
lst Luso-German Meeting on Computer Graphics

TBESEUS onX
A Graphical User Interface System

Matthias Muth
(murh@zgdvda.uucp)

ZGDV
Zentrum für Graphische Datenverarbeitung e. V.

Wilhelminenstr. 7
D-6100 Darmstadt

Federal Republic of Germany

Joaquim A. P. Jorge
Uaj@inesc.uucp)

INESC
Instituto de Engenharia de Sistemas e Computadores

Rua Alves Redol, 9
1000 Lisboa

Portugal

1. Introduction

This paper describes TIIESEUS, a system to provide graphical user interfaces for
software tools, and highlight the implications of porting THESEUS to a multi-programming e environment.

It will first detail on the major concepts of TIIBSEUS:

a windowing concept which hides most window management tasks, such as moving or
sizing windows or doing window updates, from the application,

a graphics output system based on creating and manipulating objects,

an interactive dialogue system supporting direct manipulation, easily programmable
multi-threaded dialogues, incremental dialogue specification in a mixed control architec­
tural model,

integration of a window bases Graphics Kemel System (GKS).

The portation of the TIIBSEUS system from IBM-PC/ATs to UNIX workstations using
Version 11 of the X Window System from MIT is under way as a joint project effort of
ZGDV (Darmstadt, West Germany) and INESC (Lisbon, Portugal). This cooperation will
result in THESEUS being available as a graphical user interface for tools in many areas, such
as software engineering, expert systems, process automation.

A short introduction into the THESEUS concepts will be given. An overview of the
structure of the THESEUS implementation on Xll will provide the opportunity to demon­
strate the usefulness of combining the Xll Toolkit "widget" abstraction for user interface enti­
ties with the high levei concepts of THESEUS.

C-1

lst Luso-German Meeting on Computer Graphics

It will be shown how THESEUS in cornbination with some Xll concepts such as
resource management and defaulting mechanisms can be used to easily create graphics user
interfaces and adapt them to the user's and the application's preferences.

The important issues raised by porting THESEUS from a single-user/ single-tasking
environment to the multi-user/multi-tasking world of UNIX and X will be shown up. The
questions involved are how THESEUS, incorporating window manager functionality in itself,
and the window managers supplied with Xll will be brought to cooperation. Some ideas
about how TiffiSEUS can be extended to make better use of multiprocessing will be
presented.

2. Major coiicepts of THESEUS

THESEUS is a Uscr Interface Management System allowing to design and control graph­
ical user interfaces in a multi window environment [Hübner87A], [Hübner87B]. TIIBSEUS
supports the use of graphics in designing man-machine interfaces and simplifies their imple­
mentation.

To the user, THESEUS offers the multi windowing concept to allow for working in dif­
ferent contexts at the sarne time. Within the windows, graphics is used to represent and visu­
alize objects, serving as the communication means between user and macb.ine. The objects
can be manipulated interactively in a manner which is obvious to the user, using direct mani­
pulation as a technique.

To the application programmer, THESEUS offers a high level abstraction of all user
interface related tasks. Physical abstraction frees the programmer from device dependencies,
such as display size and resolution. Logical abstraction is used to allow for creating and mani­
pulating graphics objects and their attributes in an application- oriented manner. On the input
side, the application is freed from specifics of the realization of interaction styles and interac­
tion techniques: e.g., menus, known to the application only as a 1-out-of-n selection, can be
implemented as pop-up menus triggered by pressing a certàin mouse button or as a top-line
drop-down menu or even as a command language or function key interface. The syntactical
feedback is consistent throughout the system because it in concentrated in one single package.

Control model.

The THESEUS programming interface is baseei on a modified extemal contrai model
(Fig. 1). This means that after an initialization phase in which the screen layout, initial
graphics objects and the application's reactions to user input related to these objects are set
up, the application gives control to THESEUS. From then on, THESEUS will call specific
application functions wbenever certain user actions occur.

From within these application functions, not only semantic and application-specific pro­
cessing may be carried out, but THESEUS functions may be called for output and window
control and for controlling further dialogue flow. This is dane by creating, deleting and modi­
fying input elements and input sets, and by activating and deactivating them to further con­
trai the application's reaction to user events. This will happen dynamically in the course of the
running application.

As an application function will only be called as a reaction to a specific user input event,
it is obvious that it will never have to deal with anything not in the semantic scope of this sin­
gle dialogue thread. Thus, severa! working contexts can be programmed independently within
the sarne application, allowing for multi-threaded dialogues by separating the event

C-2

lst Luso-German Meeting on Computer Graphics C-3

-.,.----,-----=---r-r-7-r--:'1'""7""77"'77'"7"':TT/7""7'>~T7777-::TT7777'7::TT777/71 Appl i ca ti on:
.........,,....,............,...,....._/] Initialisation

_..__..............., :""""<'"""',..-J,-.~~.,.-.,:-""~'""''""'"""""~~~~=-"'=-"'~ THESEUS:
Dialoaue

~~~~~~~~~~~~~~~~~~~~~_,__,......._""4".._,.__._._._-'--"'__.Managér 

,....,,....,......,.....,.....,...-r-"'r-r-7....,.....,.-,,-,....,...;~"7-r//"/""";"'7'"':rlr-'T'T777ii'-r-;"'7'::rr.TT77"T777~1"/,771Application: 

Processinq 

THESEUS: 
~,........_...-.-.....-.,........_ ................... ,........... ................... ~-d-..,~~"""~"'"""'~~"""'""t"'\:°"'t""~"'"""'~~~ Presentation 

Manaqer and 
~~~~~~~~~~~~~~~~~~_,,_,~ .................... _._ ......... ~~--- Dialogue 

Control

Fig. 1: THESEUS Conrrol Model

dispatching mechanis~ from the application.

Object oriented graphics output.

THESEUS graphics output is based on the definition ... of output objects. These objects can
be created and exist until they are deleted again, and their 'attributes may be changed dynam­
ically. This can be contrasted to typical graphics systems, which are usually not object-based
but operation-based.

THESEUS basic objects are simple geometric types like polygons, boxes, circles or text
or specific raster symbols provided for applications of a special area, such as software
engineering. They are defined in a two-dimensional world coordinate system of application
dependent size. These basic objects may be structured to form so called complex objects,
which can be manipulated exactly like any basic object. This way, applications can build up
hierarchical objects and form tree- like structures. Such a structure can be referenced in its
whole as a single object or its components can be worked on separately.

An attribute inheritance mechanisms allows do migrate attributes given to a complex
object to ali of its children objects. For each attribute of each child object it can be specified
whether an inherited attribute should be used or if the object overrides the inheritance
mechanism, using an attribute of its own.

Alphanumeric output.

THESEUS offers a special window type for alphanumeric output other than graphics
text. The levei of the programming interface corresponds to alphanumeric interfaces like
VTlOO. Cr nceptually, all the characters that are made available as output in such a window

lst Luso-German Meeting on Computer Graphics

are positioned in a world coordinate systern whose units of rneasure are rows and columns.
THESEUS maintains a buffer of dynam.ic size to store the text output in alphanumeric win­
dows in order to be able to do window redraws and to enable the user to scroll through the
text. Window Management.

ln the philosophy of the "user driven interface" incorporated in THESEUS, it is in the
user's choice to rearrange the screen layout at his will.

ln most window management systems, the application just gets notified when a typical
window operation occurs (e.g. moving or sizing the window) and is fully responsible for
redrawing the window contents when the need to do so arises (e. g. when an overlapping win­
dow is removed). THESEUS hides these tasks from the application. The object structure is
used to redraw the window contents when the window gets unhidden, when it is resized or
when the user uses the scrollbars to select another part of the world coordinate system to be
displayed within the window. e The application may be totally unaware of these window operations happening. How­
ever, it may be useful for the application to take some additional action after certain Window
opcrations. Tue application therefore may be informed about what has happened by supplying
TIIBSEUS with a function that is to be called when a specifific window event occurs.

To further support uniformity of the user interface, standardized HELP- and UNDO­
mechanisms are supplied using buttons in tbe border area of a window. Use of these buttons
also results in calling an application function whose task it is to supply context related help or
to undo operations the user initiated before.

Dialogue control.

User input consists of physical events generated by the user using input devices such as
the mouse and the keyboard. It it the main task of TiffiSEUS input and dialogue control to
collect these physical events and process them, eventually resulting in an application function
that is to be called. This is a multi-step process (see Fig. 2), in which care has to be taken to
solve ambiguities caused by severa! input sets or input elem_ents being active at the sarne time
that are triggered by similar sequences of physical input events.

Physical input events are related to one of the THESEUS input classes:

Menu selection

Icon selection

Object identification (pick)

Object movement (dragging)

Position arca input

Keyboard input

lnstances of these classes are called input elements. They are grouped together to form
input sets. E.g., a menu is represented by an input set whose input elements are the menu
items. rnESEUS provides functions not only to create and destroy input sets and input ele­
ments, but also to dynamically add or remove them from being managed by the THESEUS
event handler, to temporarily enable or disable them, and to set or inquire their attributes.

Each input element has the address of an application function associated with it. So if
IBESEUS finally related a physical event ora sequence of such events to a specific input ele­
ment, its corresponding application function is called by IBESEUS, passing in some details
of the recognition process as paramete"."s.

C-4

lst Luso-German Meeting on Computer Graphics

Fig. 2: Processing physical user input events

Severa! input elements can be connected to the sarne application function, and the
correspondence between input elements and application functions may also be changed
dynamically by calling TIIBSEUS functions.

Forms.

A graphic forms system is integrated into THESEUS. It offers editing of multi-line
scrollable text fields, buttons to implement l:n and m:n choices and the ability to use all possi­
ble graphics objects within forms.

GKS*.

The functionality of Graphics Kemel System GKS [IS086] has been implemented to
work in lliESEUS windows. Some extensions to the GKS standard specification have been
developed to integrate the window management capabilities of a system like THESEUS and
the standardized general purpose graphics capabilities of GKS [Lux-Mülders88]. The main
idea is to use a window as sort of a dynamically changing GKS workstation. The major
differences between the GKS standard and GKS* are:

Some fixed parameters of GKS workstations are made more flexible in GKS* to incor­
porate dynamic resource distribution (for display surface and colour indices).

User-invoked window-operations modify G~S* state list parameters directly, without
going through the application program. E.g., window sizing will result in a modification
of the GKS workstation transformation before redrawing the window.

C-5

lst Lus·o-German Meeting on Computer Graphics

The input rnodel of GKS* has been extended to allow context switching, i.e. to suspend
a GKS input request as long as the input focus is bound to another window or another
non-GKS* interacrion.

3. THESEUS architecture

The THESEUS architecture is shown in Fig. 3.

The Basic Input/Output Systern is an implernentation dependent part of the system. It is
used to hide device dependencies from the other modules for output and input. In the current
implementation, the Digital Research GEM product is used on the IBM-PC/AT to serve as an
interface to the various graphics cards.

Application Program e
"'-.......... llml!I-

'i ;-~·":~· -~%~~~i~:~~ ~~~~- ;;.-"'>~-:-·1 . ·.-- - --- ·~

É.; , Dialogue -~B Dialogue
:;-' Contrai ,,f;~·. Manager :::~::. Manager

~~~~·~li':~ 
] { Window Mana.ger it. 
~~~=-t~~c7Jg;f .~~~J~f~:fti1~:~ 
~- Basic Input/Output System f

~--~~~~ti·:~i:~~ :~E~~~~·-~~~ES.::e:u1~~I:

Fig . 3: THESEUS architecture

The Window Manager is responsible for ali window operations. It offers an output inter­
face which is capable of drawing output primitives into windows, providing clipping to win­
dow borders and hidden areas of windows and the transformation from window to screen
coordinates. Parts of this layer can be realized using existing window management systerns.

The Presentation Manager executes graphics and alphanumeric output and to provide
access to window control functions to the application. Here, the output data structures are
rnaintained.

The Dialogue Manager executes the transforrnation process from physical to logical input
events described above, eventually calling application functions. Its central instance is the
input class recognition mechanism, build as a finite state machine which is triggered ry

C-6

lst Luso-German Meeting on Computer Graphics

physical input events. Derived from the currently active input classes and elements, it selects
the physical events that it is capable of processing. It then will accept physical events to switch
through basic interactions such as popping down menus, highlighting items, dragging objects
etc. Reaching some of the states, application processing will be triggered, after which the
automaton starts ali over again, as a new interaction sequence can be started and there possi­
bly are new input elements to be considered after the application function was called.

The Dialogue Control module incorporates the programming interface that allows the
application to create, delete and contrai input sets and input elements.

4. Porting THESEUS to X

TIIBSEUS has been implemented on IBM-POATs using GEM. It has been made avail­
able to UNIX applications as a server process running on the PC that can be accessed as a
graphics front end for UNIX programs using a remate procedure call mechanism.

Wider spread use of THESEUS can be made as soon as it is available on UNIX worksta­
tions in a version based on the X Wmdow System, Version 11 [Gettys88].

X is a network transparent window system developed at MIT which runs under a wide
variety of UNIX workstations and is supported by all major workstation vendors. The X
Window System supports overlapping hierarchical subwindows and a basic set of graphics and
text operations both on monochrome and colour displays. X is designed as a "policy-free"
base mechanism that can be used by applications to implement their own style of graphics
user interface. ·

Together with X, the X Toolkit is provided, which gives programmers the next layer of
functionality [McCormack88], [Swick88]. The main concept of the X Toolkit is that of a
"widget", ..yhich is an abstraction for a simple or compound user interface entity. A widget ·
consists of an X window and its own associated semantics. Using an object oriented program­
ming approach, standard mechanisms exist to construct n~w widget classes, to combine widg­
ets into more complex ones, and to use a powerful defaulting mechanism.

Widgets are completely self contained entities. Each widget implements an event han­
dling routine that will be called by the central X Toolkit event dispatching routine
XtDispatchEvent only when an event happened that the widget had been waiting on. This is
easily done in X, as the widgets are realized as X windows, and each input event is directly
related to an X window (Fig. 4).

The input contrai model is very similar to that of TIIBSEUS in that application functions
are called whenever some semantic action has to take place ("client callbacks").

The X Toolkit supports combining widgets into composite widgets. A composite widget
implements a layout routine called geometry handler which is responsible for arranging the
positions and sizes of all the subwidgets, taking their respective wishes into respect or just
overriding them. The geometry handler does not need to know what kind of widgets it per­
forms its layout policy for.

In porting THESEUS to the X Window System, as much use as possible of the X Toolkit
philosophy as well as of the sample widget implementations that come with the system will be
ma de.

C-7

lst Luso-German Meeting on Computer Graphics

X Events
XtDispatchEvent

(... WindowlO ...)

Fig. 4: Dispatching X Events to Widgets

4.1. Mapping THESEUS Concepts to X

./"Wtdget B (Menu}
EventHandler

•

rW1dget N ' ·-.
\..,EventHandler À

ln the following, it will be described how the concepts and architectural properties of
THESEUS can be transfonned into the X world.

Window Management.

The window management area probably is the one tha! is influenced most by the change
of the underlying base system. Some special problems will be. discussed in a later section.

ln the X implementation of THESEUS, all the border interaction zones and the work
area of the window itself will be implemented as widgets. A geometry manager has to be writ­
ten that provides for the layout of a 1BE.SEUS window as seen in the current implementa­
tion. Many of the border zones will be instances of a predefined Button widget class.

For the work area, a "THESEUS work area widget" class will have to be created. The
window redraw mechanism will be pretty much the sarne as in the current implementation. It
will be possible to gather expose-events for the work area widget and to draw all output
objects looping through the object data structure.

Output.

ln the output area, an internai interface exists which makes a transformation of window
related output requests into calls to the basic input/output system. This part has to be rewrit­
ten, which seems rather straightforward, since in X, output is done in window coordinates, so
there is no need for a transformation, and X provides window border clipping automatically.
Both this had to be done by THESEUS on GEM. Object Management itself as well as the
implementation of the GKS* functionality probably can be done without major changes to
existing code.

C-8

lst Luso-German Meeting on Computer Graphics

X Events
XtDispatchEvent

C ..• WindowlD ...)

Fig. 4: Dispatching X Events to Widgets

4.1. Mapping THESEUS Concepts to X

on ,

Â
(' W1dget 8 (Menuf

EventHandler

rW1dget N

\";EventHandler '

ln the following, it will be described how the concepts and architectural properties of
THESEUS can be transformed into the X world.

Window Management.

The window management area probably is the one that is influenced most by the change
of the underlying base system. Some special problems will be' discussed in a !ater section.

ln the X implementation of THESEUS, ali the border interaction zones and the work
area of the window itself will be implemented as widgets. A geometry manager has to be writ­
ten that provides for the layout of a THESEUS window as seen in the current implementa­
tion. Many of the border zones will be instances of a predefined Button widget class.

For the work area, a "11IESEUS work area widget" class will have to be created. The
window redraw mechanism will be pretty much the same as in the current implementation. It
will be possible to gather expose-events for the work area widget and to draw all output
objects looping through the object data structure.

Output.

ln the output area, an internai interface exists which makes a transformation of window
related output requests into calls to the basic input/output system. 1bis part has to be rewrit­
ten, which seems rather straightforward, since in X, output is done in window coordinates, so
there is no need for a transformation, and X provides window border clipping automatically.
Both this had to be dane by THESEUS on GEM. Object Management itself as well as the
implementation of the GKS* functionality probably can be done without major changes to
existing code.

C-8

lst Luso-German Meeting on Computer Graphics

Input.

On the input side, the rather large central Dialogue Manager which is responsible for
processing ali input generated by the user will be split up into severa! parts. Menu and Icon
input classes can be broken out into (composite) widget classes of their own. This reduces the
class recognition finite state machine, which will have to handle only input evenrs that happen
within the work area of the THESEUS window and which correspond to one of the
IBESEUS Object Identification, Object Movement, Position Area Input or Keyboard Input
classes. Thus, the finite state machine will be the basis of the WorkArea widget's Event

Handler.

An input transformation from window to world coordinates is still necessary, as the work

area may be scrolled using the scrollbars.

The WorkArea Widget Class. e Once TiiESEUS is ported to X as described above, one can think of extracting the
object oriented output system and the input mechanisms related to these objects to implement
a version of the WorkArea widget class that fits smoothly into the X Toolkit set of widgets,
ready to be integrated into other X Toolkit client applications. The abstraction of widgers is
restricted to an X window as the smallest instance for which input may ~ processed. The
WorkArea widget will give applications the ability to create objects, to manipulate them and

to process input related to these objects within a widget window. Currently there is no widget
class offering this. In order to make the WorkArea widget available for X Toolkit applica­
tions, the programming interface would have to be totally redesigned to fit into the X Toolkit
concepts. While this is not intended currently, it is at least worth being thought about.

4.2. Resource management

In the X Window system, resource management provides a means to specify the user's
preferences of the user interface at runtime. Attributes Ií.ke the width and height of single
named widgets, preferred colour for window background, ptickness and colour of window
border, and even how user input will be translated into which syntactical or semantical feed­
back can be controlled by specifying X Resources. They override the default values and
actions built into the widget implementations. E.g., creating a command button widget
without changing any of the defaults will result in a standard text popping up in a little win­
dow which is just as large to hold the text, entering and leaving the window with the mouse
cursor will highlite and dehighlight the button changing its border thickness, pressing a mouse
button within the button will invert the text, and releasing it will call an application function.
Ali this can be changed at runtime.

For THESEUS, specifying X resources can be used to change some values which are
fi.xed in the current implementation (like the background colour of the work area), to tune
some of the systems limits depending on the applications foreseen needs, and maybe even to
expand the set of output objecrs, especially the predefined raster objecrs.

Not overriding the defaults will result in a well defined standard behaviour of the system.

C-9

1 st Luso-German Meeting on ·Computer Graphics

4.3. Multitasking issues

11-IESEUS originally was originally designed without any implication of its implementa­
tion being based on a single- or multi-tasking system. The progmmming interface is free of
assumptions about other applications running or not running at the sarne time.

However, there are severa! areas where the straightforward projection of the curreúl:
implementation on MS-DOS into a multi-user/multi-tasking environment may raise some
problems which will be discribed below.

Window Managers.

As the main value of THESEUS lies in the way that the programmer's interface supports
output objects and input abstractions to an application, not in the specialty and flexibility of
its user interface, it was decided that THESEUS on X should not replace other window
managers r'unning on the workstation. THESEUS is linked to an application as a set of library
functions, providing the user interface for this application only. Severa! THESEUS applica­
tions may run at the sarne time without interfering each other.

Screen Layout.

In the current implementation, icons are being drawn on the screen background. As
there is only one application, it is obvious that the icons belong to this application. This is not
the case in a multitasking environment. Visual hints have to be added to make an icon's
belonging to a certain application apparent to the user. These visual hints may range from
giving the sarne border colour to the icons and to the windows of one application up to
presenting a "virtual screen background", i.e. a window that contains all the icons and
THESEUS windows of one application. The latter approach reiieves the problem tbat occurs
when an applicati'on window is raised to the top by means of the system's window manager,
possibly leaving this application's other windows and its icons hidden behind some other
processes' windows. Moreover, 1HESEUS applications may want to have finer control over
its windows' initial placement when the window contents belong closely together. This, too,
would be made easier using a common background window as a reference to which all icons
and windows could be positioned.

A problem with this is how to select the size of the background window. For porting
already existing applications clearly a background window having the size of a PC screen
would be ideal. This would make TiiESEUS on X look more like a PC emulator window.
This technique clearly may not be acceptable for applications originally designed for the
UNIX environment or for applications that just use one single window. A solution could be to
use an initialization parameter to tell TiiESEUS about which technique should be used. Ini­
tialization parameter were built into the TiiESEUS programming interface as reserved but so
far unused, foreseeing purposes like this one. Another possible way would be to use the X
resource mechanism, giving a virtual background screen of fixed size as default if the applica­
tion or the user does not explicitly specify that another size or no background window at ali is
desired.

Inter-application communication.

In a multi-programming environment like UNIX, especially on a workstation, where
many application are visible to the user and interacting with him at the sarne time, it becomes
apparent that there is a need for applications communicating with each other to share infor­
mation md data. One technique typically used in text windows, but also in graphics programs

C-10

1 st Luso-German Meeting on Computer Graphics

is to cut out information fyom one application's display into a special memory pool and to
reinsert this data into another application. Mechanisms to do so are often supported by the
operating system (e.g. UNIX message qÚeues or named pipes) or by the windowing software
(clip areas or cut buffers). This is not very complicated for text, but if applied to other data ,
conventions have to be set up about the data types to be transmitted this way and about the
format the applications use to store and recall special types of data from the buffers.

While applications are free to communicate using operating system facilities or a com­
mon data base, there currently is no mechanism in THESEUS to share user interface data.
Therefore, the application interface has to be enriched at least by functions for saving selected
user interface data (of both dialog state and output objects) in a file, which could then also be
used to suspend a running application and resume it at a later time.

Another issue is how applications can share common user interface facilities at runtime.
It is imaginable to have a window in which different objects are controlled by different appli­
cations. This would have to result in a totally different structure of the TIIESEUS implemen­
tation where TIIBSEUS runs as a centralized server, executing ali output and dialogue control
requests of ali applications, and dispatching input events to the applications not only on a
per-window, but on a per-object ora per-input-element basis.

Once THESEUS is running as a separate process, however, one can experiment to
extend THESEUS from the fully synchronous manner of input processing to dispatching
events asynchronously while the application may do other tasks at the sarne time. A mechan­
ism for the application to find out or be informed about the current user activity or inactivity
would have to supplied.

Another advantage of separating TIIBSEUS into a process of its own is that there is no
cede duplication of the user interface any more, which makes it easier to control version
updates and to ensure the uniformity of the user interface after changes to THESEUS.

5. Conclusion

e THESEUS is a system that provides graphical user interfaces, offering an application­
oriented programming interface. Porting TIIBSEUS to the X Window System will make it
available on a large number of workstations. It has been shown how the X and X Toolkit con­
cepts support the tasks of TIIBSEUS and reduce complexity in its implementation. Some
issues raised by switching over into a multi-tasking environment have been pointed out and
some ideas have been presented of how future extensions to THESEUS or new versions could
look like.

Literature

Gettys88:
Jim Gettys, Ron Newman, Robert W. Scheifler. Xlib - C Language X Interface: X Win­
dow System, X Version 11, Release 2. Cambridge; Maynard, 1988.

C-11

lst Luso-German Meeting on Computer Graphics

Hübner87A:
Wolfgang Hübner, Gregor Lux-Mülders, Matthias Murh. THESEUS: Die
Benutzungsoberfiáche der UniBase-SoftwareentwickJ.ungsumgebung, Beitrãge zur Gra­
phischen Datenverarbeitung. Berlin [etc.]: Springer, 1987.

Hübner87B:
Wolfgang Hübner, Gregor Lux-Mülders, Matthias Muth. "Designing a System to Pro­
vide Graphical User Interfaces: The TiffiSEUS Approach". Eurographics'87, G.
Maréchal (ed.). Amsterdam [etc.]: Elsevier, 1987. pp. 309-321.

Lux-Mülders88:
Gregor Lux-Mülders, Wolfgang Hübner, Matthias Muth, Udo Brand, Thomas Nõtling.
"An approach for the integration of general purpose graphics systems and window
management", The Visual Computer, (4)1988, pp. 159-171.

McCormack88:
Joel McCormack, Paul Asente, Ralph R. Swick. X Too/kit lntrinsics - C Language X
Interface: X Window System, X Version 11, Release 2. Cambridge; Maynard, 1988.

Swick88:
Ralph R. Swick, Terry Weismian. X Toolkit Widgets - C Language X Interface: X Win­
dow System, X Version 11, Release 2. Cambridge; Maynard, 1988.

C-12

