
1 •

lst Luso-German Meeting on Computer Graphics

Archetype-oriented CHI
A Formal Approach to User Friendliness

J .N.Oliveira
FMMarlins

C.C.E.S.
Universidade do Minho

. Rua D.Pedro V, 88-3°
4700 Braga

Portugal
Tlx : 32135 UMINHO P

ABSIRACT

Theoretical computer science has the aim of formalizing previous empiri­
cal, innovative creations in computing. The possibility of automatically con­
structing instances of such creations is dependam on the existence of formal
models. This is panicularly true in computing since computers do not manipulate
informal models of problem-solutions.
This paper describes an exercise in using co.nstructive and algebraic specifica­
tions in the formalization of some aspects of computer-human interaction (CHI).
Formal specification can not only contribute to a better understanding of CHI,
but also provide the almost non-existent link between CHI and Software
Engineering.
ln this paper, from a modest analysis of user behaviour, we build mathematical
models which lead to a formalization of the "standard" assisted-user-interface
(AUI). These fonnalisms are applied to the specification of ASSIST, a rnechani­
cal generator of assisted-user-interfaces which matches with command-line
parser-generators technology. Finally, we show how the assist-paradigm can be
implicitly combined with fonnally specified software modules, in the sense that
each formal specification itself contains enough information for ASSIST to gen­
erate the relevant parts of the A UI.

N-1

lst Luso-German Meeting on Computer Graphics

1. lntroduction.

ln every scientific field, after the evem of creation, the typical following steps are: empirical
experimentation, development of theories and automation. A role of theoretical computer science
is to provide formal models which can be used in the automation process. The usefulness of for­
malization is two-fold : it leads to a better understanding of panicular bodies of knowledge and
gives the possibility of automatic replication. Informal knowledge is not amenable to mechaniza­
tion since machines do not 'understand' informal models of problem-solutions.

ln computer science the number of existing and applicable theories is still insufficient, and when­
ever a new topic emerges, appropriate models must be built up through cxperience. Sincc pro­
gramming languages are cumbersome for reasoning, one importam problem is that of notation.
Thereforc, formal specification languages havc been used as alternatives to suppon such reason-
i~. .

This paper describes an exercise in using both constructive [Jo86] and algebraic [G*77] specifi­
cations in the formalization of some aspects of computer-human interaction, panicularly those
related with the user interface.

1.1. Background.

Recent proliferation of personal workstations in the computer market has entailed the widespread
of the so-called user-friendly interacti ve devices. This has made room for yet more problems with
compatibility and consistency in computer engineering1. Once again, software-engineers have
failed to provide the promised easy-to-leam interface whereby no manuais would be necessary to
read, as pointed out in [Th86].

Of course, consistent interaction facilities are nowadays vital to the widespread use of computer
systems, and CHI-standards are urgently required. Ho~ever, software-designers should properly
'understand' the interaction phenomena before defining implementation standards. Informal
software-standards are unprecise and hani to formalize "a posteriori" (take the GKS example
[Du87]).

This paper shows how formal specification can not only make some aspects of CHI more under­
standable, but also provide a way of relating these aspects to other phenomena in computing sci­
ence.

1.2. Paper Structure.

N-2

Our staning-point for theoretical CHI is a simplistic analysis of user behaviour (section 2). How­
ever simplistic, it is sufficient for building mathematical models which lead to a formalization of
the standard assisted-interface (section 3-5). ln secúon 6 these formalisms are applied to the
specification of ASSIST, an automatic generator of AUI's which may coexist with standani
command-line parsing technology. ln section 7 we show how abstract user-interfaces can be
directly derived from the formal specification of applications, and then input to ASSIST for the
generation of concrete ones.

1 Suggestion: Have a look to your favourite PC-software.

lst Luso-German Meeting on Computer Graphics

2. On the Nature of Users.

ln sharp contrast with computers, users are informal living beings who are temperamental,
unpredictable, vague, unprccise and unreliable (at least!). CHI is bound to take these facts into
account.

Unpredictability has to do with non-deterministic behaviour. Vagueness means incomplete infor­
mation, so inference mechanisms must be provided to cope with hierarchical levels of incom­
pleteness. Unreliability suggests that users should be assisted by synta:x-direction where possible.
A formal framework is described below where unpredictability, vagueness and unreliability are
modeled in terms of simple formal notions such as non-deterministic choice and archerype
[M086].

N-3

3. Interaction versus Non-determinism.

A simple (although primitive) model for user behaviour wrt. machines, can be found in the
mathematical notion of a non-detenninistic choice [M086].

Suppose that an alphabet A of acceptable symbols is meaningful in a given linguistic context, eg.
a command in A - { H,J,K,L} should be provided as an argument for a function f: A-+ B. For
example A may be exactly the set of acceptable symbols of a non-terminal symbol at the top of a
parsing-stack context

The typical approach in compiling is to define an error-recovery routine which is invoked if a
symbol not in A is given. An interpreter for the sarne language may save error-recovery by
enforcing the userto input a symbol in A2• Abstractly, this can be specified by 3:

let x e A in f(x)

a standard implementation of which is :

let x = any(A) i~ f(x)

where

any(S) ,,;, let x e Keyboard in
if x e S then x else any(S)

pre-any(S) ~ S -.t: 0

The mathematical fact that any(S) may not terminate, models the operational behaviour of the
interpreter which will loop forever if no value in S is ever provided. lf S is a finitely enumerated
set, any(S) can be further refined into a menu-choice :

2 This possibility arises from lhe fact lhat an interpreter consumes its input stream in a "lazy cvaluatioo"
mode [He84) io cootrast wilh lhe "cager cvaluation" modc of compilers. This is a sublle fonnalizalion of lhe
relalionshíp betweeo lhe in.teractive and the corresponding batch processing of lhe sarne job.
3 For malhematical formulac in this paper we adopt lhe VDM [Jo86) notalioo.

lst Luso-German Meeting on Computer Graphics

any(S) ;, any _loop(buildmenu(S), default)

any loop(menu, defch) .;
- let k e {go, down} in

if k- go then menu(defch) else any_loop(menu, 1+ (defch mod (#dom menu)))

buildmenu(S) ;,
if S = 0 then []

else let s e S in [#S -+ s] © buildmenu(S - {s})

Note that this refinement step adds an extra design decision: the selection of a default menu­
choice, menu(defch) in S, corresponding to the initial option go.

For infinite sets S, this menu-refinement is not feasible since buildmenu would not tenninate.
However, if S is ZF-abstractable, ·

S"" { y e Keyboard lp(y)}

then the evaluation of p(y) can formally substitute the test xe S, in the definition of any. The
corresponding action, at implementation level, is to invoke a input-validation routine.

4. Interaction versus Unreliability.

As discussed above, man-machine communication is bound to be established by formal command
languages. Since users think informally and speak natural languages, there is a mismatch
between the fued syntax of the machine command-language and the user's linguisric freedom.
Therefore, users tend to forget the details of such a fixed-syntax and erroneous interactive ses­
sions appear.

A standard approach to similar problerns in editing software, is the use of syntax-directed editors.

This strategy is clearly applicable to interaction, which is formally equivalem to editing a
command-language (" lazy") stream. ln fact, it is interesting to note that this leads to what is infor­
mally known as the assisted-mode for user interfaces. For the sake of generality, [M086] uses
algebraic language description [0"'77], which is an algebraic approach to abstract-syntax [BJ82].

For example, the following fragrnent of a concrete BNF for a simplified comrnand-language syn­
tax,

<CLANG> ::-<FILE-COMMAND> I <DIRECTORY-COMMAND> 1 ...

<FILE-COMMAND> ::= COPY <FILESPEC> <PATH> 1 DEL <FILESPEC>
<DIRECTORY-COMMAND> ::= DIR <PATH> 1 ...

<PATH> ::- ...

is abstractable in terms of the heterogeneous algebraic signature L = <S, F>, whose sons are
exactly the non-terminal syrnbols of the BNF above, and F involves abstract operation-symbols
such as: ·

opl: <FILE-COMMAND> -+ <CLANG>
op2 : <DIRECTORY -COMMAND>-+ <CLANG>
op3 : <FILESPEC> <PA TH> -+ <FILE-COMMAND>

N-4

lst Luso-German Meeting on Computer Graphics

Finally, the specification of an abstract assisted-interface is readily available from the editor­
scheme of [M086],

assist(:E) ;, let s e S in buildtenn(s,:E)
% user chooses the sort (non-terminal) of the input comrnand %

buildterm(s,:E) ;
let op e ops?(s,'L) in

% choice of an operator of co-arity s, ie. BNF production for s % .
let a = arity(op,'f.) in

mk-Term(op, <buildterm(sl,'f.) 1 sl ~a>)

in which the recursive calls to buildterm terminate wherever constant operators o : -+ s are
selected.

The usual menu-oriented appearance of assisted-interfaces, derives from systematic refinement of
non-deterministic choices such as let se S. Note that assistis a structural extension of any.

5. lnteraction versus Incompleteness.

The user-interface standard formalized so far, is not yet adequately tuned to user-psychology.
This is because vagueness has not been taken into account. This aspect of user-behaviour is,
perhaps, the most relevant. ln fact, users do not usually have a comprehensive knowledge of the
jobs they want machines to do and even when syntax-assisted, they do not grasp all the semantic
details of the command-language. Humans vague idea of a concrete command can be iegarded
as a precise idea of a generic class of commands. This calls for the notion of archetype, previ­
ously developed in [M085, M086] in a computer-graphics environment4•

5.1. Command-Archetypes.

Command-archetypes are generic-commands whose formaliz.ation is immediate in an algebraic
setting, via the notion of a higher-order 'rt-term (cf. [M086] for details). ln the signature above,
for exarnple, the lambda-expression

Â.x . op3(x,b:)

equivalem to the BNF-expression

Âx. COPY x b:

denotes the archetype (ie. class) of ali "copy ... to drive b:"-comrnands. The informal notion of
vagueness is captured by uninstantiated variable-names. Instantiation of higher-order terms is the
operation provided for supplying further infonnation. For example the instantiation,

[' a:z.bat' /x]'COPY x b:' = 'COPY a:z.bat b:'

leads to a term denoting the class of ali commands which "copy a batch file from drive a: to drive

"'The term archetype was suggested by Plato' s reminiscence lheory, which is curiously related to the formal­
isms described in [M085, M086).

N-5

1 st Luso-German Meeting on Computer Graphics

b:" (neatly a subclass of the original).

5.2. Archetype-oriented CHI.

Among the fonnal aspects of this notion of an archetype, one is particularly relevant to CHI: vari­
ables can be substituted in any arder (ie. À-expression "currying" is associative and commuta­
tive). ~s is the basis of flexible command-parameter setting such as, for example, in the Lotus
1-2-3 e software-package user-interface. ·

How can command-archetypes be executed ? The answer amounts to defining automatic instan­
tiation mechanisms for all archetype variables. Possible schemes are :

a) Non-deterministic choice among the set of all possible 'substitutions';

b) Interactive choice, which realizes non-deterministic choice;

e) Supplying default-data (ie. a default substitution per each :E-'context').

Again the Lotus 1-2-3© user-interface uses a combination of schemes (b) and (e), together with
'flexible currying'.

6. The Specification of ASSIST.

Given the above presented fonnalisms, it was easy to write a concise VDM specification of the
kemel of ASSIST [P*87]. A metoo [He85] prototype of this specification is currently being exer­
cised.

ASSIST is parameterized wn. the BNF-description of a command-language G. When invoked,
ASSIST(G) becornes a node "grafted" between the user and the G-interpreter, which can can­
celled via the "!" ("bang") meta-command and re-invoked via the "A" ("assist) meta-comrnand.

keyboard in

USER ASSIST(G) G-INTERPRET

-- screen OUl

~

G-1 NF

After a G-command being synthesized by ASSIST(G), it is forward along channel in, which is
thus a lazy G-stream. This is triggered by the "G"(o) meta-command, which replaces ali (if any)
uninstantiated variables in the command-archetype by default substitutions5, and sends the fully­
instantiated command to the G-interpreter.

ln summary, the keyboard-channel is of type lazy-stream of 'meta-commands' (basically a sim­
ple language for menu navigation) which (through ASSIST) becomes a lazy-stream of

e Copyright 1985 by Lotus Development Corporation.
5 These are specified in lhe first production of each G-nonterminal N. However, lhe user-choice in lhe last
unfolding of N, in a given context, is kept as a local defaull N-substitution. So, user most-recenUy-creat.e<l ar­
chetypcs are "strongcr" lhan default values. This localiry of conJext is a relevaot aspect of lhe archetype para­
digm [M086).

N-6

lst Luso-German Meeting on Computer Graphics

symactically correct G-commands, sem forward to the G-interpreter.

The usefulness of ASSIST should be equated in terms of not only already existing softWare, but
also software to be designed. ln the former case ASSIST requires only a formal syntax descrip­
tion of the application's command-language. lt is more interesting to consider the later case, in
which no formal command-language previously exists. ·

7. Automatic Generation from Formal Specifications.

Suppose that a formal specification methodology is being used in the design of a package. It is
shown next how interactive (or batch) communication with the package can be automatically
inferred from the specification itself. Consider the following excerpt of a VDM specification of a
bank-account-managemem system.

INIT
State : Bank Account DataBase
post-Init(db,db')., ... -

BALANCE
State : Bank Account DataBase
Type: Account_Nr...; Amoum
pre-Balance (db,a)"" ...
post-Balance (db,a,db' ,e')-= ...

OPEN
State : Bank Account DataBase
Type: Account_Nr HÕlder_Id --+
pre-Open (db,a,h) - ...
post-Open (db,a,h,db') = ...

DEPOSIT
State: Bank Account DataBase
Type: Account_Nr Amount --+
pre-Deposit (db,a,c) = •..
post-Deposit (db,a,c,db')"" .. .

From the operation names and operation type-arities the following abstract syntax is defined,

<COMMAJ\TD> ::= INIT I
BALANCE <Account Nr> I
OPEN <Account Nr> -<Holder ld> 1

DEPOSIT <AccÕÜnt_Nr> <Amount> 1

which should be completed with the abstract-syntax provided for the involved objects, eg.
Account_Nr. For parsing reasons, this syntax might be "sugared" into the form,

N-7

1 st Luso-German Meeting on Computer Graphics

<COMMAND> ::- INITIALIZE I
BALANCE FOR <Account Nr> I
OPEN <Account Nr> FOR -<Holder ld> 1

DEPOSIT <ArnoÜnt> INTO <Account_Nr> 1

Such syntax-details are no longer required for the user-interface, since ASSIST will automatically
provide a <COMMAND>-directed interface. Generally speaking, behind any VDM rnodel­
specification, of the form <Abstract Syntax, Operations>, there is, implicitly associated, a family
of command-lan~ages such as, for example,

<COMMAND> ::- <0PlCMD> I <0P2CMD> 1 ••.

<0P1CMD> ::- OPl <Al> <A2> ... <An>

<Al> ;:
<A2> ::- .. .

At the refinement phase, the first levei of semantic-checking can also be inferred from the specifi­
cation, by running data-type invariants and pre-conditions where appropriate (this may be called
design-time type checking). Running data-type invariants is required only for keyboard-input
operations, since the VDM "proof obligations" discipline forces the software designer to supply
formal arguments that all operations preserve the invariants. Post-conditions can be regarded as
the specification of the semantic-actions whose code will be called by a <COMMAND>-parser.

N-8

lst Luso-German Meeting on Computer Graphics

8. Conclusions and Further Work.

This paper has shown how mathematical specification techniques can be used to formalize some
basic aspects of CHI, starting from informal analysis of user behaviour. A more elaborate user­
model than the one used here would naturally lead to a richer formalization. Our point was, how­
ever, to show how mathematical models can effectively be built from such informal models.

This work also shows that formal specification makes for better understanding of computers and
systems, facilitating the establishment of relationships among apparently disjoint areas of com­
puting. For example, we have shown that the standard assisted-interface is a mere instantiation of
syntax-directed editing. Furthermore, it has been very rewarding to realize that our formal model
of user-interface embodied the concept of an archetype, previously developed in another context.
Note that our notion of 'generic command' is different from the one of [RM85], where generic
commands are "recognized in all contexts of a computer system" and are "extremely general
actions which make minimal assumptions about their objects". ln algebraic terms, they
correspond to overloaded signature operators rather than derived ones [G* 76].

We have also shown how these formalisnis are applied to the specification of ASSISI', a mechan­
ical generator of assisted-user-interfaces (AUI), how model-oriented and property-oriented
specification styles may coexist and, the last but not the least, how an interaction-language can be
formally derived from a formal specification.

ln the future, we will need to formalize the "output-language" as well, ie. the one implicit in each
operation type-definition co-arity. This has to do with ASSIST's behaviour towards the out­
stream (cf. picture above) which, at the moment, is copied onto the screen.

N-9

lst Luso-German Meeting on Computer Graphics
·, ,-..

References

[BJ82]
Bjorner D. and Jones C.B., Formal Specification and Software De-;elopment, Prentice-Hall
International, Series in Comp. Science, Hoare C.A.R. (Ed.), 1982.

[Du87]
Duce D.A., F armai Specification of Graphics Software, Int. Repon Rutherford Appleton Labora­
tory, Chilton, Didcot, England, 1987.

[G*76]
Goguen J., Thatcher J. and Wagner E., An /nitial Algebra Approach to the Specification,
Correctness and lmplementation of Abstract Data Types, Tech. Rep. RC 6487, IBM T.J.Watson
Research Center, Oct. 1976.

[G*77]
Goguen J.A., Thatcher J.W., Wagner ·E.W. & Wright J.B., /nitial Algebra Semantics and
Continuous Algebras, JACM 24(1), 68-95, Jan. 1977.

[He84]
Henderson P., Communicating Functional Programs, Interna! Repon FPN-8, Dep. Comp. Sci­
ence, University of Stirling (Scotland), Dec. 1984.

[He85]
Henderson P., "me too" - A Language for Software Specification and Model Building - Prelim­
inary Report, Internal Repon FPN-9, Dep. Comp. Science, University of Stirling (Scotland),
1985.

[Jo86]
Jones C.B., Systematic Software Development Using VDM, Frentice-Hall International, Series in
Computer Science, Hoare C.A.R. (Ed.), 1986.

[M085]
Martins F.M. and Oliveira J.N., Graphics Programming with Archetypes - A Preliminary
Study, Proceedings of the EUROGRAPHICS'85 Conference, 401-412, Sept 1985, Nice, France,
Non-Holland Ed., 1985.

[M086]
Martins F.M. and Oliveira J.N., On the Specification of Archetype-Oriented Graphics Editors,
EUROGRAPHICS'86 Special Session, Aug. 1986, Lisbon , Ponugal, IntRep. CCES:FMM­
JNO/R2-86, Univ. of Minho, Braga, Ponugal, August 1986.

[P*87]
Pinto A., Pacheco O. and Magalhaes P., The Formal Specification of ASSIST, Int. Rep.
CCES:OPl/Rl-87, Univ. of Minho, Braga, Ponugal, May 1987.

[RM85]
Rosenberg J.K. and Moran T.P., Generic Commands, Human Computer lnteraction­
INTERACT'84, B. Shakel (Ed.) , Elsevier Science Publishers B.V. (Nonh Holland), 245-249,
IFIP 1985.

'[Th86]
Thimbleb_y H., Ease of Use - The Ultimate Deception, People and Cornputers: Designing for
Usability, Proc. of the Second Conf. of the BCS-HCISG, Cambridge University Press, 1986.

N -10

