
SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

3D Texture-based Hybrid
Visualizations

Imma Boada
Institut Informàtica i Aplicacions, IliA

Universitat de Girona
Giro na

imma@ima.udg.es

Abstract

Isabel Navazo
Dept. Llenguatges i Sistemes Informàtics

Univ. Politecnica de Catalunya
Barcelona

isabel@lsi.upc.es

ln this paper the visualization of hybrid scenes that contain volume data anda fitted extracted surface is addressed.
The proposed algorithm is based on a integrated octree-based representation: the "Hybrid Octree ". The Hybrid
Octree allows to obtain multiresolution representation of the volume data and it also maintains a decimated surjace
codification. The proposed visualization approach uses 3D-textures for the visualization of the volume data and
integrates the surface polygons using the information represented in the octree structure. The main characteristics
of the method are: its capabilities to perform multiresolution hybrid visualizations and its efficient use of texture
memory space.

Keywords
Hybrid Visualization, Octree data structures, 3D textures.

INTRODUCTION

The incorporation of volumetric and geometric objects, ei­
ther synthetic (i .e. modeled with CAD tools) or fitted (i .e.
extracted from volume data), into one scene is a process
referred to as Hybrid Modeling . Hybrid Modeling plays an
important role in a large number of scientific visualization
applications.

Two main approaches have been proposed to deal with hy­
brid scenes. The first reduces surface and volume data to a
common codification scheme and applies classical surface
and volume data visualization strategies [9, 10, 11, 21, 25].
The second maintains surface and volume data in their
original representation schemes and defines specialized
renderers able to combine ali the data. ln this last case
the data integration step is part of the visualization process
which requires surface and volume data to be composed in
depth sorted order [15, 24, 12, 26, 13].

Following the second strategy we present a novel 3D
texture-based hybrid visualization function able to com­
bine surface and volume data. The proposed visualization
function exploits the 3D texture graphics hardware capa­
bilities and it is able to perform multiresolution hybrid vi­
sualizations which guarantee an efficient use of the texture
memory space. The two key points of this visualization
function are:

• The data structure used to represent surjace and vol­
ume data. The Hybrid Octree (HO), a hierarchical

217

data structure based on an octree representation that
maintains surface and volume data simultaneously
and implicitly ordered [2].

• The policy applied to represent volume data in texture
memory. To perform hybrid visualization we propose
an extension of the multiresolution texture memory
assignation policy presented in [4]. This strategy uses
a compressed representation of homogeneous regions
and no importance areas of the volume data in order to
reduce the texture memory space required to maintain
the data and therefore, improve rendering speed.

The paper is structured as follows. Section 2 reviews the
HO, the data structure used to maintain the hybrid scene,
giving a description of its construction process. Section
3 describes the main considerations that have to be taken
into account to deal with hybrid scenes. The proposed vi­
sualization function is presented in Section 4. Section 5
presents and discusses the results on severa! practical ex­
amples. Finally, Conclusions and Future Work are given in
Section 6.

2 OCTREE BASED CODIFICATIONS

The octree model , originally introduced for solid represen­
tations [17, 22, 20] , is a tree that codes the recursive subdi­
vision of a finite cubic universe. The root of the tree repre­
sents the universe, a cube with 2n edge length. This cube
is divided into eight identical cubes, called octants, with an
edge length of 2n- 1 . Each octant is represented by one of

S!ACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

the eight descendants of the root. This subdivision process
is repeated recursively until octants contain data that can
be represented exactly (named Terminal Octree Nodes) or
octants have a minimum edge length (Minimal Resolution
Nodes).

Since the earliest work from Meagher [17) concerning 3D
data representation based on the octree scheme, many ap­
plications of this hierarchical representation have appeared
over the years, e.g., to improve rendering speed, to manage
easily large data sets, or to obtain error bounded renderings
[15, 14, 29, 30). ln surface rendering applications, they
have been used in combination with the Marching Cubes
(MC) algorithm [16] for accelerating the surface extraction
process or as a surface simplification method for adaptive
isosurface extraction [23, 27) .

ln our previous work we focused our interest in how octree
data structures can be exploited to maintain surface and
volume data. ln particular we propose the three octree­
based data structures presented in the following sections.

2.1 The Volume Octree.

The Volume Octree[4], (VO), is an octree-based data struc­
ture used to code homogeneous regions of 3D regular sam­
pled data in a compressed way. For each VO node we
maintain information of the maximum error which is in­
troduced if each sample data inside its associated octant is
approximated by a trilinear interpolation of the eight val­
ues represented on the corners of the octant. This error,
denoted the nodal errar (€0), is used to obtain multiresolu­
tion volume representations by applying error-driven adap­
tive traversals.

Being Eu the user required degree of accuracy VO nodes
for which their nodal error éo ~ Eu are selected and used
to define a multiresolution representations of the volume
in texture space. This compressed representation reduces
the space of texture memory required to obtain 3D texture­
based volume data visualizations.

2.2 The Surface Octree.

The Surface Octree [5], (SO) is an octree-based codifica­
tion used to maintain a decimated codification of a fitted
surface obtained by the Discretized Marching Cubes al­
gorithm (DiscMC) [18, 19). Additionally to the classical
black, white and grey nodes [22), the SO introduces tive
new terminal nodes able to codify any DiscMC surface(see
figure 1).

The SO codification reduces the number of faces of the fit­
ted surface without introducing any error [5] and provides
a framework able to support multiresolution surface recon­
structions [6].

2.3 The Hybrid Octree

The HO presented in [3] is the integration of a VO and a
SO. The HO construction algorithm is based on the follow­
ing steps:

1. Volume Data lntegration This phase starts with the
construction of a VO. For each node ni of the octree

218

Figure 1. Terminal Surface nodes added to
the classical octree.

we maintain: (i) the maximum max and minimum
min values of the region covered by the node (they
are used to improve the surface extraction process re­
quired in the next phase [29]); (ii) a list of nodal er­
rors (see subsection 2.1.) that represents the degree of
homogeneity of the area covered by the node.

2. Surface Data lntegration This phase detects the termi­
nal nodes intersected by the surface (terminal nodes
such that max ~ isovalue ::::; min, where isovalue
identifies the surface) and codifies them with the cor­
responding Terminal Surface pattern (see· figure 1).
Subsequently, a surface compression process is ap­
plied to reduce the number of faces . To guarantee the
continuity of the surface severa! tests are carried out
during the compression process.

At the end of this construction process the HO maintains
an exact representation of a surface and an error-based vol­
ume data codification.

Note that given a node of the HO we are able to identify ali
the surface polygons contained in this node and we are able
to represent the volume data of this node with an Eu degree
of accuracy. Moreover, the hierarchical nature of the HO
facilitates the generation of multiresolution hybrid scenes
just selecting HO nodes distributed at different leveis of
the HO. For the visualization of these hybrid scenes we
propose the 3D texture-based hybrid visualization function
presented in Section 4.

3 HYBRID VISUALIZATIONS

Severa! approaches have been proposed to combine sur­
face and volume data in a single image, based on an im­
age order ray-tracing [15, 24) or on a projective approach
[12, 26, 13). The critical point of ali of them falis on the
composition process that is required to visualize the data
in the correct depth sorted order. A detailed description of
this process is given in next section.

3.1 Volume and Surface data lntegration

Let us consider the situation represented in figure 2(a) as
an example to describe the problem behind the integration
of surface and volume data on a single image. ln this il­
lustration a scene composed of a volume model (the white
ellipse) anda surface (the dashed tine) are casted by a ray.
ln order to determine the color and opacity values of the
final image pixel , independent samples of surface and vol­
ume data have to be combined 2(b)(c). The accumulated
opacity and color can be expressed as the back-to-front re­
cursive formulae [15):

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

.......

~I · ~ ::>"-L .J'.
~ (C,olpho) C,olpho) _,__ __ ,

(b) VOLUME DATA (e) SURFACE DATA

ldl VOLUME-DA TA COMPOSITION

Figure 2. Volume and Surface data are tra­
versed by a ray.

and
O'.out = (1 - O'.in)O:i + O'.in

where ci and O'.i values are substituted by volume data or
surface data calor and opacity values. If the i contribu­
tion corresponds to volume data, then Ci and ai are substi­
tuted by the colar and opacity values assigned to the voxel
sample. If contribution i represents the ray polygon inter­
section point, then they are substituted by the colar and
opacity values assigned to this point. Once ali surface and
volume data have been composited the final Cout and O:out

represent the calor and opacity values assigned to the pixel
2(d).

3.2 30 Texture-based hybrid visualization

Let us consider that instead of that hybrid ray-tracer we
apply a 3D texture-based hybrid visualizer. ln this case
volume data has to be rendered by the back-to-front com­
position of a set of polygons that slices and samples the
volumetric dataset which is loaded into the texture mem­
ory of the graphics subsystem (see figure 3(a)). ln arder to
integrate the surface data, the surface polygons have to be
properly composited between the textured slices (see fig­
ure 3(b)).

Two situations have to be considered:

• The hybrid scene is composed of opaque surfaces.

ln this case the hybrid rendering is straightforward.
Opaque polygons are drawn first taking enabled the
depth buffer test. Then the volume samples either
opaque or translucent are rendered from back-to-front
according to view-point position. This last step is
done using 3D textures .

• The hybrid scene is composed of transparent surfaces.

ln this case the surface polygons have to be ren­
dered and composited in between the textured slices,

2 19

(a) Textured Slices

(b) Surface Composttion

Figure 3. (a}Original Volume data and its 30
texture definition. (b} Back-to-front compo­
sition of textured slices.

(slabs), in the correct arder. Two different alternatives
have been proposed by Kreeger et al.[13) to perform
such a integration process:

- The first alternative performs a clipping process
for each slab. To process the slabi (i.e. the
space between slice i-l and slicei) two clip­
ping planes are enabled. The first is located
on the slicei-l and the second on the slicei.
Then ali surface polygons are sent to the graph­
ics pipeline. This process guarantees that only
portions of the polygons contained in the slabi
are rendered. The load of the polygon pipeline
increases considerably.

- The second alternative defines additional data
structures (such as buckets, active triangle list,
...) which maintains for each slab the list of
polygons contained in it.

Our proposed algorithm exploits the information rep­
resented in HO nodes and determines the correct po­
sition of surface polygons just analyzing the infor­
mation of each octree node. This strategy simplifies
the sorting of surface polygons between the textured
slices. Moreover, the proposed alternative has two ad­
ditional advantages. By one hand, as the HO main­
tains a multiresolution representation of the volume
data (encoded as a list of nodal errors), we can ap­
ply the multiresolution texture memory representation
policy presented in [4) . Therefore, we can guarantee
an optimal use of texture memory space with a com­
pressed representation of homogeneous regions and
no importance areas of the volume.

On the other hand, the correct location of the surface
polygons is independent of the degree of accuracy at
which volume data is represented. Therefore, the sort­
ing process can be applied to obtain multiresolution
hybrid visualizations.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

4 THE HYBRID OCTREE VISUALIZATION

Note that the HO visualization is equivalent to the hybrid
visualization of a set of HO nodes. Hence once the hybrid
rendering of a node has been solved it is enough to define a
method to determine the set of nodes from which the final
image will be obtained. For this reason our work has been
centered on the visualization of a HO node.

4.1 The HO Node Visualization Function

Let us considered that the visualization function is applied
to a ni node of the HO, which is íntersected by the surface
(but it is nota Terminal node). This function performs the
three following steps:

• Texture Generation

The volume information covered by the ni node is
represented in texture memory (see figure4(a)). Two
different strategies can be applied:

- The classical assignment policy of one texel per
voxel [l, 8, 7, 28). ln this case, the values in the
texture memory correspond to original volume
data values covered by the node.

- A more synthetical representation in which one
texel can represent multiple voxels values. This
is the policy we are going to apply, giving a
more compact representation to the given node,
either because the node corresponds to a nearly
homogeneous region, or because it is contained
in a region of Jow importance, and thus it can be
represented in a compressed manner.

Note that for each node ni at leve! k we have
a corresponding subtree of depth lmax - k
and a corresponding voxel region of resolution
21mu -k * 21mu -k * 21maz -k. Therefore, we can
represent the voxel region associated with ni by
using any one of the regularly sub-sampled rep­
resentations built on the initial voxel values. If
we select a voxel set at the deepest levei we end
up with the case described above (one texel for
each voxel). ln ali other cases, we select a more
compact representation corresponding to nodes
which are p leveis below in the HO structure
(with p = O .. lmax -k). The texture memory re­
quired to represent this node is 2P * 2P * 2P. The
number of slices (ns) used to render the node
is set according to the resolution of the defined
texture, in particular we define ns = 2P (see
figure4(b)) .

• Integration of Surface Polygons

Once the texture has been defined surface polygons
are integrated between the texture slices. Two consid­
erations have to be taken into account to perform this
integration process:

220

n.
1

levei p ~@;o~

TEXTURE

REPRESENTATION

levei p+1

(e)

levei p-1
lel

(a)

DEFINED SLABS

(b)

levei p

(d)

1 1

L-------- FRONT AND B
CLIPPING PLA

Figure 4. (a) The subtree rooted in ni (b}
The texture represents volume data obtained
from levei p. (c)(d) lf surface nodes are from
levei p or p + 1 only one slab is intersected.
(e) Surface nodes of levei p-1 intersect more
than one slab. ln this case the activation of
front and back clipping planes guarantees
that only surface fragments contained in the
slab are rendered.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

- The slab definition is completely dependent of
how volume information contained in the nade
is represented in the texture memory.

Following the description presented in the previ­
ous step we know that: (i) the number of slices
(ns) used to render a node is set according to
the resolution of the defined texture, in our case
ns = 2P; (ii) each slice corresponds to a plane
of2l,..az-kx21"'ªz-k parallel to the xy face; (iii)
one slab is defined as the volume compressed
between two consecutive slices. Thus, if 2P
is the number of slices the number of node's
slabs is 2P-1 ; (iv) if e is the size of maximal
subdivision nodes , the slab corresponds to the
paraJleJipidicaJ volume of 21 ... az -k X 21,..az -k

x (e* 21"';;-k). The origin ofthe slab is the
origin of the first si ice that defines it and the fi­
nal extreme is the maximal vertex of the second
slice that define it. The width of the slab, w, is

2'"'a.z -k e*-2_P_

- The surface reconstruction process has to be ap­
plied at each one of the nades of the subtree
rooted by ni intersected by the surface [5].

To carry out a hybrid visualization it is nec­
essary to know the slab in which each surface
polygon has to be rendered. As the HO main­
tains the connection between the surface and the
volume data, during the surface reconstruction
process we introduce a slab integration phase.
This phase generates the SlabPolygon list which
has one entry for each intersected slab and main­
tains for each entry the set of surface nodes con­
tained in this slab.

Consider, for example, n 8 as one of the selected
surface nodes where (o.,, Oy, Oz) and l are the
origin and the levei of this node. The slab in­
tegration process compares l with the levei se­
Iected to represent volume data in the texture
(levei p in our case):

(i) If l 2'.: p the size of the surface node's
edge is lower or equal to the slab's width.
Therefore, the polygons ofthe terminal sur­
face node only intersect one slab (see fig­
ure 4(c)(d)). If (xo, Yo, zo) is the origin of
the ni node and the slabs are labeled from
O to 2P- 1 , being slab O the slab of origin
(xo, Yo, ~) we obtain the number of the in­
tersected slab as º·;;; zo. This parameter de­
termines the entries of the SlabPolygons list
to which the node has to be added.

(ii) If l < p the slab's width is less than the
size of the node's edge. The polygons rep­
resented in the node intersect more than
one slab (see figure 4(e)). The number of
intersected slabs is obtained from: e * 21

The node intersects slabs from
~+e*21 • w

o,-zo to
w

221

• Visualization

Finally when the texture Ti has been defined and the
SlabPolygons list has been constructed we obtain
the visualization of the node ni applying the Node
Visualization function . This function applies the fol­
lowing steps:

1. BOUNDING CUBE DEFINITION. A bounding
cube centered on the center of the node ni is
defined. The ns polygons to be rendered form
series of slices through this bounding node, par­
aliei to the xy face (see figure 5(a) and (b)).

2. CLIPPING PLANES ACTIVATION. The set of ns
polygons to be rendered always remains paral­
lel to the projection plane and extended to the
bounding cube. The node's volume is repre­
sented by T and rotates into the bounding node
according to the viewing direction (see Figure
5(b) and (d)). To guarantee that only the vol­
ume information represented in the texture will
contribute to the final image (i.e. externai areas
of the node contained in the bounding node are
eliminated) a set of clipping planes is defined.
The clipping planes are positioned according to
the viewing direction at each one of the node's
volume faces (see Figure 5(c) and (e)). Lateral,
up and down clipping planes are set only once,
while the back and front clipping planes should
be enabled and disabled more than once. To un­
derstand why the latter can be enabled/disabled
multiple times, consider the situation in which
one polygon intersects more than one slab (see
figure 4(c)) .

3. SLAB POLYGONS POSITIONING. This step
has to be applied each time the view position
changes. The SlabPolygons list has been de­
fined considering the node in its original orien­
tation. Thus, intersected surface nodes are cor­
rectly positioned in between the slabs and con­
sequently the stored order guarantees the render­
ing in the correct slab.

When the viewer position is modified the 3D
textured polygons are maintained parallel to the
projection plane. The texture is rotated accord­
ing to the new orientation and clipping planes
are positioned according to the new viewing di­
rection so that each one is in one of the node's
faces (lateral, up and down). The rotation has
also to be applied on the surface polygons,
which in the new position might fali in a dif­
ferent slab. Thus, it is necessary to update the
SlabPolygons list to maintain the correct situ­
ation. The correct assignation of the polygons
within the slabs is performed by the UpdatePosi­
tion function. This function determines the new
slab position by applying the viewing transfor­
mation to the z component of the origin of the
surface node.

SIACG 2002 - lst Jbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

001 r1 ~~a
BOUNOING NOOE s7isYGON

(•) (b) (d)

: (e} (oi

Figure 5. (a) The bounding node's definition.
(b) Polygons si ices. (e) Activation of the clip­
ping planes. (d) a new orientation requires a
rotation of texture space. (e) clipping planes
are positioned according the new orienta­
tion.

4. NODE'S POSITIONING. The next step is to de­
termine where the volume and surface polygons
have to be projected. The projection position is
fixed by the node's octree position and by the
viewing direction. These parameters determine
the current set of geometrical tran~formations to
be carried out.

5. RENDERING Finally the clipped textured poly­
gons and the surface polygons are composited to
generate the final image.

4.2 lmportance driven Hybrid Visualizations

Once the rendering of a HO node has been solved we pro­
pose an importance driven hybrid visualization algorithm.
This algorithm is composed of two steps:

1. The first step determines which nodes ofthe HO have
to be rendered. Once the HO has been constructed a
region of maximal interest is selected. Then restricted
by the texture memory capacity we apply a node's se­
lection process that determines the nodes that have to
be used for the visualization. For each selected node
we also determine (according to the distance to the
region of interest) the voxel-to-texel relation.

The key point of this selection process is to determine
how volume data encoded in the HO has to be repre­
sented in texture memory to reduce the required tex­
ture space [4].

2. The second step visualizes the nodes applying the
node visualization function previously described.

5 EXPERIMENTAL RESULTS

Two different tests were performed to evaluate the pro­
posed hybrid visualization function . The first tests were

222

Figure 6. Surface data has been positioned
in the border of nodes represented with dif­
ferent accuracy

devoted to prove the capabilities of the function to inte­
grate surface and volume data in a single image. ln fig­
ure 6 we illustrate the transition between two neighbor HO
nodes represented at different resolutions (i.e. with differ­
ent voxel-to-texel ratio). The surface polygons have been
positioned at the border of both nodes. lt can be seen that
no discontinuities are perceptible. Therefore the function
guarantees a correct visualization and the continuity of the
surface.

The second tests were devoted to evaluate the capabilities
of performing multiresolution hybrid renderings. ln this
tests we apply the error-driven adaptive strategy presented
in section 4.2.

The images of figure 7 are obtained from the CT-head
dataset of 128xl28x128. Simulations have been per­
formed on a SGI Octane workstation using a single
270Mz/Rl2000 processor with 4MB of texture memol)'·

SlACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

The size of the texture cache is 128xl28x64, thus the size
of the maximal texture is 643 . This CT-head hybrid scene
has been obtained integrating the surface of threshold 155
contained in the jaw area. This surface is composed of
9.219 polygons. The volume data has been rendered by
adopting different voxel-to-texel ratio, the space required
by the function to represent the volume in texture memory
is, from up to down, 8, 4 and 2MB. As at each step the tex­
ture space required decreases rendering speed is improved.

6 CONCLUSIONS ANO FUTURE WORK

We have presented a hybrid visualization function that
combines the 3D texture-based volume rendering approach
with a surface integration process. The function has been
applied for the visualization of an Hybrid Octree, the data
structure used to maintain the hybrid scene.

It has been proved that the proposed function is able to per­
form multiresolution hybrid visualizations with the guar­
antee of an efficient use of texture memory space. Ob­
serve that ali the surface classification process required for
these visualizations depends on the volume data represen­
tation. Therefore the application of the multiresolution tex­
ture representation reduces the complexity of the surface­
volume slab sorting process, a feature that becomes of spe­
cial interest if we have to deal with large data sets.

Future work will be centered on the definitfon of new
strategies to select the nodes of the Hybrid Octree from
which the hybrid scene has to be obtained. Our main goal
is to determine the best strategy that simplifies the surface
data integration process maintaining image quality.

7 ACKNOWLEDGEMENTS

The present work has be partially supported by the Span­
ish Ministry of Science and Technology grants: TIC2001-
2226-C02, 2FD 1997 -1511

References

[l] Akeley K., Reality Engine Graphics. Computer Graph­
ics (ACM Siggraph Proceedings), 27: 109-116, 1993.

[2] Boada 1., Towards Multiresolution Integrated Surface
and Volume Data Representations. PhD Thesis, Uni­
versitat Politecnica de Catalunya, September (2001).

[3] Boada, 1. and Navazo, 1., The Hybrid Octree: To­
wards a Multiresolution Hybrid Framework. 2002 ln­
ternational Conference on Computer Science. LNCS­
series. P.M.A. Sloot, J.J. dongarra, C.J.K. Tan and
A.G.Hoekstra (Eds) Springer Verlag, Part II, pp.121-
130 April 2002.

[4] Boada, 1., Navazo, 1. and Scopigno, R., Multiresolu­
tion Volume Visualization with a Texture-based Oc­
tree. The Visual Computer, Springer International, 17
(3), pp. 185-197, 2001.

[5] Boada, 1. and Navazo, 1., An Octree Isosurface Codifi­
cation based on Discrete Planes. Proceedings of Spring
Conference on Computer Graphics 200 l. pp.187-194.
Budmerice,Slovakia.

223

Figure 7. Different renderings obtained on
the CT-head. Surface polygons represent the
teeth region.

SIACG 2002 - lst Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

[6] Boada 1. and Navazo I., Multiresolution lsosurface Fit­
ting on a Surface Octree. Vision, Modeling and Visual­
ization 2001 proceedings, 318-324, Stuttgart, Novem­
ber(2001).

[7] Cabral B., Cam N. and Foran J., Accelerated Vol­
ume Rendering and Tomographic Reconstruction us­
ing Texture Mapping Hardware. ln ACM Symposium
on Volume Visualization,pp. 91- 98 Washington, D.C.
October 1994.

[8] Sheng-Yih Guan and Richard Lipes. Innovative Vol­
ume rendering using 3D Texture Mapping. ln lmage
Capture, Formatting and Display.SPIE 2164, 1994.

[9] Kaufman, A. and Shimony, E., 3D Scan Conversion
Algorithms for Voxel Based Graphics, Proceedings
ACM Workshop on lnteractive 3D Graphics, Chapei
Hill, NC, 45-75, October 1986.

[10] Kaufman, A., Efficient Algorithms for 3D Scan­
Conversion of parametric Curves, Surfaces and Vol­
umes, Computer Graphics, 21, 4, 171-79, July 1987.

[11] Kaufman, A., Efficient Algorithms for 3D Scan­
Converting Polygons, Computer and Graphics, 12, 2,
213-219,1988.

[12] Kaufman A., Yagel R. and Cohen D. , Intermix­
ing Surface and Volume Rendering. 3D lmaging in
Medicine, Edited by k,H. Hohne et ai. Springer Ver­
lag Berlin Heidelberg 1990

[13] Kreeger K. and Kaufman A., Mixing translucent
Polygons with Volumes. IEEE Visualization 99.

[14] David Laur and Pat Hanrahan. Hierarchical Splat­
ting: A progressive re.finement algorithm for volume
rendering. Computer Graphics (ACM Siggraph Pro­
ceedings), 25 (4):285-288, July 1991.

[15] Levoy M., A Hybrid Ray Tracer for Rendering Poly­
gon and Volume Data. IEEE Computer Graphics and
Applications, 10, 33-40, March 1990.

[16] W.Lorensen and H.Cline, Marching cubes a high
resolution 3D surface construction algorithm,. ACM
Computer Graphics (Proceedings of SIGGRAPH '87),
vol.21, n 4, pp 163-170, 1987.

[17] D.Meagher, Geometric modeling using octree en­
coding. Computer Graphics and Image Processing,
19(2): 129-147 ,(1982).

[18] C.Montani, R.Scateni and R.Scopigno, Discretized
Marching Cubes, in Visualization '94 Proceedings,
R.D. Bergeron and A.E.Kaufman, Eds. (1994), 281-
287, IEEE Computer Society Press.

[19] C.Montani , R.Scateni and R.Scopigno, Decreasing
lsosurface Complexity via Discrete Fitting, Computer
Aided Geometric Design, 17 (2000) 207-232.

224

[20] I.Navazo, Extended Octree Representation of Gen­
eral Solids with Plane Faces: Model Structure and Al­
gorithms. Computer and Graphics, vol 13, 1, (1989),
5-16.

[21] B.A. Payne and A.W. Toga, Distance Field manipula­
tion of surface models. IEEE Computer Graphics and
Applications, 12(1), 65-71. January 1992.

[22] H.Samet, Applications of Spatial Data Structures.
Addison Wesley, Reading, MA, (1990).

[23] R.Shekhar, E.Fayyad, R. Yagel and J.Cornhill. Octree
based Decimation of Marching Cubes surfaces. Visu­
alization 96, 335-342, 1996.

[24] L.M.Sobierajski and A. Kaufman, Volumetric Ray­
tracing. ln Proceedings of 1994 Symposium on Vol­
ume Visualization, pp.11-18. ACM Press, October
1994.

[25] M. Sramek, Non-binary Voxelization for Volume
Graphics. ln Proéeedings of Spring Conference on
Computer Graphics, 2001 . pp. 35-51.

[26] D.Tost, A.Puig and l.Navazo, Visualization of mixed
scenes based on volume and surface. ln Proceedings
of the Fourth Eurographics Workshop on Rendering,
pp.281-294, 1993.

[27] R.Westemann, L.Kobbalt and T.Erl. Real-time explo­
ration of Regular Volume Data by Adaptive Recon­
struction of lsosurfaces. The Visual Computing 1998

[28] Orion Wilson, Allen Van Gelder, Jane Wilhems,
Direct Volume rendering via 3D textures. Technical
Report UCSC-CRL-94-19, University of California,
Santa Cruz, June 1994.

[29] J. Wilhems and A. Van Gelder. Octrees for Faster
lsosurface generation. ACM Transactions on Graph­
ics, 11(3). 201 -227, July 1992.

[30] J.Wilhems and A. Van Gelder. Multi-dimensional
Trees for Controlled Volume Rendering and Compres­
sion. ln proceedings of 1994 Symposium on Volume
Visualization, pp 27-34. ACM Press, October 17-18
1994.

