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Abstract 
Radiosity computation on scenes including objects with a complex geometry, or with a large number of faces and 
meshes with very different sizes, is very complex. We presenta new method (based on the Photon Maps method [7]) 
where density estimation on the tangent plane at each surface point is performed for irradiance computation by 
using photon paths (fine segments traveled by a ray) instead of photon impacts. Therefore we improve the results 
for scenes containing small objects which receive only afew impacts. Also, geometry is completely decoupledfrom 
radiosity computation. 
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1 lntroduction 

ln this article a method for computing the radiosity value 
at any point of a scene is presented. This process is di­
vided into two phases: particle tracing and density estima­
Iion [7, 13]. During the particle tracing phase ali the rays 
that are generated must be stored, along with some addi­
tional information. This information (a list of rays, each 
of them, carrying a certain amount of energy) is used to 
perforrn density estimation at any point in order to com­
pute the irradiance. This density estimation is done on the 
plane tangent to the surface point by computing how many 
rays intersect a disc on the tangent plane centered on that 
point. Severa! optimizations are used to reduce the num­
ber on ray-disc intersections computed and to speed up the 
intersection test computation. 

2 Motivation and Previous Work 

Let's suppose a scene composed of various polygon 
meshes. The size of each mesh is very different, and the 
size of each polygon is proportional to the size of the mesh 
it belongs to. There are severa! methods that could be used 
to compute radiosity values. Hierarchical radiosity [6] with 
adaptive meshing could be used, but the number of small 
faces makes it difficult to control the mesh resolution inside 
a mesh. Also, the minimum number of top-levei patches 
can not be smaller than the number of different meshes, 
Which might be large. If hierarchical radiosity with clus­
lering is used [ 15], then, small faces would still make it 
very difficult to create a set of patches with adaptive reso­
lution inside large meshes. 

Another solution is to use a particle tracing pass and to 
count hits on each face [I]. The main problem of this tech-

163 

nique is that variance is inversely proportional to face size 
[12]. Therefore, small faces or small meshes either cause 
high variance or require a huge number of photons. The 
hits density might be enough for larger faces, but not for 
the smaller ones. Therefore, a few faces will appear quite 
bright but most of them will appear almost black. 

All the problems mentioned come from the usage of 
patches for two different purposes. The patches are at the 
sarne time: elements of the geometric model of the scene 
and elements used in the reconstruction of the radiosity 
function. Therefore, solutions where the geometry is de­
coupled from the radiosity seem to be more suitable. 

These kind of solutions have been proposed by severa! au­
thors, who introduced particle tracing and photon maps or 
density estimation [ 13, 7]. However, there is again a draw­
back of this technique. Small objects cause high variance 
or require a huge number of photons. A certain hits density 
might be enough for larger objects but not for smaller ones 
[18]. 

Finally let us consider another way of calculating radiance 
values presented in [5]. Using particle tracing and storing 
the approximated distribution in a uniform 3D grid, den­
sity estimation is fully decoupled from geometry. The 3D 
structure allows to approximate the radiosity value on any 
point inside the cube, with any orientation. However, only 
a low resolution approximation to radiosity is achieved, be­
cause of the storage requirements imposed by the 3D grid. 

3 Density Estimation on the Tangent Plane 

As stated before, this rendering method can be divided in 
two phases: a photon tracking phase and a density estima-
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tion phase. During the first phase, photons are shot from 
the light sources in the scene. lt can also be viewed as rays 
being shot from the light sources of the scene. When a pho­
ton strikes a surface it can be reftected or absorbed. At this 
stage of our work, no transparent objects are considered 
and therefore no particles are transmitted to the interior of 
any surface. The BRDF and reftectivity of this surface de­
termines both whether a photon should die (be absorbed) 
or should be reftected, and also the direction in which it is 
reftected. 

The second phase uses the information gathered in the pre­
vious phase in order to compute the irradiance at any point 
of the scene. Once the irradiance value is known ata point 
x, its radiosity value can be computed directly. ln order 
to estimate the irradiance ata given point x, a disc, on the 
tangent plane of that point, is used. This disc is defined by 
the normal at x, a center point which is x anda value for 
the radius. At any point the sarne radius will be used. This 
restriction will be overcome in future work. Adding the 
energy carried by each particle or ray which intersects that 
disc, and dividing by the area of the disc, an estimation for 
the irradiance at x is obtained. 

The expression of the radiance leaving a point x in direc­
tion w0 [9] is defined in expression 1: 

Lr(x,wo) =ln fr(X,Wo,w) Li(x,w) cos(B) dw (1) 

where B if the angle between the incident direction w and 
the normal vector at x, Li(x,w) is the incident radiance 
from direction w at x, and fr(x,w 0 ,w) is the BRDF at 
x. If we only use diffuse surfaces (that is, f r(x, w0 , w) = 
p(x)/rr), equation 1 can be simplified and radiosity (equa­
tion 2) values are computed: 

Lr(x) = p(x) { Li(x,w) cos(B) dw = p(x) E(x) 
rr ln rr 

(2) 
where p(x) is the reftectivity at x and E(x) the irradiance 
at x. Equation 2 shows that in order to compute the radios­
ity values ata point x it is only necessary to know the irra­
diance value at that point. This irradiance is approximated 
by adding the energy carried by the rays that intersect a 
disc, centered at x, and dividing by the area of that disc. 

After a photon is created or reftected, it follows a straight 
path until it hits another surface or leaves the scene. We 
call ray each of these segments visited by a particle. A 
ray is defined by a origin o and a direction vector v. 
During the first phase, a vector of m rays are generated 
{(01, Vi), (02, V2), · ·. (om, Vm)} 

Let P = { 1 ... m} be the set of indexes of ali the rays 
generated during the photon tracking process. Ir(x) Ç 
P is defined as the set of the indexes of ali the rays that 
intersect the disc centered at x with radius r . After these 
definitions, the expression of the estimated irradiance is: 

E(x) ~ :l:iElr~z) </>i 
rrr 

where </>i is the energy carried by the i-th ray. 

(3) 
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The bandwidth used by the kernel density estimation is the 
radius of the disc used. When a small disc is used the esti­
mation will be more accurate but more rays are needed to 
reduce noise. On the other hand, if a big disc is used the 
estimation will be less accurate but noise is reduced [17]. 

ln figure 1 a scene is shown with a plane projecting a 
shadow onto another plane. The radius used was O.OI 
and 240 millions of particles were shot (distributed in 100 
passes). This scene was used to illustrate how the size of 
the disc and the number of rays affect the resulting image. 
The before mentioned image can be used as reference. 

Figure 1. Radius=0.01. 100x2.400.000 rays 

ln figure 2, the sarne radius (0.05) was used for every im­
age, but the number of rays were gradually increased. This 
results in noise reduction as the number of rays increases. 

(a) 5.000 particles (b) 105.000 particles 

(c) 1.005.000 particles (d) 2.455.000 particles 

Figure 2. Radius=0.05 

Finally, in figure 3, 55.000 particles were shot and the ra­
dius was gradually reduced. The smaller the radius, the 
more accurate was the image and also the more noise ap­
peared. ln figure 4 the sarne process was repeated, but us­
ing 2.450.000 particles. 

3.1 Error analysis 

The described algorithm has three sources of error. We 
enumerate them here: 
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(a) Radius 0.20 (b) Radius 0.15 

(e) Radius 0.10 (d) Radius 0.05 

Figure 3. Particles=55.000 

(a) Radius 0.20 (b) Radius 0.15 

(e) Radius 0.10 (d) Radius 0.05 

Figure 4. Particles=2.455.000 

1. Our target is to compute irradiance at surface points. 
However it is not possible to do that for each surface 
point (there are infinite surface points), therefore it 
is necessary to select a finite set of points (mesh ver­
texes in our system) for irradiance computation. Then 
irradiance is not computed at points in between those 
selected, and some class of interpolation is done. We 
call this the discretization error. This error is lowered 
by using more sample points with smaller distances 
between them. Of course, the algorithm is lineally 
dependant on the number of sample points. ln figure 
5 a scene is shown where the number of mesh vertexes 
in the lower plane is gradually increased and it can be 
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observed how discretization error decreases. Figure 
5(a) shows an extreme case where no sample points 
are under the shadowed area. 

2. We wish to compute the irradiance at selected points. 
By using particle-tracing we cannot approach the ex­
act irradiance at those points. Ali we can do is'to com­
pute the average irradiance on a disc centered at that 
point. We call this errar the density estimation er­
rar, because it is inherent to density estimation algo­
rithms. It can be reduced by choosing a smaller radius 
r for the discs. 

3. Computation ofthe average irradiance inside a disc is 
not exact, because we do that computation by using 
a stochastic or Monte-Cario algorithm based on ran­
dom walks. Therefore we do not get the exact value 
but a sample from a random variable whose mean is 
that value. The deviation from the sample to the tar­
get valued is characterized by the variance. Thus we 
simply call this kind of error variance. These can be 
diminished by increasing the number of particles n or 
by increasing disc radius r · 

(a) 6x6 vertexes (b) 21x21 vertexes 

(c) 51x51 vertexes (d) 71x71 vertexes 

Figure 5. Radius=0.01. Particles=2455000 

We define <I> as the total energy emitted in the scene, that 
is: 

<I> = j Le(xµ; )cos(n.,,w)dA(x)da(w) 

Let A = 7rr2 be the area of the c;lisc used for density esti­
mation at some point x. Let E be the average irradiance in 
the disc. It can be shown that the variance V is defined by 
the following expression: 

V = ~
2 

( e7r:€ - e2
) 

where e is equal to E/ <I>, that is, e is a normalized version 
of E, n is the number of particles. With respect to € it can 
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also be shown that this value is approximately equal to 2ep, 
where p is the average number of times a particle leaving 
the disc hits the disc again. This last number is near zero 
for small discs. Thus € is usually also near zero. 

Is is of course not possible to compute the value of V, but 
its expression shows that the variance is inversely propor­
tional to the area of the disc used. 

3.2 Selecting radius and number of particles 

Ih our system we select mesh vertexes and perform irra­
diance computation on them. This means that we do not 
attempt to reduce discretization error, although that can 
be done by using some algorithm to try to find the best 
resolution for sampling irradiance. We focus on the other 
two sources of error: density estimation error and variance. 
Both errors can be characterized by two parameters which 
can be changed as desired. These are disc radius and num­
ber of parti eles. 

ln figure 2 we see how variance decreases when the num­
ber of particles increases. The noise in figure 2(a) is pro­
duced by a large variance due to a insufficient number of 
particles. Thus this shows the impact on the variance pro­
duced by the number of particles. 

Figure 4 shows a sequence of images with low variance 
( due to a large number of particles), but with varying den­
sity estimation errordue to varyingradius. We observe that 
the effect of large radius is that the irradiance function ap­
pears blurred and details are lost. This shows the inftuence 
of radius onto density estirnation. 

Computing time and storage is mainly dependent on the 
number of particles. We can fix this value according to 
our quality requirements and our availability of time and/or 
memory. Then the radius should be made inversely propor­
tional to the number of particles. 

To illustrate this figure 3 shows again sequence of images 
obtained with a fixed number of particles and with varying 
radius. However in this case this number of particles is 
moderate (55.000). For a very large radius, (figure 3(a)) 
density estimation error becomes dominant, and shadow 
disappears. On the other hand, for a very small radius, 
variance is visible in the form of noise (figure 3(d)). 

3.3 Photon Tracking process 

The photon tracking process simulates the energy ftow in 
the scene. This simulation is implemented by shooting par­
ticles from the light sources and by following the path in 
the scene of each particle until it gets absorbed or leaves 
the scene. Each particle goes through finite a sequence of 
states. The state of a particle can be described by a ray 
r = (x,w) anda weight </>, which is a real value. The 
first state is called the initial state. At each step of the 
simulation, a particle goes from one state to another. This 
is usually called a transilion. The ray of each state is se­
lected stochastically, according to some probability density 
function, while the weight can be obtained as a function of 
previous weight and current ray. 

Selection of the first state is made stochastically by using a 
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probability density function called Pe· The value Pe(x;w) 
is lhe (differential) probability for selecting ray r = (x;w ) 
as the first ray for a particle. Transitions are governed by 
the transition probability density function Pt· The value 
Pt(r, s) is the (differential) conditional probability for se­
lecting ray s for the next state when r is the ray of cur­
rent state. Note that both Pt and Pe are probability den­
sity functions. This means that there exists two probability 
measures (Pe and Pt) such that 

( ) 
dPe(x,w,) 

Pe x;w = dA(x)dcr(w) ( u)_dPt(x,wy,u) 
Pt x;wy ' - dA(y)dcr(u) 

where A area measure and cr is solid angle measure. 

If r = (x;w) and s = (y, u), we can write Pt(x;wy , u) 
instead of Pt (r, s ). This value is cero when y is not the first 
visible point from x in direction w 

3.3.1 Transition probabilities and particle weight 
update 

Suppose the initial state of a particle is (xotvo ). Then its 
initial weight is: 

1 Le(xo, wo) ( ) 
</>o = - ( ) cos no, wo 

n Pe Xo wo 

where no is the normal at x0 and n is the total number of 
particles shot. After each bounce, the weight of a particle 
needs to be updated. Let assume that k-th state of a particle 
is (xk,wk), and the weight at that step is </>k (with k 2:: 
0). For the next state the ray (xk+i,Wk+i) is selected. 
Necessarily, point Xk+i is the first visible point from Xk in 
direction Wk· Direction Wk+i is selected at random. The 
next weight <l>k+i is obtained as: 

where nk+l is the normal at point Xk+l· 

3.3.2., Monochromatic particles in diffuse scenes 

The general case has been explained in the previous 
section, but in our application, scene surfaces are dif­
fuse, this means that fr(Xk+i,Wk+i,wk) can be writ­
ten as p(xk+i}/7í, where p(xk+i) is the hemispherical­
hemispherical reftectivity at xk+ 1 (this value is between O 
and 1 ). Emission of energy is also diffuse, thus Le (x 0 , Wo) 
does not depend on w 0 • 

Moreover, we use two simple versions of Pe and Pt· With 
respect to Pe• it is defined as 

1 
Pe(XoWo ) = ~ Le(XoWo ) cos(no,Wo ) 

the factor 1/ifl is introduced because Pe must be normal­
ized. (ifl is the total energy emitted in the scene) The above 
selection of Pe implies that particles do follow a diffuse 
distribution when created (directions near the normal are 
more often selected t~an directions near the horizon). This 
is also the case for the selection of an outgoing direction 



SIACG 2002 - lst lbero-American Symposium on Computer Graphics 
1-5 July 2002, Guimarães - Portugal 

after a reftection because we use the following version of 

Pt: 

factor l/7í above is also introduced for nonnalization. 
With these definitions, we can simplify the expressions for 
r/Jo and <f>k+i. We obtain: 

~ 
</>o= -

n 

Thus ali monochromatic particles have the sarne weight 
(~ /n) at ali steps when only diffuse surfaces are used. 

Note that p(xk+1) is a factor of Pt· This value is the 
survival probability. This means that with probability 
1 - p(xH1), the particle is absorbed after k states, and 
with probability p(xk+i) it is reftected (at point Xk+i). 

3.3.3 Coloured particles 

The above fonnulation is valid for monochromatic light. 
However, in reality each photon has a wavelength, and both 
p and Le depend on wavelength, producing coloured light. 
Thus we cannot assume that Le(x0 , w0 ) nor p(Xk+i) are 
real values but functions of wavelength. 

ln order to account for colour, we have two options: one 
of them is to assign a wavelength to each particle. How­
ever this has a drawback, because it may cause uncorre­
lated noise at each wavelength. This implies that noise is 
more perceptible than it is for monochromatic light. 

Second option we have is to use vectors for particle 
weights. ln this case, each particle weight is a vector with 
one real value for each color component (three in our case, 
corresponding to the rgb colour model). This implies that 
particles are coloured particles instead of monochromatic 
or single-wavelength particles. This is an artificial concept 
introduced to perfonn the light transport simulation . The 
Vector-weight of a particle can be interpreted as its colour. 
Each component of the colour of a particle is updated after 
each reftection by using the sarne formulation introduced 
previously. 

Note that p(x) is also a vector, with one real value for 
each component. This implies we can no longer use the 
value p(x) as the survival probability. Instead of this, we 
need to use a survival probability which is equal for ali 
wavelengths or colour components ( otherwise some colour 
components may be absorbed and other may be reflected, 
Which has no sense in this context). 

Thus, we will assume that weights </>k or </>k+i are vectors, 
and this is also the case of hemispherical reftectivity p(x). 
ln our system, transition probabilities are equal to: 

Where S(</>k> Xk+i) is a real value (between O and 1) which 
depends on both previous weight vector </>k and point Xk. 

167 

Thus this value can be interpreted as the survival probabil­
ity after step k. With this version of Pt• updating of vector­
weights is done by using the following formulation: 

for any vector a and scene-point x, real value S(a, x) is 
defined as: 

S( ) 
= lum(ap(x)) 

a,x lum(a) 

For any vector v encoding a colour, lum(v) is the lumi­
nance of v. Luminance of a colour v can always be ob­
tained as a weighted sum of the components of v, that is, 
the luminance of v is the dot product of v and another vec­
tor e (whose components sum to one) [4]. 

Note that, for any colour a, luminance of a p(x) is always 
smaller or equal to the luminance of a. Then we deduce 
that for any point x, O ::; S(a, x) < 1. This ensures we can 
use S( </>k, Xk) as the survival probability at step k. 

3.4 Ray-disc lntersection calculation 

ln order to perform a density estimation on the tangent 
plane, ray-disc intersections need to be computed. First, 
it is necessary to obtain the intersection point i of the ray 
and the plane which contains the disc and then to check if 
the distance between the intersection point i and the center 
of the disc x is less or equal to the radius. If the distance 
squared is greater than the radius squared , the ray does not 
intersect the disc. This method implies severa! operations 
which can introduce a great overhead when many of these 
intersections tests are computed. 

Because the disc size is generally relatively smaller, as 
compared to the size of the scene, only a small sub­
set of rays will intersect each disc. A ray-triangle pre­
intersection test, which is computed faster then the ray-disc 
one, could be used to discard rays that can not intersect 
each circle. If no intersection is found, then no intersec­
tion point needs to be computed. If a ray does not inter­
sect a triangle containing the disc, then it cannot intersect 
the disc and therefore the ray-disc intersection test is not 
necessary. Therefore, time consumption is reduced unless 
most of the rays intersect the disc (which does not happen 
in our application). 

Severa! ray-triangle intersection algorithms have been 
tested: one based on Plücker coordinates and the algo­
rithms developed by Mõller (10], Segura (11] and Badouel 
[2]. Also a performance analysis has been made about 
these algorithms in order to use the most efficient one. The 
use of Plücker coordinates proved to be the best method 
for our application. 

3.4.1 Plücker coordinates 

Plücker coordinates are used to accelerate ray-disc inter­
section tests. Any directed l line in 3D space can be repre­
sented using Plücker coordinates (16, 3, 14] as a six-tuple 
II,. Using the permuted inner product of two of these six­
tuples the relative orientation of the two directed Iines r 1 , 
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T2 can be obtained. If this product, II ri 0 IIr2, is zero then 
the two lines are coplanar which means they intersect or 
are parallel. If the permuted inner product is positive then 
Ti goes counterclockwise around T2 and vice versa. If the 
permuted inner product is negative then then Ti goes clock­
wise around T2 and vice versa. 

ln figure 6 these two situations are illustrated. On the pic­
tures on left side T 2 goes counterclockwise around Ti and 
on the pictures on the right side T 2 goes clockwise around 
Ti. ln figures 6(b}, and 6(d} line Ti is represented as a 
dot and is perpendicular to the paper and pointing into the 
paper. 

l " l '' --- ---
r, (a) r, (e) 

r2 f2 

• • r, r, 

(b) (d) 

Figure 6. Relative orientation of two lines 

Plücker coordinates can be used to test whether a ray inter­
sects a polygon. If the edges of a polygon are represented 
using Plücker coordinates, a ray intersects that polygon if 
and only if it bits one of the edges or it goes clockwise or 
counterclockwise around ali the edges. It is important to 
state that the ray must go around in the sarne way for ali 
the edges, or otherwise it does not intersect the polygon. 

ln our application intersections at the back si de of the poly­
gon should be discarded. Thus, even if a ray goes in the 
sarne direction around ali the edges only one orientation 
(counterclockwise) corresponds to a ray-polygon intersec­
tion at the front face. 

Figure 7. Ray-triangle intersection with ori­
ented edges 

ln our implementation, we use a triangle forrned by three 
directed lines for each disc. Each triangle is constructed 
counterclockwise (a!< in figure 7), which means its directed 
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edges go counterclockwise when looking at the triangle's 
front face (the normal n comes towards the reader). If a ray 
intersects one of these triangles it must go counterclock­
wise around the three edges. Therefore, if the inner prod­
uct of the Plücker coordinates of the ray and one edge is 
negative, then that ray does not intersect the triangle at the 
front face and neither the disc. 

The ray-disc intersection test is therefore perforrned as fol­
lows. For each disc used for density estimation a triangle 
containing that disc is defined. The three edges are con­
verted to directed lines. These three lines are then repre­
sented with Plücker coordinates. Also, each ray has pre­
viously been represented with Plücker coordinates. Be­
fore Lhe ray-disc intersection test is computed, the ray 
is tested to go counterclockwise around the three edges, 
which means the permuted inner product of each edge and 
the ray must be positive or zero. 

3.5 Ray Discretization 

A fast ray-disc intersection test is not enough to efficiently 
process thousands or millions of rays at each vertex. The 
irradiance computation would not be efficient if every ray 
had to be tested for intersection with the disc associated to 
each point. ln our application, the disc radius will always 
be small in comparison to the scene size. Therefore, mosl 
of the rays will not intersect each disc but the large number 
of intersection tests calculated would produce a remarkable 
overhead. A fast way to reject most of the rays that do not 
intersect each disc is needed. We have developed a ray 
discretization scheme to achieve this. 

ln order to explain how the discretization scheme works, 
first an initial assumption will be made: that only rays with 
the sarne direction are used. This simplification will help to 
understand the general case explained !ater. The rays can 
have differenl origins, but the sarne direction vector. Un­
der these conditions we could precompute the intersection 
point of each ray with a plane perpendicular to this direc­
tion. The area of the plane where these intersections can 
be found must be inside the scene bounding sphere and can 
be divided using a 2D uniforrn grid. Thus, each cell in this 
grid will contain a list of rays whose intersection with the 
perpendicular plane are located inside its associated area. 
Each ray will therefore be in the ray list associated to one, 
and only one cell. 

If a disc is projected (along the rays direction) onto the 
before mentioned plane, the projection of the disc will fali 
over some of the grid cells. The rays that can intersect the 
disc are only those whose intersection belongs to that set 
of grid cells covered by the projected disc. This way, the 
problem of finding which rays intersect a disc is reduced 
forrn three to two dimensions. Potential intersections are 
searched in a 2D grid. 

It is necessary to extend the previous model to allow rays 
with arbitrary directions. The rays will be grouped con­
sidering its direction. Rays separated by a short are length 
will be in the sarne group. Also, each group will have a 
representative direction vector Vi. A unit sphere, represent-
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••• 
Figure 8. Ray discretization 

ing ali possible ray directions is first divided into patches. 
Each patch represents a set of directions. The direction of 
the vector that goes from the center of the sphere to the cen­
ter of a patch will be the representative direction of ali the 
possible directions in that patch. ln figure 8 the direction 
indicator vector and the perpendicular plane associated are 
shown. 

Once the correct patch or group for a ray is found, the ray is 
intersected with a plane that is perpendicular to the repre­
sentative direction vector of that patch and that has already 
been divided by a 2D uniforrn grid. The ray is than added 
to the list of the cell that contains the intersection point. 
This process is repeated for every ray. 

After that preprocessing, each disc is projected onto the 
20 uniform grid associated to each patch or ray group and 
only ray-disc intersection tests need to be computed for the 
rays which are on the list of the grid cells that fali under the 
projected disc. 

There is still one thing to consider about the projection of 
lhe disc. Rays in the sarne group are not parallel but the are 
length between any of them and Vi is smaller or equal to an 
angle O'.i (for the i-th patch). This fact must be taken into 
account when projecting the disc. Now a ray may intersect 
the disc outside the projection. This situation can be seen 
in figure 9. 

Figure 9. Disc projection 

Therefore the projection of the disc needs to be adjusted 
taking into account the range of possible directions in a 
Patch. This can be achieved by computing the maximal 
area on the plane where an intersection of one of the rays 
Ofthe patch and the disc can happen. 
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3.6 Avoiding Artifacts 

The density estimation technique presented is an approx­
imate technique which may produce certain errors in the 
irradiance estimation, and therefore, visible artifacts may 
arise in the final image. 

Two kind of artifacts will be discussed here. One of them 
appeared in non convex parts of a mesh and the other one 
arose when part of the disc was unreachable for any ray. ln 
the next sections each artifact will be explained with more 
detail and solutions will be proposed. 

3.6.1 Concave meshes artifact 

This artifact produced a bias in concave meshes or parts 
of a mesh. Then non convex parts of the scene resulted 
much darker as they should as if no rays, or only a small 
amount of them reached these zones. An example is shown 
in figure 1 O on top. On the bottom of this figure the correct 
image is also shown. 

(a) corrected solution 

(b) uncorrected solution 

Figure 1 O. Concave meshes bias 

Figure 11 will be used to explain why this happens. Point 
x lies within a concavity and most ofthe rays mainly inter­
sect the mesh before they can intersect the disc. Therefore 
ali these rays are treated like blocked rays, as if a shadow is 
projected on x. ln order to avoid this undesired effect, not 
only the ray parameter value of the first intersection of each 
ray is stored, but also the second one (in case it exists). If a 
ray intersects with the disc before the second intersection 
point (the second intersection with an object of the scene in 
the direction of the ray) and the first intersection point is in 
the sarne mesh as x, then the ray is counted as intersecting 
the disc. Otherwise it is considered that the ray does not 
intersect the disc. 

ln figure 12 the intersection of the ray and the disc associ­
ated to point x happens after the second intersection point. 
ln this case the energy carried by the ray will not have any 
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Figure 11. Concave meshes bias 

influence on x because it is in a shadowed region for rays 
coming from that direction. 

Figure 12. Another concave area 

3.6.2 Unreachable regions 

There is another kind of artifact that was detected in a 
scene which was formed by a room and a light source on 
the ceiling. ln this scene, the boundaries of the walls and 
the floor were much darker than the rest of the scene. The 
situation is in someway similar to the classical boundary 
biasas described in [17]. ln figure 13 this situation is illus­
trated. 

·' 

Figure 13. Unreachable regions bias 

Any ray reflected or originated on the plane of figure 13 
can not reach the shaded part of the disc, but, on the other 
hand, the energy of these rays gets divided by the total area 
of the disc. This produces a biased lower value for the 
irradiance in these areas. ln general, this happens when the 
full disc is not visible from the origin of the ray, because 
part of it is under the plane tangcnt to the surface at the ray 
origin. This line divides the area of the disc that can be 
reached by a ray and the area where that can not happen. 
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This kind of situation has to be detected (using the distance 
from the center of the disc to the plane) and for each ray, 
the area of the disc where such a ray could intersect that 
disc is calculated and used instead of the whole area. 

ln figure 14 an example of this kind of bias is shown, as 
well as the correct image. 

(a) uncorrected solution 

(b) corrected solution 

Figure 14. Unreachable regions bias 

4 Results 

ln figure 15 a complex scene where irradiance estimation 
on the tangent plane was used to obtain radiosity values 
is shown. This scene is composed of 46701 vertexes and 
4.500.000 primary rays were used, but dividing the whole 
process into 3 passes of 1.500.000 rays due to the main 
memory storage requirements. The number of rays used 
is high to ensure a low noise levei. The bounding sphere 
of the scene has a radius of 10 units and the radius used 
for each disc was 0.2. The irradiance estimation time for 
each vertex in each pass was 0.069 seconds on a PC with a 
AMD Athlon XP 1900+ CPU running Linux. 

5 Comparison with Photon Maps 

The photon maps technique [7] is a density estimation 
method which uses photon impacts on the objects stored 
in a data structure called photon map. The search for pho­
tons is performcd inside a sphere. The density estimation 
method presented in this article has been compared with 
the photon map method using lhe source code published in 
[8]. Both algorithms were integrated in the sarne rendering 
system and also the sarne photon tracking implementation 
was used in both cases. 
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Figure 15. Complex scene 

There is an important difference about the density estima­
tion used in each method. When using photon maps, the 
n nearest photons inside a sphere of radius r centered at 
point x, where irradiance needs to be estimated, are lo­
cated. If this sphere contains m photons, where m > n, 
lhe rest of the photons, m - n, are not used. ln the method 
we present ali the rays that intersect the disc centered at x 
are used, thus we use a high value for n was used to force 
lhe photon maps method to use ali the photons contained 
in the sphere. 

The artifacts or errors produced by the density estimation 
on the tangent plane, along with its solutions have already 
been discussed. The photon maps method also produces 
images with errors under certain circumstances. Some of 
these situations will be studied. 

ln figure 16 a plane is shown and density estimation is per­
formed ata point x close to one of its edges. There is are­
gion R of the space where no photon impacts can be found 
but the irradiance estimate gets finally divided by the vol­
ume of the whole sphere. This produces objects with too 
dark edges. ln figure 19(a) an example can be seen. The 
result is similar to the unreachable regions artifact intro­
duced before (darkening near the edges). 

y 
R 

Figure 16. Bias near the edges 
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Another situation where a biased image is obtained is il­
lustrated in figure 17. 

Figure 17. Missing shadow bias 

On the top of the figure a light source L can be seen and in 
the middle an obstacle A, which should produce a shadow 
on the plane below, has been placed. If the distance be­
tween this plane and A is less than the radius of the sphere 
used for irradiance estimation on a point like x, then the 
shadow will not be obtained. This happens because pho­
tons on A will be used to compute the irradiance estimate 
at x. This kind of problems do not arise when using rays 
instead of photon impacts. An example of this situation 
can be seen in figure 18 

Figure 18. Missing shadow bias 

Finally, as stated in the introduction, when small objects 
are part of a scene, they might appear much darker than 
they should, because they do not receive enough photon 
impacts . ln figure 19 a scene is shown where a set of lit­
tle rectangles that are being illuminated from above. The 
observer is approximately situated under the center of the 
light source. ln figure l 9(a), obtained using photon maps, 
the rectangles result much darker and roughly illuminated 
as in figure 19(b) which was obtained applying the tangent 
plane density estimation. 

The main advantage of the photon maps method is its speed 
during the photon location process. Some tests have been 
done and it outperforms in terms of time consumption the 
density estimation on the tangent plane because it is more 
complicated to work in the lines space than in the 3D points 
one. On the other hand, we are currently working on better 
methods than the ray discretization presented to obtain a 
fast selection of the ray candidates to intersect a disc. 
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(a) Photon Maps 

(b) Tangent plane estimation 

Figure 19. Particles=50000 

6 Future Work 

The storage requirements for the rays should be decreased 
in order to allow more rays to be created. Also, the ray-disc 
intersection test time could be reduced by more efficient in­
dexing schemes. On the other hand, some extensions to the 
basic algorithm are also planned: non purely diffuse sur­
faces and other geometric models should be allowed, the 
use of more advanced density estimation algorithms and 
obtention of iterative solutions 
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