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Abstract 

This paper is centred 011 the study of the role that 
information visualisation ca11 have in mathematics 
leaming. A theoretical annlysis is worked out in order 
to give account of the complex phenomena that take 
place in the classroom in order to allow students to 
construct a mental image of lhe mnthematical object 
involved in the activity. This theoretical analysis is the 
reference to study the different didactical functions that 
information visualisatio11 can develop in leaming 
process. This dijferent functions are discussed making 
reference to the role that Cabri Geométre can lzave in 
the teachinglleaming processes of Euclidean 
geometry. 
Kcywords: Mathematics leaming, /11formatio11 
visualisation, Visual imagery, mathematical discourse . 

l. Introduction 

Wc use the term visualisation to refcr to thc complcx 
phcnomcna of visual imagcry that plays a central role 
in ali mcaning and undcrstanding as wcll as in ali 
rcasoning. About the nalurc of imagcs thal thc mind 
forms following an externai stimulus, many studics, 
also on contrasting lines, wcrc dcvclopcd in lhe last 20 
years. Herc we are inlerested in lhe phcnomena of 
visual imagcry that takc placc in malhs learning and in 
particular in thc dialectic that devclops bctwecn 
dynamic externai visual rcpresentations mediated by 
lhe tcchnology (information visualisalion) and visual 
1magery. 
Spcaking of externai rcprcsentations wc mainly refor to 
two or lhrcc-dimcnsional rcpresenlations of some 
aspects of a mathcmatical slructurc. Such 
reprcsentations may bc slatic or dynamic as in thc case 
of rcprcsentations mcdiatcd by lhe computcr. Dreyfus 
in [21 pointcd out that the dialectic bctwecn externai 
visual rcprescnlation and visual imagcry implics two 
mappings: from thc malhcmatical slructure lo the 
visual rcprcscntation and from Lhe visual reprcsentation 
to thc mental image. Whilc the first mapping can be 
subjcct to mathcmatical analysis (cpistemological 
analysis of thc knowlcdgc cmbcddcd in the structure of 
lhe visual reprcscntalion), thc second one is much more 
difficult lo analysc, since lhcrc is no direct acccss to 
mental imagcs. So lhis lattcr mapping can only be 
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postulated on the basis of interprctations of how the 
externai rcpresentations (graphics, s1gns, tables, 
drawings, ... ) are produced and uscd in the 
communicativc contcxt of lhe leaching/learning 
process and on the basis of the justiítcations that 
cvcryonc gives of this way of use. 
Thc two mappings evidcnccd by Dreyfus are important 
while studying lhe conditions under which computcr­
supported visualisation is uscful for mathematics 
lcarning. 
This is true both for the design of new systcms for 
mathematics education and for the analysis of how 
systems already available on thc market can bc used in 
the classroom. 
ln this work these two mappings will bc discusscd, 
analysing the roles assumed by information 
visualisation [7] in the leaching/lcarning processes of 
malhematics. This analysis will be carried out on the 
basis of lhe cxpcricncc wc havc devclopcd in the 
design , implcmcntation and experimental evaluation of 
computer-bascd visualisation systems for mathematics 
Jearning [I]. 

2. Mathematical objccts, visual represcntation, 
mental image 

For the aims of our work we considcr Mathematics as a 
domain of knowledgc that is conccrncd with 
"mathematical objccts'', thal is to say wilh objccts wilh 
certain spccific propertics. Mathcmatical objects are 
abstract objccts; indeed mathcmatics objccts are not 
amenablc to any concrcte imagination or manipulation; 
they are immaterial, not tangible and acccssible only to 
our thinking 
ln mathcmalics lcarning, differenlly from the physical 
concrctc world, lhe lcarning object cannot bc shown in 
an obslcnsive way, can bc only conjured up by means 
of thc use of externai representations. Therc is not the 
possibility of directly acccssing that "thing" that wc 
can supposc to bc the mcaning of thc reprcsentations. 
Malhcmatical concepls such as numbcrs, functions, 
vectors, (which are not objccts in a usual manner, but 
which cmbody relationships) are not directly acccssible 
through cveryday expericnce nor within intuilivc 
perception, as for instancc real or physical objccls are, 
bul they havc to be rcprescntcd by signs or symbols. 

147 



This is true also in the case of Euclidcan gcomctrical 
lcarning (as we will sec in section 4), where thc 
perception involved in managing externai 
represcntations (drawings) can be also an obstacle for 
thc construction of a mental image, theoretically 
founded, of thc correspondent gcomctrical object 
(figure). 
Representations anel symbols of mathematics establish 
a semiotic system which is of fundamental importance 
for any mathematical activity. 
According to this epistemological pos1t1on 
mathematical knowledge is not simply a ready madc 
product that can be directly introduced into processes 
of teaching and learning. The new mathcmatical 
knowledge will only be actively constructcd, in social 
interaction, by the student in his or her learning proccss 
within an activity. 
For example, in the approach to rational numbers thc 
relationship that takes place between representation 
and the mathcmatical object which it refers to (rational 
numbers), is very complex. The discourse about 
rational numbcrs suggests that these abstract objects 
are unique entities; on the other hand wc have various 
representations for the rational numbers: the common 
fraction symbol, points on the number line, 
materialisation of different kinds, classes of pairs of 
integers; these material objects of representations do 
not enjoy ali the properties we attribute to rational 
numbers [3]. 
It is not easy for students to understand that 2/3 and 4/6 
are two different fractions which are quivalent since 
they refer to the same object, that is to say to the samc 
rational number. Showing that 2/3 is obtained from 416 
dividing thc numerator anel the denominator by 2 gives 
us a method that permits us to justify thc conditions 
under which the two fractions are equivalent but wc 
cannot work out an obstensive test of such an object 
and of its properties. Wc do not have imaginativc 
access to anything which wc could consider an image 
of the rational number representeei by 2/3 or 4/6. 
The image of this mathcmatical object emerges in thc 
dialectic betwecn understanding and expression 
relating 10 thc mathematical activity in which the 
participants are involved . This imagc entails an 
orientation to negotiations with oncsclf about meaning, 
something that is outsidc the cxpericncc of school 
students [61. 
The imagc of thc mathematical objcct is strictly linkcd 
to the imagc of the mathcmatical activity that is 
negotiated by thc participants in school practice. It is 
conditioned by social interaction; on onc hand thc 
structurc of lhe externai rcprcscntations provide 
meaning for the mathcmalical discoursc about the 
mathematical object involvcd in the activity anel on thc 
other hand thc mathcmatical discoursc contributes to 
structurc an imagc of the malhcmalical activity, that is 
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to say it contributes to structure an imagc of the objcct 
of this activity, that is a mathcmatical object. It is 
important to observe that mathcmatical discoursc that 
emerges in social interaction within thc activity is 
qualitativcly diffcrent from any representation. 
Understanding what a mathematical object is depends 
crucially on a vcry specilic way of vicwing and 
treating reprcscntations and thcir rclatcd mental images 
within a mathcmatical discourse. 
ln other words, taking into account school practice in 
which students and teachcr are involved, thc 
relationships between externai visual rcpresentation, 
mathematical discourse anel mental images can be 
sketched in this way. 
Within an activity, the structure of externai 
representations mediate the possibility to develop a 
meaningful mathematical discoursc about thc 
propertics of thc mathematical object starting from 
how the properties of the externai reprcsentation are 
used in practice. 
Mathematical discourse (which is always mediated by 
the reference to thc mathematical object) allows a 
metaphoric use of the concrete meaning devcloped by 
working with externai reprcscntations within the 
structure of an activity. lt allows us to associatc 
interpretations to the externai representation uscd in the 
activity which can be justified on the basis of actions 
and goals as actually generated within an activity (in 
relation to some problem or task) and on the basis of 
cultural and historical considerations on the value and 
properties of the mathematical object involved in the 
activity. In this way the mathematical discourse 
contributes to transform an externai representation into 
a mental image of a mathematical object, that is to say 
into an imagc of the abstract object which transcends 
the structurc and the characteristics of the externai 
representation. 
From a psychological point of view thc dialcctic 
betwcen externai representation and mathematical 
discourse mcdiates the possibility for thc subjcct to 
control, on thc basis of externai stimuli (externai 
representations), the accordancc of the mental image of 
the mathematical object involved in the activity with 
the shared idcas of the socicty. 
Hcncc according to [3 J grasping the propcrtics of a 
mathematical object is always thc result of intcrplay 
between visual and diagrammatic aspects involved in 
managing externai represcntations anel prcpositional 
aspccts of the discoursc with respcct to the 
mathcmatical objcct involved in the activity. 

3. Information visualisation and mathcmatics 
learning 

Thc design or thc use of a computer-based system for 
mathematics lcarning rcquircs carcful considcration of 
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the conditions under which the characteristics of form 
an<l interactivity of a system can <levelop, within an 
activity, a dynamic relationship between externai 
representation and mental image which is effeetive for 
learning. 
Accor<ling to [5] wc use the term information 
visualisation to inten<l Lhe use of computer supported, 
interactive, visual representation of abstract data to 
amplify cognition. This definition is particularly 
appropriate when it refers to the teaching and leaming 
processes of mathematics. As previously pointed out, 
mathematical objects are not amenable to any visual 
perception or manipulation. The traditional approach to 
mathematics knowlc<lge is a symbolic re-constructive 
approach and it is developed insi<le Lhe interaction 
between lhe stu<lent an<l the teacher, usually according 
to a transmissive teaching strategy. ln this approach 
stu<lents have few opportunities of exploring lhe 
functionality of the symbolic representation at han<l 
an<l of reflecting on the properties an<l characteristics 
of its structure. The prescriptive character of the 
mathematical discourse Lhat emerges in the classroom 
focuses the attention on the system of rules attached to 
the syrnbolic representation at hand and leaves in thc 
background the construction of a mental image of the 
malhematical object involved in the act1v1ty. 
lnformation visualisation can allow the student to 
access mathematical knowledge integrating the 
symbolic re-constructive approach with a motor­
perceptive one. This latter approach involves aclions 
and perceplions an<l produces learning based on <loing, 
touching, moving and seeing. As already pointed out 
by Kapul [ 4[, a visual representalion system based on 
direct manipulation interface is an interactive medium 
which responds to the user's action an<l which offers 
the possibility to create new notational systcms or to 
introducc a new dimension, movement, within 
traditional ones. 
lnformation visualisation offcrs the concrete possibility 
to implcment better and more easily classical visual 
representation mathematics formats (graphs, drawings, 
Lables, etc.) bul also to enrich thcm with additional 
features such as movemenl and interactivity and to 
integrate in the sarne cnvironment (or in interconneeted 
cnvironmenls) multi pie formals of representations . 
Wilhin the context of use of the system, information 
visualisation can support different <lidactical functions 
which are crucial in the teaching and learning 
processes of malhematics. 
lnformation visualisation can ofTer ways which allow 
students to explore lhe knowle<lge <lomain, embedded 
in thc system (cxploratory funclion) . Systems that 
prcsenl lhese fealures have heen demonstratcd lo be 
very effective for learning malhematics: lhey are 
defined as microworld based systems. The pedagogical 
objective of microworltls is lo offcr studcnts a space in 
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which they can use visualisation supported by Lhe 
computer in arder to explore and manage freely an 
environment designed Lo address the conslruction of 
some mathematical knowledge. Other systerns that 
presenl these reatures are systems for simulation. 
Another imporlant didactical funclion of information 
visualisalion is to offer expressive ways to allow 
students to externalise their own knowlcdge of a 
domain (cxpressivc funclion). This function is presenl 
when representative tools, which student can easily 
contrai both on an operative and a conceptual levei, are 
made available within a system. 
A third <li<lactical function regar<ls the possibility to 
offer ways to validate the solution strategy involved in 
the problem at hand (validation function). In this case 
information visualisation makes available verification 
methods that are checkcd on a pereeptive levei and are 
able to test lhe strategy developed. 
Systems that present this didactical function make 
available tools that allow sludents lo justify their 
solution procedures on the basis of verification 
methods that are internai to the system. 
A fourth didactical function is connected to the 
possibility to have available tools that allow the studenl 
to store the solution steps performed in arder to 
successively re-visualise them in sequence. In this way 
it is possible to re-construct the story of the solution 
process performed. Systems which make available this 
kind of tools make possible to objectify, de-personalise 
and de-contextualize a solution procedure in order to 
successively transform it into an objcct of discussion in 
the social context of the class (supporting mathematical 
diseourse function) . This discussion can have differenl 
aims such as the comparison of strategies, the analysis 
of the properties (and of the their relationships) 
involved in the proce<lures, the re-interpretation of such 
properties in relation to a theory of referenee. 
According to the nalure of the knowlcdge domain 
involved in learning, lhe different <lescribed didactical 
functions of information visualisation can be pursued 
in differenl ways. ln the following, we will try to better 
explicit how information visualisation can affect 
learning mathematics, analysing these different 
functions in a specific domain of knowledge supported 
by computer. 

4. Information visualisation and learning 
Euclidcan geometry 

Geometry is a knowledge domain 111 which 
visualisation within a microworlds has brought to 
impressive progress wilh the dcvelopment of the 
concept of "dynami<.: geometry" exemplified by 
systems such, for example, Cabri Geométre. The 
researches workc<l out in relation to the use of this 
system pul in evidence that its mediation can modify 
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lhe way to enler into contact with geomelrical 
knowledge. The changes broughl into the didactical 
activity by lhe use of Cabri can bc debatcd in terms of: 
* New status assumed by the geometrical conslruction 
as mcdiated by the system; 
* New possibilities of developmcnt of a mental image 
of a geometrical construction, thcorem and proof, as 
mediated by the system. 
ln this framework we note that lhe first aspect can be 
put into relationship with lhe mapping (as reported in 
section 1) from lhe malhcmalical structure to lhe visual 
rcpresentation while lhe second aspect concerns lhe 
mapping from lhe visual represenlation to the mental 
image of geometrical construction, theorem and proof. 
The relationship between geometrical construction and 
visual represenlation available with Cabri ts 
particularly interesting. 
By mcans of Cabri it is possible to pcrform every types 
of geomctrical construction, within Euclidean 
geometry. Performing a geometrical construction by 
means of Cabri does nol implicale aspccts of measure, 
bul it is strictly connectcd with lhe deep structure of 
Euclidean geometry. The fundamental element of 
every construction is the point. Some objects are 
directly defined in terms of points (i.c. a straight line is 
defined by means of two points). Other objects are 
defined as functions of some other objccts alrcady 
constructed (i .e. a straight line passing for a point 
perpendicular to a given line) [7] . 
Cabri makes available primitives deeply linkcd with 
the axioms of lhe Euclidcan geometry but also a new 
visual direct manipulation opportunity: to drag the 
variable elements of thc geometrical construction on 
the screen. ln this way students can observe which 
properties are preservcel whcn the construction is 
moelified with the elrag action. The movement 
produced by the drag action is a way to cxternalise lhe 
sei of the relationships thal define a figure . 
These representation tools of Cabri can be used in both 
cxploratory and expressive moeles. 
ln Lhe exploralory moeles, the use of thesc 
represcntation Lools containing domain models permit 
Lhe student to examine lhe consequences of eliffcrent 
model, some of which fit anel other of which conflict 
with the studenl own idcas (9] . 
ln the exprcssive modc studenl can examine thcir own 
knowledgc of gcometrical construction by being 
encouragcd to cxpcrimcnl with their own thcorizing 
(9] . 
Mariolli [8] highlights thal the elrag action of Cabri has 
a crucial importance both from a elielactical anel an 
cpislcmological point of view. By mcans of this action 
students can validatc lhe constructions pcrformeel; lhe 
construction task is solvcel whcn the elrawing gel 
lhrough lhe elrag test, thal is when lhe propcrlies of lhe 
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figure, under lhe elrag action, are prescrveel (validation 
function). 
Moreover lhe use of this ncw dimension, Lhe 
movement, in the body of Euclielean geometry, makcs 
available new visual tools to ovcrcome epistemological 
obstaclcs connected with lhe relationship bctwecn 
elrawing anel figure in the domain of Euclidean 
geometry. 
As stresseel by Labordc [7], the elrawing refers to a 
material entity with which onc has a perccptivc 
relation, figures refor to theoretical objects, that is to 
abstract geometrical objcct lha! are elescribed by texts 
which define them. 
ln traelitional didaclical practicc we note thal severa! 
difficulties emerge in the geometrical construction 
tasks. Stuelents work on the material drawing while the 
tcacher expects they work on the figure or on the 
description of the figure. In other cases students do nol 
consider that a gcometrical construction task can 
involvc lhe use of geometrical properties; rathcr they 
intend il as thc rcquest Lo produce a material visually 
correct drawing. 
According Lo this framework, the opportunity of 
dragging the variablc elements of a construction is an 
important tool for favouring lhe evolution of students' 
mental imagcs, which are related, with thc notion of 
geometrical figure and with the task itself of 
geometrical construction (exploratory and expressive 
function) 
As an example lhe way in which student's approach 
geometrical constructions with Cabri can be 
considered. At the beginning students work on the 
drawing on the basis of perceptual anel figural stimuli 
received from thc screen instead of to perform a 
conceptual control of the perception, exploiting the 
action possibilitics offercd by the system. Only when 
they realise that thcir empírica) stralegy does not gel 
through thc dragging tcst, students, in general, bcgin to 
approach thc task by using constructive methods which 
allow to maintain lhe properties of lhe figure when the 
drawing is draggcd on the screen. It is in this moment 
that thc rclationship bctwcen figure and drawing is 
going to be modificd and the studcnt claborates a new 
mental image of gcomctrical constructions. 
The evolution of thc mental image of gcomctrical 
constructions is crucial in gcometry. As thc matter of 
fact, each geomctrical construction incorporates a 
lhcorctical meaning, which goes beyond the practical 
task of its construction. Mariolli in [8] shows that there 
is always a corrcsponclencc bctwecn the spccific tools 
and rulcs uscd for lhe construction anel a sei of axioms 
which struclurc a pari of a theory. Insicle this thcory a 
valicl construction can always be pul in corrcspondcnce 
with a theorcm 
Gcometrical lcarning necels lo move from context­
based methods of validation (c.g. thc dragging action 
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of Cabri) to theory-based justifications (deductive 
method). This passage is neither simple nor automatic. 
lt requires an educational approach able to support lhe 
acquisition of lhe deductive mcthod . ln this framework 
it is importanl specify the role thal Cabri can assume in 
supporting this didactical approach. 
ln Cabri, for example, an important command is 
available at this regard: the "History command". This 
command permits lo visualise step by step on the 
screen ali the acti ons performed by the user to obtain a 
givcn gcomclrical construction. Such a command can 
devclop sorne important fun ction from a didactical 
point of view. 
As pul in evidence by Mariolti [8] , lhe History 
command allows to develop interpretations anel 
anticipation acts which can favour the passage from 
justifications based on physical actions and graphical 
effccts to justifications based on a deductive model. ln 
this passage therc is lhe devclopmenl of the capability 
to justify lhe validity of a proccdure at lhe conceptual 
levei (demonstration) on the basis of initial hypolhesis, 
geometrical axioms and previously demonstrated 
theorems. 
This passage cannol be spontaneously built as the 
result of lhe student-software interaction (e.g. as the 
result of having observed on the screen constructions 
that can be modified preserving some properties). The 
deductivc method is built in the soc ial interaction when 
students can experiment, under the teacher's guidance, 
lhe irnporlance of justifying the accomplished 
procedure according to methods, which go beyond 
perceptual validation. 
ln the Cabri environment the History commanel is a 
fundamental lool at thi s regarei . With this command the 
aecomplishcd proceelure becomcs objective, ele­
personaliseel and de-contextuali seel. 
ln thi s way it is poss ible to focalise the altention on the 
propcrties of the construction anel on their relationships 
anel to consieler thern in the light of a geomclrical 
theory anel of previously elemonstraleel facts. 
The History command is an important too! to maintain 
the rnathematical discourse, which is developed in the 
class on lhe value, methoels anel techniques of 
geometrical elemonstration integrateel and "in focus" 
(supporting mathematical di scourse function). This can 
be obtained thanks to the possibility offered of 
analysing anel pulling in relation the acco mpli shed 
constructions 
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