
Adapting Computer Graphics Curricula to Changes in Graphics

Lewis E. Hitchner
Dept. of Computer Scicnce

California Polytechnic State Univ.
San Luís Obispo, CA U .S.A.

hitchner@csc.calpoly.edu

Abstract

lntroductory computer graphics courses are
changing their focus and leaming environments.
lmprovements in hardware and software technology
coupled with cha11ges in preparation, interest, a11d
abilities of incomi11.g students are driving the need
for curriculum change. Past courses focussed 011

low- and intermediate-level rendering principies,
algorithms, and software development toais. Many of
these algorithms have migrated into hardware.
Though important knowledge for adva11ced graphics
programmers, most graphics applications
programmers hal'e no need to study at this levei,
much as application progranuners have no need to
study hardware systems or assembly levei
programming. Courses need to focus 011

intermediate- and high-level principies, algorithms,
and tools. A fundamental need in modem graphics
curric11/a is integration of a 3D graphics API into
the instruction. This paper prese11ts experiences
teaching this focus 11·ith both low and high levei
graphics programming API~·. The experiences were
gained i11 courses at an u11.dergraduate university
and in multi-day industrial courses for experienced
professional programmers.
Keywords: computer graphics, curriculum.

1. The Changes in Dircctions of
Introductory Computer Graphics
Courscs

The curriculum of courses for thc study of computer
graphics has changed and continues to change in
rcsponsc to tcchnology and studcnt nceds . We first
rcvicw graphics tcchnology, students, and curricula,
as rclated to computer graphics instruction during thc
thrcc stagcs of acceptancc of a new tcchnology
(ignoring thc outlicr stagcs) : that of thc "Early
Adopters", that of "Early Majority", and that of "Late
Majority"il]. Next a sct of principies and goals for a
ncw curriculum for introductory computer courscs is
prcscntcd. We follow this with cxamples of practical
cxpcricncc in tcaching such a coursc ata polytechnic
statc university and in multi -day short courscs for
practising professionals .

CVE'99 - Coimbra - Portugal

Henry A. Sowizral
Graphics Division

Sun Microsystems, Inc.
Menlo Park, CA U.S.A.
henry.sowiz.ral @eng.sun .com

1.1. Graphics Technology, Students, and Course
Curricula in the "Early Adopters" Era

From lhe J 970's lhrough carly l 980's compuler
graphics courses existed primarily at large
universities. Computer Science education was still in
its infancy and courscs in computer graphics were
rare. They wcre usually specialty courscs at a few
schools that could afford expensive graphics
hardware, usually funded by governmenl research
grants. During that time thc curriculum emphasis
was on recenl dcvelopmcnts in rcscarch that had nol
yct enlered the public domain or commercial
software worlds. Rcsearch focusscd on developing
new tcchniques, more functionality , and algorithms
that performed more efficicntly.

Courscs taught during this era assumed lhe following
about sludents and graphics systcms:
• students were highly motivated tcchnologists

with advanccd scicnce and mathcmalics
prcparation (computer scicnce, mathematics,
and engincering majors),

• most students had littlc or no expcriencc wilh
lhe new field of 2D and 3D graphics,

• students should lcarn ali lhe fundamental
principies, algorithms, and techniques that
rcscarchers had rcccntly dcvcloped,

• graphics hardware deviccs were not widely
available, and thcy depended upon special
purpose software interfaces.

Thc curriculum of courscs during Lhe pioneer days
rcílectcd thcse assumptions. Typical topics includcd:

•

•

•

an ovcrvicw of graphics technology and
applications,
inlroduction to low levei graphics hardware:
CRT's, input dcviccs, proccssors, pcripheral
devices,
algorithms for performing basic rendcring
pipeline opcrations:
• line and circlc drawing (e.g., Brcscnham 's

Algorithm),
• linc and polygon clipping,

23

24

• matrix transformations (primarily for 3D
viewing, though also for modcling),

• lighting and shading algorithms, and
• image generation algorithms (polygon scan

conversion, visible surface computation, Z­
buffer)

• introduction to 30 modeling: parametric curve
and surface gcneration , some procedural
techniques,

• software technology for interfacing graphics
processors and displays to mini-computers and
mainframes using locally developed (one-of-a­
kind), or proprietary commercial, software
function libraries.

Most graphics tcxtbooks used during this era
reflected these assumptions. University courses
followed these assumptions and covered topics with
the sarne emphasis as stressed in popular textbooks.
During this era there was also somewhat of an
elitism. Only computer scientist-technologists with
advanced university dcgrees were capable of
developing (or even using) complex graphics display
programs.

1.2. Graphics Technology, Students, and Course
Curricula in the "Early Majority" Era

By the carly l 980's, graphics technology became
lower priced and more widely available. Graphics
workstations, such as those made by Evans and
Sutherland, SGI and other vendors, provided high­
powcred processors for those schools able to afford
them. Graphics peripheral processors (e.g., the AED
512) and early versions of PC graphics systems also
becamc available at somcwhat more reasonable
prices.

Early attempts at graphi cs software standardization
occurred during thi s era. Some API's were shorl
lived or never widely used (e.g., the "original"
graphics standard, CORE), or werc extended and
rcviscd as new needs and features evolved (e.g.,
GKS to GKS-3D, PHIGS to PHIGS+). Such moving
targcts were not vcry successful at becoming widely
adopted. Proprictary graphics software pac kages
dominatcd lhe industry .

Students during thi s era wcre somcwhat similar to
thosc of thc carlicr era. Howcvcr. thc popularity of
computer scicnce as a carecr attracted many more
students from more cducati onally diverse
hackgrounds. Many graphics students during this era
had wcaker math and sc ience knowlcdge than carlier
student s. Fundamental topic arcas of graphics
(geometry, physics of color and lighting, graph ics

hardware device operation) were unfamiliar to them,
and had to be covered in course curricula. More
students had some familiarity with using 2D (and
some 3D) graphics in video games.

Although graphics software was more standardized,
educators and textbook authors were wary of
teaching studcnts the "API du jour" . They avoided
teaching standards that were likely to be soon out of
date. lnstead, most courseware developers designed
their own gencric, "standard-like" software packages
to use in accompaniment with a particular text or
graphics hardware system. It was also common for a
university or individual instructor to write his or her
own graphics package (often publicly shared with
other universities via anonymous ftp in the pre­
WWW days). Unfortunately, these "teaching API's"
were often minimal sets of functions . They were
sufficicnt for lcarning the principais of graphics
software dcvelopment, but were not representative of
real-world, industrial-strength packages. And, of
course, knowledge of thcm was not portable to
another school or to a job. However, since most
student assignments wcre small, one-shot programs
and never lived long enough to get to the
maintenance phase of their life cycle, use of a "toy"
API was acceptable. That mel the goal of providing
the necessary learning experience. Of course, after
graduation, the employers of these students had to
traio them to use "real world" graphics software
systems.

ln response to the availability of and interest in
graphics technology, many computer sciencc
departments adopted graphics as a part of their
curriculum. The ACM Curriculum l) 1 (2) specified a
graphics course as a technical electivc. The use and
dcvclopmcnt of graphics applications had now
bccome accessible to any computer, math,
engineering, or scicnce studcnt who enrolled in a
univcrsity graphics course.

1.3. Graphics Technology, Students, and Coursc
Curricula in the "Late Majority" Era

Current, late l 990's graphics hardware is orders of
magnitude faster and cheaper, and it is much more
robusl and fully functioncd, than carlicr technology.
Thc prevalence of personal computers with Iow cost,
high-performance 30 graphics accelerators, is the
dominant tcchnology. However, ex treme increases in
performance to price ratios have occurrcd for
products at ali pricing leveis.

Furthermorc, grap hics hardware technology has
evo lvcd to a state whcre rcndering algorithms are

CVE'99 - Coimbra - Portugal

specialized for high performance. Certain aspects of
geometry representation, lighting and shading, and
interaction handling are primarily implcmented
within restricted preconditions rather than general
purpose ones. For example, most modern graphics
rendering hardware either requires ali geometry to be
represented using triangles only or else is tuned for
highest performance using triangles. Also, some
current 3D graphics hardware systems implement thc
entire OpenGL rendcring pipeline in hardware.

Nearly as great an incrcase in performance and
functionality has occurred for graphics software. The
most significant aspect of software evolution has
becn the emergence and acceptance of standardizcd
graphics software API's (Application Programmer
Interfaces). Today thcre are severa(standard 3D
graphics API's uscd in industry. The thrce leading,
ncarly universally used "low levei" API's are
OpcnGL (evolved from SGI's proprictary GL and
now available on nearly ali platforms), Microsoft's
Direct30 (Windows platforms), and Applc's
QuickOraw 30 (Apple platforms). There are also
many high levei 30 API's, though currently there is
not the dominance by one or two as there is at the
low levei.

ln addition to graphics API's there are four other
significant factors in graphics software development:

1. Powerful, low cost IDEs (Integrated
Development Environments) for rapid and easy
code development and debugging. For example:
Microsoft and Imprise (formerly Borland)
products.

2 . Extensive libraries of general purpose support
functions that provide higher levei graphics
capabilities and simplified GUI development,
mosl of which are cither free or very reasonably
priced. For example: GLUT (GL Utility
Library), MFC (Microsoft Foundation Classes).

3. A number of powerful software packages for
high levei, application independent developmenl
such as ray tracing and animation systems
(many of which are public domain) . For
example: POY Ray.

4 . The World Wide Web and its wealth of free and
instantly accessible demos, software tools, data
sets, and human resources (via email,
newsgroups, and chat sessions).

Graphics students of today are quite different from
those in earlier years. Some characteristics are:

1. Most technical university stuclents (i .e.,
computer science, engincering, math, or science

CVE'99 - Coimbra - Portugal

students) enter a first course in computer
graphics with significant prior exposure to
graphics concepts, such as lighting, perspective,
and 3D viewing and navigation. Many students
have had significant programming experience,
and it is not uncommon for them to have already
written 20 and 3D graphics programs.

2. Although most students come to school with
greater computer skills and graphics experiences
than their predecessors, on the other hand, many
arrive with greater handicaps. Even among
engineering and compuler science students, their
mathematical, problem solving, and logical
reasoning skills appear weaker than in prior
years.

ln the opinion of these authors, contemporary
curricula of most university levei graphics courses
and textbooks do not appropriately emphasize the
most criticai aspects of graphics hardware
technology, nor have they appropriately adapted to
the backgrounds of their students .

It is no longer necessary to introduce today's students
to such topics as a pixel, a bit-mapped image, a color
palette, or basic RGB color systems. For many, even
more advanced topics such as 30 viewing, 30
navigation, and texture mapping are familiar. Avid,
even casual, web-surfers or PC gamers of today are
familiar with using these terms and features.

Many fundamental algorithms and procedures of
graphics are no Jonger relevant, even though they are
pedagogically valuable. For example, Bresenham's
line anel circle algorithm and lhe polygon scan
conversion algorithm are not relevant. Such
operations are done in very low levei hardware (e.g.,
microcode or ASIC's) and cven therc, traditional
algorithms are not always used . Clipping operations
are also buried deep within the hardware. Cohen­
Sutherland line clipping and re-entrant polygon
clipping algorithms are good intellectual exercises
for today's students, but have less relevance to
helping them learn useful graphics software
development techniques.

Now that small set of graphics API's are nearly
universally used (and also becoming more similar),
students should learn to apply the fundamental
principies of graphics within these environments, not
within make-believe, "toy" software environments.
A fcw recent textbooks integrate modern API's, and
one of them [3] has been adopted by a number of
universities. However, to our knowledge no
textbooks fully meet the criteria of presenting

25

26

graphics technology in the context of today's
hardware and software systems.

Regardless of criticisms of graphics education
weaknesses, the accessibility and usability of
computer graphics technology today is truly
phenomenal. No longer are those who study and use
graphics members of an elite club. Nor are they
restricted to university engineering and science
students. We now have experienced the
"democratization" of computer graphics.

2. New Modcls for Introductory Graphics
Courses: SIGCSE and SIGGRAPH
Paneis

ln response to the need for modernizing lhe eurricula
of graphies instruetion, a panei at the reeent ACM
SIGCSE (Assoe. for Computing Maehinery, SIG
Computer Seienee Edueation) Teehnieal Symposium
[41 ehaired by one of this paper's eo-authors,
diseussed and presented a proposal for eontemporary
eomputer graphies eurricula. ln addition to the panei,
a Birds-of-the-Feather session eo-sponsored by the
SIGGRAPH Edueation Comm. at the sarne
eonferenee held discussions following the panei. A
similar panei with three of the four sarne panelists
has been submitted and accepted for presentation at
the ACM SIGGRAPH '99 confcrenee (Los Angeles,
August 1999).
This panei proposed the following philosophy of the
first graphics course:

• Computer graphics is inherently 30 and eourses
should be also.

• The fundamental subject of a computer graphies
course is geometry and how it is expressed in
computalional terms. Thus, geometry is a major
part of the introduetory eourse. Geometry is
expressed in terms appropriate to the field, sueh
as eoordinale systems, transformations, and
surface normais. The basic shape is the triangle.

• Computer graphics is intrinsieally visual, and
even lhe most technically oriented graphies
praetitioner must be aware of lhe visual effeets
of algorithms. Unlike other arcas of eompuler
scienee, algorithms must he considered not only
for time anel memory usage, bul also for their
visual effect.

• Besides geometry, computer graphics is aboul
lighl and surfaces, anel about developing
algorithms lo simulale their interplay. Courses
need to include material about light and surface
properties anel ahout the distinction between the

ways various algorithms present light anel
surfaces visuall y.

• Computer graphies has matured to a state in
whieh there are a small number of high-level
API's that support ali the fundamental eoncepts
needed for early work. Courses should be built
upon this kind of high-level approach.

• Computer graphies should be interactive.
Courses should include interaetive projects anel
cover event-driven programming.

3. Expcriences in Teaching Introductory
Graphics Courscs

One co-author has taught undergraduate university
graphics courses from 1984-1988 at the Univ. of
Calif., Santa Cruz, and from 1995 to present at
California Polytechnic State University (Cal Poly).
The syllabus anel topics emphasis of courses has
shifted significantly.

The original syllabi were similar to that of the "Early
Majority" era model, baseei upon the sarne
assumptions about available graphies technology and
students as stated above. The topic foeus was on
fundamentais (hardware <levices, geometry, viewing,
lighting, and shading) and algorithms for
implementing the rendering pipeline. Interaction
methods were limited to fairly simple event
handling, and they used console text i/o without a
GUI. Some hierarchical modeling was taught using
modeling transforms implemented by the
programmer. Early versions of lhe course used a
"home grown" API (implemented on top of a device
dependent 20 graphics API). Later versions
migrated to proprietary versions of GL (SGI and
HP). Typieal programming lab assignments included
implemenlation of Bresenham's line drawing,
Cohen-Sutherland line clipping, re-entrant polygon
clipping, and simple hierarchieal modeling
applications.
The 1996-98 Cal Poly graphies courses use modem
API's. The co-author teaehes a version that uses
OpenGL for the firsl half of the course, and uses
Open Inventor for the second half (5). ln this course
the !opie focus is also on fundamentais. But,
instruetion in implementation lechniques has shifted
to higher levei aspects of rendering, evenl-driven
inleraction handling with GUI's, complex
hierarchical modcling including extensive study of
seene graphs, and software design using the lwo
API's. The fírsl lab assignmenl draws complex 30
primitive shapes with interaetive contrai of colar,
oricntation, and line style. A seconel lab assignment
draws chairs, a lahle, and a lloor anel requires
interactive conlrol of position anel orientation for

GVE'99 - Coimhra - Portugal

each object and for lhe viewpoinl. A third lab uses
Open lnventor to model a 16-jointed robot with
interactive contrai for joinl manipulation. This lab
also rcquires model development using a graphical
scene graph editor without writing program code.

4. The Future: Java 3D as a Learning
Environment for Introductory Graphics
Courscs

1.4. Overview of Java 3D Design Philosophy and
Features

Java 30 is an API used for writing 30 graphics
app lications and applets. It is a library of basic and
utility classes written in the Java language. Java 30
is platform independent and extends Java 's "write
once, run anywhere" benefits for application
developers. It also integrates well with the Internet
bccause applcts written using Java 30 have acccss to
the entire sel of Java classes. A complete description
of the Java 30 design philosophy and its features is
available in published texts and online web
doeumenls [6,7,8].
The Java 30 programming paradigm includes these
principies:
• Fully object-oriented implementation
• Classes are extensible and compatible with ali

other Java 2 Platform libraries
• Scenc Graph based for both geometry and

behaviors
• High performance a primary design and

implemenlation philosophy:
• Laycred Implementation: Native code

based, aiming at hardware accc lcration,
• Application programmer can specify what

will change so th:ll system can perform
optimization,

• Supports mulliplc rendcring Modes:
Immediatc, Retained, Compilcd-retaincd

1.5. Justification for Java 30 As A Learning
Environmcnt for Beginning Students

Although at first g lance Java 30 may seem like an
API most applicablc for expcrienccd profcssionals
devcloping production quality software, severa)
aspects makc it desirable as an API for beginners .

• Platform indcpcnclcncc
Students usually prcfcr to work in labs at school,
on their homc computers, and, cven at their
plaee of work (for those employed full or part­
time). Java and Java 30's platform
indcpendence greatly simplifies portahility, not
on ly for 30 graphics hut also for 20 GUl's.

GVE'99 - Coimhra - Portugal

• Cost
The purchase price is zero, and there is no
software maintcnance cost. This is a significant
fac tor for schools, as well as for students.

• Programming Paradigm
The fully objcct-orientcd cnvironment is
consistent with training students receivc in their
prerequisite courses. Therc is no need to kludge
together 00 with non-00 procedures.

• High Performance
Students are accustomed to high performance -­
or at lcast what they perceive to be high
performance. The many PC games and Web
applets that present apparent high performance
rendering raise expeetations. However, they can
cause frustration for studenls if they are limited
to programming lab examples that appear
s implistic by comparison. A signifieant aspeet of
graphics cducation is the motivation provided by
its appcaling real-time, interactivc, visual
results. If thal motivation is frustrated by low
performance, the learning thal occurs will bc
diminished.

5. Expericnces in Adapting Course
Curricula to Changes in Graphics
Technology

We have pul our recommendations into practice. ln
Spring 1999 onc co-author taught a reviscd version
of the Cal Poly undergraduate Introduction to
Graphics coursc using OpenGL and Java 30 APls.
Ouring Wintcr and Spring 1999 the other co-aulhor
taught three courscs, varying in duration from onc to
three days, on Introduction to Java 30 for
cxpcrieneed professionals.

ln lhe currenl university environment, students are
entering graphics courscs with less foundational
knowledge than in thc pasl. Allhough most students
come to school with much greater cxposurc to
computers and graphics, thcy have less exposure to
mathematics, problem solving, and less of an idea
where thcy want to focus their carecrs. Furthermore,
the ficld of graphics has expanded greatly sincc its
inception, and givcn Lhe new APis, computer
graphics is no longer the exclusive province of
cxpcrts. The challenge for educators is to provide
cnough information so students can learn graphics
without rcquiring them to becomcs mastcrs of a
particular sub-discipline. After ali, twelve-year-olds
are producing beautifully ray-traccd images without
having any concept of how ray tracing works.

27

A high levei graphics API provides educators with
the abi lity to introduce a broad range of fundamental
concepts without detouring into the details important
only to graphics professionals. Despite the higher
levei presentation of concepts, students can quickly
learn how to write useful and compelling graphic
applications. ln the process, they are exposed to
enough graphics concepts that they can decide
whether to devote more of their student and
professional career to graphics.
ln the Cal Poly CSC 471 Introduction to Graphics
Spring 1999 course [9] students used OpenGL and
Java 3D APis, a low levei and high levei API
respectively. These APis allow topics to be covered
quickly in both breadth and depth. Programming
assignments using a high levei API (Java 3D) allow
students to produce quite substantial results within a
short period of time. ln one programming
assignment students wrote a Java 3D program to
display a humanoid-like robot with 16 rotational
joints and interactive behaviors that allow run-time
modification of the joint angles. This project was
completcd within 3 weeks of their introduction to
Java 3D (and, for some students, within 3 weeks of
their first exposure to Java after having been trained
in C++). At the sarne time students were learning the
fundamental concepts of a scene graph and were
solidifying their knowledge of complex transforrn
operations, they also learned the details of Java 3D
scene graph irnplementation.

Experienced cornputer profcssionals have
signi ficantly more exposure to rnathematics, problem
solving and logical thinking. However, when they
decide to study graphics, they often revert to
"student mode". Presentation arder, thus, remains
important. Fundamental material must be introduced
in a constructive arder rather than deconstructive
arder. Otherwise students become confused and
frustrated. Allhough experienced professionals may
be able to solve lhe most complex problems withoul
hand holding -- oulside the classroom -- when lhey
become sludents they require the smallcst details to
be completely specified. This is not surprising, since
much like universily students they also cannot
distinguish between fundamental concepts and
unimporlant details.

28

This bccomes more of an issue given the breadth and
deplh of topics within the graphies field loday and
Lhe shorl lime frame of a typical profcssional short
course. Despite this challenge, higher levei APJs
allow educators to inlroduce hrcadlh as well as lo
dclve into selected topics in dcpth wilhin short time
frame courses. By cmphasizing fundamental ideas an
cducator can start such students in thc necessary

direction and leave them with suffieient landmarks to
allow the students to explore the details further on
their own.

6. Summary and Conclusions

Graphics technology has changed vastly in the nearly
lhree deeades since researcher-educators first started
passing their knowledge on to students. Students and
computing environments have also changed
significantly. Course curricula and textbooks have
been slow to adapt and have not kept up with these
changes. Proposals for adapting curricula to match
modero technological requirements have been
presented here and elsewhere. Personal experience
with such adaptation in universily courses and in
industrial short courses has demonstrated lhe
cffecliveness of using modem, high-Jevel API's and
emphasis upon student-centered learning.

References:

[1] Geoffrey A. Moore, Crossing the Chasm,
HarperB usiness, 1991.

[2] Alan B. Tucker and Bruce H. Barnes,
editors, Computing Curricula 1991: Repor!
of the ACMllEEEICS Curriculum Task
Force, ACM Press/IEEE Computer Society
Press, 1 99 1 .

[3] Edward Angel, lnteractive Computer
Graphics: A top-down approach with
OpenGL, Addison-Wesley Longman, 1997.

[4] Lewis Hilchner, Steve Cunningham, Scott
Grissom, and Rosalee Wolfe, Computer
Graphics: The lntroductory Course Grows
Up, Panei session, Proceedings of the 30th
SIGCSE Technical Symposium on
Computer Science Education (STGCSE '99),
New Orlcans, LA, USA, March 24-26, J 999.

[5) Lewis E. Hitchner, CSC 455 course web
page, Spring 1998,
hllp://www.csc.calpoly.edu/-hitchner/CSC4
55 .S98

[6) Henry Sowizral, Kevin Rushforth, and
Michael Deering, The Java JD API
Specification, Addison-W esley Longman,
1995.

[7]

18]

Henry Sowizral, Kcvin Rushforth, and
Michael Deering, The Java JD API
Specification
http://java.sun.com/products/java­
media/3D/forDevelopers/j3douide/j3dTOC.d
oc.html
Java JD White Paper,
http://java.sun .co1n/marketingkollateral/3d
npi .hlml

GVE'99 - Coimbra - Portugal

[9] Lewis E. Hitchner, CSC 471 course web
pagc, Spring 1999,
http://www.csc.calpoly.edu/-hitchncr/CSC4

1l

CVE'99 - Coimbra - Portugal 29

