) C,olpho) _,__ __ , 

(b) VOLUME DATA (e) SURFACE DATA 

ldl VOLUME-DA TA COMPOSITION 

Figure 2. Volume and Surface data are tra­
versed by a ray. 

and 
O'.out = (1 - O'.in)O:i + O'.in 

where ci and O'.i values are substituted by volume data or 
surface data calor and opacity values. If the i contribu­
tion corresponds to volume data, then Ci and ai are substi­
tuted by the colar and opacity values assigned to the voxel 
sample. If contribution i represents the ray polygon inter­
section point, then they are substituted by the colar and 
opacity values assigned to this point. Once ali surface and 
volume data have been composited the final Cout and O:out 

represent the calor and opacity values assigned to the pixel 
2(d). 

3.2 30 Texture-based hybrid visualization 

Let us consider that instead of that hybrid ray-tracer we 
apply a 3D texture-based hybrid visualizer. ln this case 
volume data has to be rendered by the back-to-front com­
position of a set of polygons that slices and samples the 
volumetric dataset which is loaded into the texture mem­
ory of the graphics subsystem (see figure 3(a)). ln arder to 
integrate the surface data, the surface polygons have to be 
properly composited between the textured slices (see fig­
ure 3(b)). 

Two situations have to be considered: 

• The hybrid scene is composed of opaque surfaces. 

ln this case the hybrid rendering is straightforward. 
Opaque polygons are drawn first taking enabled the 
depth buffer test. Then the volume samples either 
opaque or translucent are rendered from back-to-front 
according to view-point position. This last step is 
done using 3D textures . 

• The hybrid scene is composed of transparent surfaces. 

ln this case the surface polygons have to be ren­
dered and composited in between the textured slices, 
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(a) Textured Slices 

(b) Surface Composttion 

Figure 3. (a}Original Volume data and its 30 
texture definition. (b} Back-to-front compo­
sition of textured slices. 

(slabs), in the correct arder. Two different alternatives 
have been proposed by Kreeger et al.[13) to perform 
such a integration process: 

- The first alternative performs a clipping process 
for each slab. To process the slabi (i.e. the 
space between slice i-l and slicei) two clip­
ping planes are enabled. The first is located 
on the slicei-l and the second on the slicei. 
Then ali surface polygons are sent to the graph­
ics pipeline. This process guarantees that only 
portions of the polygons contained in the slabi 
are rendered. The load of the polygon pipeline 
increases considerably. 

- The second alternative defines additional data 
structures (such as buckets, active triangle list, 
... ) which maintains for each slab the list of 
polygons contained in it. 

Our proposed algorithm exploits the information rep­
resented in HO nodes and determines the correct po­
sition of surface polygons just analyzing the infor­
mation of each octree node. This strategy simplifies 
the sorting of surface polygons between the textured 
slices. Moreover, the proposed alternative has two ad­
ditional advantages. By one hand, as the HO main­
tains a multiresolution representation of the volume 
data (encoded as a list of nodal errors), we can ap­
ply the multiresolution texture memory representation 
policy presented in [4) . Therefore, we can guarantee 
an optimal use of texture memory space with a com­
pressed representation of homogeneous regions and 
no importance areas of the volume. 

On the other hand, the correct location of the surface 
polygons is independent of the degree of accuracy at 
which volume data is represented. Therefore, the sort­
ing process can be applied to obtain multiresolution 
hybrid visualizations. 
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4 THE HYBRID OCTREE VISUALIZATION 

Note that the HO visualization is equivalent to the hybrid 
visualization of a set of HO nodes. Hence once the hybrid 
rendering of a node has been solved it is enough to define a 
method to determine the set of nodes from which the final 
image will be obtained. For this reason our work has been 
centered on the visualization of a HO node. 

4.1 The HO Node Visualization Function 

Let us considered that the visualization function is applied 
to a ni node of the HO, which is íntersected by the surface 
(but it is nota Terminal node). This function performs the 
three following steps: 

• Texture Generation 

The volume information covered by the ni node is 
represented in texture memory (see figure4(a)). Two 
different strategies can be applied: 

- The classical assignment policy of one texel per 
voxel [l, 8, 7, 28). ln this case, the values in the 
texture memory correspond to original volume 
data values covered by the node. 

- A more synthetical representation in which one 
texel can represent multiple voxels values. This 
is the policy we are going to apply, giving a 
more compact representation to the given node, 
either because the node corresponds to a nearly 
homogeneous region, or because it is contained 
in a region of Jow importance, and thus it can be 
represented in a compressed manner. 

Note that for each node ni at leve! k we have 
a corresponding subtree of depth lmax - k 
and a corresponding voxel region of resolution 
21mu -k * 21mu -k * 21maz -k. Therefore, we can 
represent the voxel region associated with ni by 
using any one of the regularly sub-sampled rep­
resentations built on the initial voxel values. If 
we select a voxel set at the deepest levei we end 
up with the case described above (one texel for 
each voxel). ln ali other cases, we select a more 
compact representation corresponding to nodes 
which are p leveis below in the HO structure 
(with p = O .. lmax -k). The texture memory re­
quired to represent this node is 2P * 2P * 2P. The 
number of slices (ns) used to render the node 
is set according to the resolution of the defined 
texture, in particular we define ns = 2P (see 
figure4(b)) . 

• Integration of Surface Polygons 

Once the texture has been defined surface polygons 
are integrated between the texture slices. Two consid­
erations have to be taken into account to perform this 
integration process: 
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Figure 4. (a) The subtree rooted in ni (b} 
The texture represents volume data obtained 
from levei p. (c)(d) lf surface nodes are from 
levei p or p + 1 only one slab is intersected. 
(e) Surface nodes of levei p-1 intersect more 
than one slab. ln this case the activation of 
front and back clipping planes guarantees 
that only surface fragments contained in the 
slab are rendered. 



SIACG 2002 - lst lbero-American Symposium on Computer Graphics 
1-5 July 2002, Guimarães - Portugal 

- The slab definition is completely dependent of 
how volume information contained in the nade 
is represented in the texture memory. 

Following the description presented in the previ­
ous step we know that: (i) the number of slices 
(ns) used to render a node is set according to 
the resolution of the defined texture, in our case 
ns = 2P; (ii) each slice corresponds to a plane 
of2l,..az-kx21"'ªz-k parallel to the xy face; (iii) 
one slab is defined as the volume compressed 
between two consecutive slices. Thus, if 2P 
is the number of slices the number of node's 
slabs is 2P-1 ; (iv) if e is the size of maximal 
subdivision nodes , the slab corresponds to the 
paraJleJipidicaJ volume of 21 ... az -k X 21,..az -k 

x (e* 21"';;-k). The origin ofthe slab is the 
origin of the first si ice that defines it and the fi­
nal extreme is the maximal vertex of the second 
slice that define it. The width of the slab, w, is 

2'"'a.z -k e*-2_P_ 

- The surface reconstruction process has to be ap­
plied at each one of the nades of the subtree 
rooted by ni intersected by the surface [5]. 

To carry out a hybrid visualization it is nec­
essary to know the slab in which each surface 
polygon has to be rendered. As the HO main­
tains the connection between the surface and the 
volume data, during the surface reconstruction 
process we introduce a slab integration phase. 
This phase generates the SlabPolygon list which 
has one entry for each intersected slab and main­
tains for each entry the set of surface nodes con­
tained in this slab. 

Consider, for example, n 8 as one of the selected 
surface nodes where (o.,, Oy, Oz ) and l are the 
origin and the levei of this node. The slab in­
tegration process compares l with the levei se­
Iected to represent volume data in the texture 
(levei p in our case): 

(i) If l 2'.: p the size of the surface node's 
edge is lower or equal to the slab's width. 
Therefore, the polygons ofthe terminal sur­
face node only intersect one slab (see fig­
ure 4(c)(d)). If (xo, Yo, zo) is the origin of 
the ni node and the slabs are labeled from 
O to 2P- 1 , being slab O the slab of origin 
(xo, Yo, ~) we obtain the number of the in­
tersected slab as º·;;; zo. This parameter de­
termines the entries of the SlabPolygons list 
to which the node has to be added. 

(ii) If l < p the slab's width is less than the 
size of the node's edge. The polygons rep­
resented in the node intersect more than 
one slab (see figure 4(e)). The number of 
intersected slabs is obtained from: e * 21 

The node intersects slabs from 
~+e*21 • w 

o,-zo to 
w 
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• Visualization 

Finally when the texture Ti has been defined and the 
SlabPolygons list has been constructed we obtain 
the visualization of the node ni applying the Node 
Visualization function . This function applies the fol­
lowing steps: 

1. BOUNDING CUBE DEFINITION. A bounding 
cube centered on the center of the node ni is 
defined. The ns polygons to be rendered form 
series of slices through this bounding node, par­
aliei to the xy face (see figure 5(a) and (b)). 

2. CLIPPING PLANES ACTIVATION. The set of ns 
polygons to be rendered always remains paral­
lel to the projection plane and extended to the 
bounding cube. The node's volume is repre­
sented by T and rotates into the bounding node 
according to the viewing direction (see Figure 
5(b) and (d)). To guarantee that only the vol­
ume information represented in the texture will 
contribute to the final image (i.e. externai areas 
of the node contained in the bounding node are 
eliminated) a set of clipping planes is defined. 
The clipping planes are positioned according to 
the viewing direction at each one of the node's 
volume faces (see Figure 5(c) and (e)). Lateral, 
up and down clipping planes are set only once, 
while the back and front clipping planes should 
be enabled and disabled more than once. To un­
derstand why the latter can be enabled/disabled 
multiple times, consider the situation in which 
one polygon intersects more than one slab (see 
figure 4(c)) . 

3. SLAB POLYGONS POSITIONING. This step 
has to be applied each time the view position 
changes. The SlabPolygons list has been de­
fined considering the node in its original orien­
tation. Thus, intersected surface nodes are cor­
rectly positioned in between the slabs and con­
sequently the stored order guarantees the render­
ing in the correct slab. 

When the viewer position is modified the 3D 
textured polygons are maintained parallel to the 
projection plane. The texture is rotated accord­
ing to the new orientation and clipping planes 
are positioned according to the new viewing di­
rection so that each one is in one of the node's 
faces (lateral, up and down). The rotation has 
also to be applied on the surface polygons, 
which in the new position might fali in a dif­
ferent slab. Thus, it is necessary to update the 
SlabPolygons list to maintain the correct situ­
ation. The correct assignation of the polygons 
within the slabs is performed by the UpdatePosi­
tion function. This function determines the new 
slab position by applying the viewing transfor­
mation to the z component of the origin of the 
surface node. 
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Figure 5. (a) The bounding node's definition. 
(b) Polygons si ices. (e) Activation of the clip­
ping planes. (d) a new orientation requires a 
rotation of texture space. (e) clipping planes 
are positioned according the new orienta­
tion. 

4. NODE'S POSITIONING. The next step is to de­
termine where the volume and surface polygons 
have to be projected. The projection position is 
fixed by the node's octree position and by the 
viewing direction. These parameters determine 
the current set of geometrical tran~formations to 
be carried out. 

5. RENDERING Finally the clipped textured poly­
gons and the surface polygons are composited to 
generate the final image. 

4.2 lmportance driven Hybrid Visualizations 

Once the rendering of a HO node has been solved we pro­
pose an importance driven hybrid visualization algorithm. 
This algorithm is composed of two steps: 

1. The first step determines which nodes ofthe HO have 
to be rendered. Once the HO has been constructed a 
region of maximal interest is selected. Then restricted 
by the texture memory capacity we apply a node's se­
lection process that determines the nodes that have to 
be used for the visualization. For each selected node 
we also determine (according to the distance to the 
region of interest) the voxel-to-texel relation. 

The key point of this selection process is to determine 
how volume data encoded in the HO has to be repre­
sented in texture memory to reduce the required tex­
ture space [4]. 

2. The second step visualizes the nodes applying the 
node visualization function previously described. 

5 EXPERIMENTAL RESULTS 

Two different tests were performed to evaluate the pro­
posed hybrid visualization function . The first tests were 
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Figure 6. Surface data has been positioned 
in the border of nodes represented with dif­
ferent accuracy 

devoted to prove the capabilities of the function to inte­
grate surface and volume data in a single image. ln fig­
ure 6 we illustrate the transition between two neighbor HO 
nodes represented at different resolutions (i.e. with differ­
ent voxel-to-texel ratio). The surface polygons have been 
positioned at the border of both nodes. lt can be seen that 
no discontinuities are perceptible. Therefore the function 
guarantees a correct visualization and the continuity of the 
surface. 

The second tests were devoted to evaluate the capabilities 
of performing multiresolution hybrid renderings. ln this 
tests we apply the error-driven adaptive strategy presented 
in section 4.2. 

The images of figure 7 are obtained from the CT-head 
dataset of 128xl28x128. Simulations have been per­
formed on a SGI Octane workstation using a single 
270Mz/Rl2000 processor with 4MB of texture memol)'· 
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The size of the texture cache is 128xl28x64, thus the size 
of the maximal texture is 643 . This CT-head hybrid scene 
has been obtained integrating the surface of threshold 155 
contained in the jaw area. This surface is composed of 
9.219 polygons. The volume data has been rendered by 
adopting different voxel-to-texel ratio, the space required 
by the function to represent the volume in texture memory 
is, from up to down, 8, 4 and 2MB. As at each step the tex­
ture space required decreases rendering speed is improved. 

6 CONCLUSIONS ANO FUTURE WORK 

We have presented a hybrid visualization function that 
combines the 3D texture-based volume rendering approach 
with a surface integration process. The function has been 
applied for the visualization of an Hybrid Octree, the data 
structure used to maintain the hybrid scene. 

It has been proved that the proposed function is able to per­
form multiresolution hybrid visualizations with the guar­
antee of an efficient use of texture memory space. Ob­
serve that ali the surface classification process required for 
these visualizations depends on the volume data represen­
tation. Therefore the application of the multiresolution tex­
ture representation reduces the complexity of the surface­
volume slab sorting process, a feature that becomes of spe­
cial interest if we have to deal with large data sets. 

Future work will be centered on the definitfon of new 
strategies to select the nodes of the Hybrid Octree from 
which the hybrid scene has to be obtained. Our main goal 
is to determine the best strategy that simplifies the surface 
data integration process maintaining image quality. 
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