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Abstract

High-performance computing trends are requiring in situ processing increasingly often. This work considers automating camera
placement for in situ visualization, specifically of isosurfaces, which is needed when there is no human in the loop and no a
priori knowledge of where to place the camera. Our approach utilizes Viewpoint Quality (VQ) metrics, which quantify which
camera positions provide the most insight. We have two primary contributions. First, we introduce an approach parallelizing the
calculation of VQ metrics, which is necessary for usage in an in situ setting. Second, we introduce an algorithm for searching
for a good camera position that balances between maximizing VQ metric score and minimizing execution time. We evaluate our
contributions with an in situ performance study on a supercomputer. Our findings confirm that our approach is viable, and in
particular that we can find good viewpoints with small execution time.

1. Introduction

In situ processing has become an important technique for visualiz-
ing and analyzing data from computational simulations on modern
supercomputers. Its benefits include reducing I/O costs and access
to increased temporal resolution. That said, in situ processing can
also generate new challenges that were not present with the tradi-
tional model of post hoc processing. In particular, while it is possi-
ble to perform in situ processing with a human in the loop (HITL),
the large majority of in situ processing is done with no human in
the loop. This change is important: where the HITL model enabled
domain scientists to bring their expertise to direct the visualiza-
tion and analysis process, their absence requires new approaches
for performing this direction.

There are multiple strategies for directing visualizations and
analyses with no human in the loop. One strategy is to determine
how visualization and analysis should be carried out beforehand
and encoding these directions for in situ processing before the sim-
ulation begins. In particular, sometimes predecessor calculations
inform good settings, and those settings can be reused. Another
strategy is to defer, i.e., reduce the data set to a small enough form
that it can be saved to disk, and then perform the visualizations and
analyses afterwards in a post hoc and HITL fashion. That said, this
strategy can create a tension between the amount of data reduction
that can occur and the loss of data integrity. A third strategy is to au-
tomate the settings for visualizations and analyses. In this case, in
situ infrastructures must be augmented with new algorithms whose
sole purpose is to calculate these settings. We feel all three strate-
gies are useful, and require attention from the in situ community.
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With this work, we focus on the third strategy, considering the task
of automated camera placement.

Camera placement is a critical task for scientific visualization. In
a typical post hoc setting, the camera placement process starts with
some default camera position (e.g., zoomed out with the camera
translated down the Z-axis and pointed at the center of the data
set). Next, a domain scientist uses a mouse to modify the camera
position, and the visualization program shows them the scene from
the new viewpoint. This sequence is performed repeatedly until the
domain scientist locates a position that increases their insight.

In the context of an automation strategy, in situ systems need
algorithms that identify useful camera positions, ideally positions
that are as useful as the ones the domain scientist would produce
in a HITL setting. This is a somewhat daunting task, as it requires
evaluation of what makes one camera position more useful than
another. Fortunately, previous research by the scientific visualiza-
tion and graphics communities have provided some insight. This
research has focused on Viewpoint Quality (VQ) metrics, i.e. met-
rics that quantify the camera placement of a data set. Previous re-
search has primarily considered the post-hoc setting, with one of
two possible goals: saving time for domain scientists (since they
would not have to go through the process of finding good camera
positions themselves) or discovering unexpected camera positions
(i.e., using automation to become better at finding camera positions
than domain scientists, and then helping them find camera positions
they would not have discovered on their own). Our work is the first
to consider this approach in an in situ setting.

There are two major challenges to deploying VQ metrics for in
situ camera placement. The first challenge is selecting VQ met-
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rics that will fit within an in situ environment, i.e., they can be en-
hanced to run in a distributed-memory environment and can operate
quickly on many-core architectures. The second challenge is find-
ing a quality viewpoint quickly. As there are an infinite number of
possible camera positions, it is critical to find a good camera place-
ment without having to consider 100s or even 1000s of viewpoints.

The two contributions of this work are:

e We develop a parallelization scheme for two common patterns of
VQ metrics that enable VQ metrics to be deployed in a parallel
(distributed-memory+shared-memory), in situ setting. While the
parallelization is straightforward, we demonstrate feasibility and
also that the approach is performant. This is, to the best of our
knowledge, the first-ever approach for parallelizing calculation
of these metrics.

e We develop search algorithms that trade off between camera
quality and total execution time. We also evaluate these algo-
rithms, and provide practical suggestions about “sweet spots”
between these tradeoffs.

In all, this work provides a pragmatic and useful approach for effi-
cient in situ automation of camera placements.

2. Related Work

As discussed in the introduction, Viewpoint Quality (VQ) metrics
are functions that quantify the camera placement of a given data
set. There has been a wide breadth of research on developing VQ
metrics, in particular because these techniques have many appli-
cations, including scientific visualization, object recognition, scene
navigation, and mesh simplification. Most recently these metrics
have been surveyed by Bonaventura et al. [B*18], with previous
surveys by Polonsky et al. [P*05], Dutagaci et al. [D*10], and Sec-
ord et al. [S*11a].

The survey by Bonaventura et al. [B*18] organizes the metrics
into five categories based on what aspect of the data the metrics
incorporate in their calculations. These categories are: area [Ple91,
PB96,V*01,SFR*02,B*11,S*05,F*09], depth [SS02,S*11a], sil-
houette [P*05, P*03, V*09, S*11a], image stability [BS05, BRS82,
Bla87, F*09, Lin91, V*01], and surface curvature [P*03, P*05,
L*05,1%98,SP05,F*09]. The majority of the surveyed works above
are based on use cases that do not involve scientific data.

There have been several works focusing on scientific data. Taka-
hashi et al. [T*05a, T*05b] developed several VQ metrics for vol-
ume rendering, including metrics based on weight and unweighted
isosurfaces and interval volumes. Ji and Shen [JS06] also consider
viewpoint selection for volume rendering, producing a static ap-
proach that utilizes opacity entropy, color entropy, and surface cur-
vature maximization. They then employ dynamic programming in
conjunction with their static approach to determine viewpoint se-
lection for time-varying volume data. Work from Tao et al. [T*09]
used feature-based VQ metrics to determine the best viewpoint of
volume renderings. Another work from Tao et al. [T*16] used a
voting-based strategy that compares the input volume rendering
with a database of visually similar images that they believe to be
preferred viewpoints of visualization experts. Naraoka et al. [N*07]
applied illumination entropy to volume renderings to determine the

optimal light placement when the camera placement is fixed. For
flow visualization, Lee et al. [L*11] calculated the entropy of vec-
tor fields to determine both seed and camera placement. In another
approach, Tao et al. [T*13] utilize mutual information to define
seed placement as well as optimal viewpoints and camera pathlines.
Most recently, Marsaglia et al. [M*21] developed metrics that ap-
ply entropy to the visible field data, visible depth of the field data,
and the visible shading coefficients of the visible data of isosurface
images.

In terms of evaluation, Bonaventura et al. [B*18] tested the sur-
veyed metrics using the Dutagaci benchmark [D*10], a benchmark
composed of viewpoint preferences of 26 human subjects of 68 rec-
ognizable 3D objects. For scientific data, Marsaglia et al. [M*21]
performed a user study of large data visualization experts, asking
for a preferred image between a data set rendered from two differ-
ent camera positions. They found that their entropy metrics align
with user preference 68% of the time, and they were particularly
effective at identifying disliked camera positions. This work is key
to our own research, since it establishes that certain VQ metrics
truly do predict user preference for large data visualization. Further,
while our work considers a broad set of VQ metrics, this set in-
cludes the entropy metrics from Marsaglia et al. In other words, the
Marsaglia user study establishes that the parallelization and search
approaches we introduce in this work will produce useful results.

With respect to automating camera placement, previous works
have primarily aimed to optimize volume rendering. Bordoloi and
Shen [BS05] argued that the best viewpoints for volume rendered
data must (1) display voxels with high noteworthiness factors and
(2) viewpoints must contain an high amount of information. Correa
and Ma [CMO09] implemented the first criterion, allowing users to
determine importance metrics that would then be used to create a
transfer function to highlight the chosen intervals. That said, in the
end, this work automated designing a transfer function from some
viewpoint, rather than automating the viewpoint selection itself. Vi-
olaetal. [V*04,V*06] took a similar path, also utilizing importance
metrics to create a transfer function, but then implemented the VQ
metric Viewpoint Mutual Information (VMI) to automatically de-
termine the best viewpoint. Finally, Yao and Wang [XY15] em-
ployed Al to determine both the transfer function and best camera
placement.

In our study, we incorporate the same eleven VQ metrics
Marsaglia et al. evaluated in their user preference study [M*21].
They selected these metrics based on their potential for in situ:
small memory footprint, low communication overhead, and quick
execution time. The eleven metrics are summarized in Table 1. Ad-
ditionally, since each of these VQ metrics operate on surface data,
all of the data sets used in this work are first transformed into iso-
surfaces before being rendered and evaluated.

3. Our Method

This section describes our method in two parts: Section 3.1 de-
scribes our parallelization for the calculation of VQ metrics, while
Section 3.2 describes how we search for a good camera placement.
In terms of relationship between the two parts, the search algorithm
operates by evaluating VQ metrics at potential camera positions,
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Table 1: Descriptions of the 11 VQ metrics used in this research.

VQ Metric Definition
Maximizes the entropy of the visible
Data Entropy field data from some viewpoint [M*21].
The sum of the three VQ metric scores:
Data Entropy + Depth Entropy + Shading Entropy [M*21].
DDS Entropy The Marsaglia user study showed this metric
was most aligned with user preference.
Maximizes the entropy of the visible
Depth Entropy depth data from some viewpoint [M*21].
Max Depth Maximizes the visible depth from some viewpoint [S*11a].
Plemenos and Maximizes the number of visible triangles as
Benayada (PB) well as the resolution of the rendered image [PB96].

Maximizes the visible projected area of
the data set from some viewpoint [PB96].
Maximizes the entropy of the visible shading
coefficients from some viewpoint [M*21].
Maximizes the entropy of the projected area
from some viewpoint [V*01].
Maximizes the ratio of visible surface area
over the total surface area.
Maximizes the total number of visible triangles

Projected Area

Shading Entropy

Viewpoint Entropy

Visibility Ratio

Visible Triangles from some viewpoint [PB96].
. . Minimizes the distance between the normalized
Viewpoint o . .
. distribution of projected areas in Image Space
Kullback-Leibler and the normalized distribution of projected
distance (VKL) prej

areas in World Space [S*05].

and it uses our parallelization approach to quickly calculate these
metrics in a distributed-memory, in situ setting.

3.1. VQ Metric Parallelization

The eleven VQ metrics we consider all operate by analyzing the
result of a rendering process. That is, a rendering process takes iso-
surface data as input and produces an image, and then a VQ metric
analyzes the image to produce a number. However, each VQ metric
alters the rendering process to accomplish its goals. For example,
the “visible triangles” metric annotates each triangle with a unique
identifier prior to rendering, and the result of the rendering process
is an image where pixels contain triangle identifiers instead of col-
ors. For this metric, if a triangle with identifier T is visible from
a given camera position at pixel P, then the image data for pixel
P will contain 7. The metric can then count the number of visible
triangles by counting the number of unique identifiers in the image.

We implemented our algorithm in the Ascent in situ li-
brary [L*17], which makes use of VTK-m [M*16]. VTK-m oper-
ates on shared-memory architectures, and Ascent adds distributed-
memory parallelism via MPI. VTK-m employs a portable paral-
lelism approach: algorithms are implemented using data parallel
primitives, which then get executed efficiently on devices using
an appropriate backend (CUDA, OpenMP, Kokkos). Our approach
built on the parallel rendering infrastructure within Ascent/VTK-m,
which follows the traditional approach: each MPI task renders its
own data to make a sub-image and then all MPI tasks participate in
a compositing phase where the sub-images are combined to make
a single image with a resolution of 1024 x 1024. For our approach,
we adapted Ascent’s rendering workflow to have the requisite in-
formation to carry out a VQ metric calculation (e.g., triangle iden-
tifiers), had Ascent render and composite the data from some view-
point, and then analyzed the result using VQ metrics. The VQ met-
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ric calculations were implemented using a combination of VTK-m
(using shared-memory parallelism to analyze images to calculate
metrics), and MPI (to coordinate calculations across MPI tasks).
VTK-m achieves performance and portability by writing visualiza-
tion algorithms as VTK-m worklets that utilize parallel primitives.
Parallel primitives can then be mapped to any architectures respec-
tive parallel routines, enabling efficient usage of the processor’s ar-
chitecture. We re-wrote each viewpoint quality metrics as VTK-m
worklets in order to optimize their shared memory performance.
Listing 1 shows C++ code that uses VTK-m to perform the local
calculations for the VQ metric Max Depth.

Listing 1: C++ code that uses VIK-m to perform the local cal-
culations for the VQ metric Max Depth. As input, this templated
Sfunction receives a rendering of the data set from some viewpoint,
where, instead of RGB values, the pixels contain depth values,
namely the distance from the camera to the visible geometry. The
code for object MaxValueWithChecks can be found in Listing 2 at
the end of the paper.

template <typename T>
T calculateMaxDepth(const vtkm::cont::
ArrayHandle <T> &depthData)

T depth = —-1.0 % (T)std:: numeric_limits <
int >::max () ;

if (depthData.GetNumberOfValues() > 0)
{
MaxValueWithChecks<T> max {
—1.0 % (T)std :: numeric_limits <int >::
max () ,
(T)std :: numeric_limits <int >::max () };
depth = vtkm::cont:: Algorithm :: Reduce (
depthData, depth, max);
1
return depth;

}

As shown in Figure 1, the VQ metrics all follow one of two
execution patterns. The execution patterns differ in the amount of
global communications, as some VQ metrics require one such com-
munication, while others require two. In the former case, the met-
rics receive the data, perform local calculations, and then globally
coordinate the final metric score. In the latter case, the individual
ranks first perform any local calculations, second they coordinate
globally, third they again individually perform any local calcula-
tions, and then finally they do one more global coordination to cal-
culate the final score.

Data Entropy is an example of a VQ metric that requires only
one global communication. From Ascent, this metric receives the
minimum and maximum field values, as well as a rendering of the
visible field data from some camera placement. In our infrastruc-
ture, rank O is the only process that receives the composited render
of the visible data. From here, rank O sorts the visible data present in
each pixel into a histogram comprised of 1000 bins that are equally
spaced using the field range. After creating a histogram, rank 0 can
calculate the probability of each field value and calculate entropy
using Shannon’s Entropy. Lastly, rank O broadcasts the final en-
tropy score to the other ranks.
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Figure 1: The VQ metrics receive as input a rendering of the data set from some viewpoint, with the pixels in this rendering containing
informative values (such as depth information, i.e. the distance from the camera to the visible geometry) instead of traditional RGB values.
Using this input, the implemented metrics require either one or two global coordinations when computing a viewpoint score following any

necessary local calculations, as shown.

Visibility Ratio is an example of a VQ metric that requires two
global communications. From Ascent, this metric receives a render-
ing that details the visible triangles via triangle identifiers. (Again,
rank O is the only process that receives the composited render of
the visible triangles.) In the first phase of local work, each rank
calculates the surface area of their local geometry. The first global
communication is an MPI_Reduce summation that adds up each
rank’s local surface area and returns a global surface area to rank 0
(the root process). In the second phase of local work, rank 0 calcu-
lates the visible surface area from the rendering of visible triangles
and then calculates the visibility ratio by dividing the visible sur-
face area by the global surface area. Lastly, rank O broadcasts the
final visibility ratio to the other ranks.

3.2. Viewpoint Search Algorithm

An important consideration for this algorithm is the “stability” of
VQ metrics as the camera moves. If small changes in camera po-
sition consistently lead to large changes in metrics scores, then it
would be difficult to search the space without performing many
evaluations. On the other hand, if scores vary somewhat smoothly,
then it is easier to find good camera locations with few evaluations.
Section 4.2.1 explores this topic in detail. That said, the findings
from that section provide intuition behind our search algorithms:
scores vary somewhat smoothly as the camera position changes.

Much like the approach used in the popular Cinema
project [A*14], our search algorithms consider camera locations
on the surface of a sphere that bounds the data set. Using Spherical
Coordinates, we divide the surface into equal segments, ¢, and 6,
for some integers m and n, creating a search space of size m*n. A
user can then decide a camera budget for how many camera place-
ments to evaluate with each search algorithm. Camera placements
are not the only way to formulate budgets, as we could have used
total time as well. For our evaluation, a fixed number of placements
made it easier to compare across data sets, but time may be a better
choice for other settings.

We developed four search algorithms. That said, one of the algo-
rithms has three variants, meaning we have six algorithms overall
(three algorithms with no variants, and one algorithm with three
variants). The algorithms are:

o Space-Filling Curve Search: as more and more potential cam-
era positions are considered, they are placed using the Morton
(Z-order) space-filling curve approach, as shown in Algorithm
1. This ensures that each additional camera position is placed
into the largest unexplored region of possible camera positions.

e Diagonal Search: this approach travels along a diagonal of the
search space, and allows for user-specified spacing between the
considered camera placements, as shown in Algorithm 2. This
user-specified spacing is what leads to variants of the algorithm,
with these variants having very different behavior, as sampling
rate greatly affects performance. In order to hit every grid point
and evaluate the respective camera, it is critical that the chosen
sample rate is co-prime to the dimensions of each axis. That is,
the chosen sample rate needs to be co-prime with both n and
m, meaning the only common divisor is one. To determine what
sample rate to use, we tested all prime numbers that were less

than or equal to half the diagonal of our sample space (7””;“’2),
and selected representative samples rates.The sample rates se-
lected for evaluation in Section 4.2.2 are 7, 23, and 43.

e Random Search: each new camera position is placed at a ran-
dom location, as shown in Algorithm 3.

e Linear Search: iterate over the camera positions one-by-one,
with each camera position adjacent to the previous one, as shown
in Algorithm 4. This algorithm does a poor job of sampling the
space and is intended only as a reference.

Algorithm 1 Space-Filling Curve Search
max_score= —FLT MAX
count =0
while count < camera_budget do
cam_pos = morton_space_{filling_curve(count)
if score(cam_pos) > max_score then
max_score = score(cam_pos)
count++
end if
end while
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Algorithm 2 Diagonal Search with sample rate
max_score= —FLT _MAX
count =0
while count < camera_budget do
phi_pos = count * sample_rate % m
round = (jnt) SURL* sample rate g, ,
theta_pos = (round + phi_pos) % n
cam_pos = GetCamera(phi_pos,theta_pos)
if score(cam_pos) > max_score then
max_score = score(cam_pos)
count++
end if
end while

Algorithm 3 Random Search
max_score= —FLT_MAX
count =0
while count < camera_budget do
cam_pos = Math.Random() x nxm
if score(cam_pos) > max_score then
max_score = score(cam_pos)
count++
end if
end while

Algorithm 4 Linear Search
max_score= —FLT _MAX
count =0
while count < camera_budget do
phi_pos = count % m
theta_pos = (int) %™ % n
cam_pos = GetCamera(phi_pos, theta_pos)
if score(cam_pos) > max_score then
max_score = score(cam_pos)
count++
end if
end while

4. Results

Our results are organized into three phases. Phase 1 focuses on eval-
vating the performance of our parallelization approach for individ-
ual Viewpoint Quality metrics. Phase 2 focuses on the efficacy of
our search algorithms to find an optimal image quickly. Finally,
Phase 3 considers holistic behavior by running our algorithm in an
in situ setting. Please note that in this work we use “viewpoints”
and “camera positions” interchangeably.

4.1. Phase 1: Parallel In Situ Performance of Individual
Metrics

To evaluate parallel in situ performance, we ran the Lulesh proxy
application that simulates a Sedov blast problem on NERSC’s
Cori supercomputer. Our runs used 27 nodes with one MPI task
per node. Each MPI task incorporated shared-memory parallelism
through OpenMP, and had access to 32 threads. The Lulesh simu-
lation ran for 100 cycles and we evaluated 10 camera positions per
cycle. Each MPI task had a data size of 3423, for a total data size
of 1026°.
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For this phase of our experiment, Lulesh was executed for 100
cycles and evaluated 10 viewpoints per cycle with each VQ met-
ric in situ. Table 2 contains the average execution time it took each
VQ metric to evaluate a single viewpoint in situ. The major re-
sult from this phase of our experiment is that the rendering stage
dominates the majority of the computation, and the execution of
VQ metrics adds minimal overhead. In other words, our method
takes about long as rendering a single image. Of course, our overall
approach involves evaluating many camera positions. The rest of
this section informs holistic performance, with Phase 2 informing
how many camera positions are necessary and Phase 3 considering
overall in situ encumbrance. since it will consider overall in situ
encumbrance.

4.2. Phase 2: Post Hoc Evaluation of Viewpoint Search
Algorithms

The second contribution of this work evaluates viewpoint search al-
gorithms on scientific data sets. For this contribution, we first exam-
ine the stability of the search space. We then evaluate how quickly
search algorithms can find a quality viewpoint.

4.2.1. Stability of Search Space

The values in the search space depend on both the VQ metric and
the data being rendered. For our evaluation, we considered the VQ
metrics from Table 1. For data sets, we used the same ten data sets
from the Marsaglia et al. [M*21] user study on camera placement
for large data visualization. These data sets are:

e Asteroid: A data set of a deep water impact of an aster-
oid [PG17].

e Constit: A material sciences data set that probes the deformation
response of polycrystalline materials [C*19].

e ExaAm Truchas: A materials science data set that looks
at effects within micro-structures of Additive Manufacturing
(AM) [B*19].

e ExaSky Nyx: A cosmological data set that looks at gas dynam-
ics [A*13].

e Fluid Dynamics: A fluid dynamics data set that models a cylin-
drical flow of water [Kuh14].

e Hurricane: A weather data set of Hurricane Isabel [K*04].

e Mantle: An earth sciences data set that models the Earth’s man-
tle [S*11b].

e Miranda: A hydrodynamics data set of large-scale turbu-
lence [C*05].

e S3D-N2: A combustion data set of field data N2 [T*17].

e S3D-UVEL: A combustion data set of field data U Veloc-
ity [T*17]

For each data set, we evaluated ten-thousand viewpoints using
each VQ metric. The viewpoints were constructed in the same
way as the search algorithms in Section 3.2: along the surface of
a sphere, and taking even increments in ¢ and 0 in Spherical Co-
ordinates (¢, = 0, = 100). For each VQ metric, the ten-thousand
scores were then rendered as heatmaps (high scores are white, low
scores are dark orange and black):

e Figure 2 shows heatmaps for two data sets, including thumbnails
of the images with high or low scores using DDS Entropy,
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Metric Pre-Processing | Rendering | Local Work 1 | Global Comm 1 | Local Work 2 | Global Comm 2 Total
Data Entropy 7.80E-05 1.01E-02 1.01E-04 1.08E-05 - - 1.03E-02
DDS Entropy 7.80E-05 1.01E-02 1.19E-03 1.09E-05 - - 1.13E-02
Depth Entropy 7.80E-05 1.01E-02 9.59E-05 8.09E-06 - - 1.03E-02
Max Depth 7.80E-05 1.01E-02 1.59E-05 1.00E-05 - - 1.02E-02
PB 7.80E-05 1.01E-02 1.02E-03 1.01E-05 - - 1.12E-02
Projected Area 7.80E-05 1.01E-02 1.00E-03 9.34E-06 - - 1.12E-02
Shading Entropy 7.80E-05 1.01E-02 9.91E-04 9.44E-06 - - 1.12E-02
Viewpoint Entropy 7.80E-05 1.01E-02 6.81E-06 7.34E-06 1.00E-03 1.08E-05 1.12E-02
Visibility Ratio 7.80E-05 1.01E-02 2.16E-08 9.84E-06 1.00E-03 1.06E-05 1.12E-02
Visible Triangles 7.80E-05 1.01E-02 1.01E-03 1.21E-05 - - 1.12E-02
VKL 7.80E-05 1.01E-02 5.05E-06 9.30E-06 1.00E-03 8.12E-06 1.12E-02

Table 2: The average in situ execution times, in seconds, for each metric to evaluate a single viewpoint of the Lulesh simulation. The
pre-processing stage of the workflow only needs to be executed once per cycle, no matter how many camera placements are considered. The
rendering stage, as well as the metric evaluations, need to be executed for each considered camera placement.

e Figure 3 shows heatmaps for 10 VQ metrics for a single data set,
and

e Figure 4 shows heatmaps for 10 data sets using the DDS En-
tropy metric (the metric that best predicts user preference from
Marsaglia’s user study).

While there are sharp cliffs as occlusions change, the “high” re-
gions for each metric are (for the most part) large and easy to
find. Further, the metric DDS Entropy, shown in Figure 4, has large
“white” regions, meaning good viewpoints are not sparse nor ran-
domly appearing. In their user study, Marsaglia found that users
disagreed regularly about “good” views, but were consistent in re-
jecting “bad” views. Based on the DDS Entropy heatmaps in Fig-
ure 4, these bad views are relatively easy to identify and avoid, i.e.,
find a camera placement a white region instead of an orange or
black region. This is a fortunate property, and contrasts with sev-
eral of the score heatmaps in Figure 3, which have local optimums
that may be hard to locate quickly. Overall, we find these heatmaps
to be promising with respect to the searchability of the space.

4.2.2. Search Algorithm Evaluation

This evaluation considered all algorithms from Section 3.2. We
tested our search algorithms on the heatmaps from Section 4.2.1,
evaluating how many camera positions each search algorithm needs
to evaluate in order to find a quality viewpoint.

Table 3 shows the average number of camera positions it takes
for each search algorithm to find a viewpoint that has a score in
the 80"",85™ 90" 95" and 99" percentiles for each VQ metric.
The best performers were primarily the Diagonal search algorithms
followed by Random Search and then Space-Filling Curve. Diag-
onal 43 performed the best, finding a viewpoint in the 80" per-
centile after considering 23.3 camera placements on average, fol-
lowed closely by Random Search and Space-Filling Curve, which
had to consider 25 and 29 camera placements on average, respec-
tively. While the primary takeaway from this table is on efficacy of
the algorithms, another takeaway is the large number of searches
needed to find a good view. Fortunately, this number is greatly re-
duced when considering just Entropy metrics.

Search Percentile

AlgOl‘itth Solh 85[/1 90rh 95t/1 99th
Linear 1330.8 | 15924 | 1816 | 2514 | 4025.6
Random 25.1 31.8 83.3 210.2 | 921
Diagonal 7 91.7 126.8 145.5 | 3229 | 1141.2
Diagonal 23 33.5 40 80.3 253.9 | 1051.2
Diagonal 43 23.3 30.3 69 138.6 | 799.1
Space-Filling | 29 36 83 1479 | 712.2
Curve

Table 3: The average number of camera positions each search
algorithm had to evaluate in order to find a camera position with
a score in a given percentile. This average is taken over all VQ
metrics.

Search Percentile

Algorithms Sozh 8 Szh 9ozh 95zn 99th
Linear 267.6 | 350.2 | 507.9 | 1428 | 3446.6
Random 2.2 3.2 6.8 22 398.9
Diagonal 7 7.2 12 20.8 60.5 359.1
Diagonal 23 3 4.6 7.9 44 307.6
Diagonal 43 2.1 3.8 54 19.2 104.6
Space-Filling | 3.9 7.6 11.7 28.2 | 204.9
Curve

Table 4: The average number of camera positions each search
algorithm had to evaluate in order to find a camera position with a
score in that percentile. This average is taken over just the Entropy
VQ metrics that Marsaglia et al. found best predict user preference.

The results of limiting this analysis to just Entropy metrics are
located in Table 4. As a reminder, the Entropy metrics are wor-
thy of special attention, since they are the ones that best pre-
dicted user preference [M*21]. most closely align with user pref-
erence [M*21]. Diagonal 43 was once again the best performer, al-
though the number of views considered was considerably less: only
2.1 viewpoints were needed to find an 80" percentile view, which
represents a 10X reduction in the number of searches compared to
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Figure 2: Annotated heatmaps of the Asteroid (top) and Constit (bottom) data sets. For the Asteroid data set, the DDS Entropy scores from
best to worst are: top left, bottom left, bottom right, top right. For the Constit data set, the best to worst are: top right, bottom left, bottom

right, top left.

the analysis using all VQ metrics. Interestingly, one of the best per-
formers is the Random Search. This is most likely due to the nature
of the data sets and the fact that good viewpoints are not sparse.
Overall, almost all of the search algorithms can find a viewpoint
in the top 80" and 85™ percentiles rather quickly. But, if a user is
wanting a viewpoint in the 90 h percentile or higher, the search for
a viewpoint could be substantially longer and the user will have to
decide if performing 10X more searches is worth an image that has
a 10% better VQ metric score (and keeping in mind that users often
disagreed when it came to images with high scores).

© 2022 The Author(s)
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4.3. Phase 3: In Situ Evaluation

This phase builds on the previous two phases by performing an
situ evaluation. Section 4.1 demonstrated that parallel VQ metric
calculation can be executed in situ, adding little overhead to the
more costly rendering process. Section 4.2 provided insight into
best practices when searching for a camera placement.

For this phase, we ran a scientific simulation with in situ cam-
era placement search, and evaluated tradeoffs between in situ con-
straints and the quality of a VQ metric’s chosen camera placement.
We again ran Lulesh on NERSC’s Cori supercomputer, with the
same level of parallelism as Phase 1. We executed Lulesh for 100
cycles, and for every cycle evaluated each metric using one of five
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Figure 3: Ten heatmaps corresponding to ten VQ metrics on the Asteroid data set. The VQ metrics are, from top left to bottom right: Data
Entropy, Depth Entropy, Max Depth, PB, Projected Area, Shading Entropy, Viewpoint Entropy, Visibility Ratio, Visible Triangles, VKL. The
Asteroid heatmap for DDS Entropy can be found in Figure 4. These heatmaps show that the searchability of the space is dependent on VQ

metric.
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Figure 4: Heatmaps for the DDS Entropy metric for ten data sets. The data sets are, from top left to bottom right: Asteroid, Constit, ExaAm
Truchas, Fluid Dynamics, Hurricane, Mantle, Miranda, S3D-N2, S3D-UVEL, ExaSky Nyx. These heatmaps show that the higher scores or

“hot spots” are not sparse nor randomly appearing.

different budgets: 5, 10, 20, 50 and 100 camera placements. The
five budgets control how many camera placements are evaluated per
cycle. Given a camera budget, the camera placements were chosen
using Diagonal 43, i.e., the best performing search algorithm from
Section 4.2.2, Note that our search algorithm starts from the same
location for each camera budget, meaning that the camera place-
ments for a smaller budget are a subset of the camera placements
for a larger budget. In terms of measurement, we timed the in situ
execution of rendering the budgeted camera placements and calcu-
lating their respective VQ metric scores.

Table 5 shows the in situ execution results for a single cycle, as
well as the maximum score achieved for each VQ metric for each
camera budget. Among the eleven evaluated VQ metrics, only one
metric, VKL, found its best camera (for this cycle) amongst the first
5 cameras considered, meaning this metric did not benefit when
considering up to 95 more cameras. The ten other VQ metrics all
benefited at least once to an increase in the number of cameras con-
sidered. Six of those ten VQ metrics experienced only one increase
across all budgets: PB, Projected Area, Viewpoint Entropy, and Vis-
ible Triangles found their best camera placement when considering
10 cameras, whereas Data Entropy and Visibility Ratio found their
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VQ Metric 5 Camera§ 10 Camergs 20 Camergs 50 Camera}s 100 Camer.as
Max Score | Time (s) | Max Score | Time (s) | Max Score | Time (s) | Max Score | Time (s) | Max Score | Time (s)
Data Entropy 1.633 1.523 1.633 2.786 1.634 5.057 1.634 12.922 1.634 26.167
DDS Entropy 9.542 1.858 9.627 3.102 9.74 5.672 9.965 14.489 10.162 29.077
Depth Entropy 4.248 1.522 4.331 2.783 4.363 5.055 4.536 12.912 4.686 26.135
Max Depth 0.0124 1.513 0.01253 2.758 0.01257 5.007 0.0131 12.774 0.0131 25.899
PB 7.066 1.525 7.119 3.024 7.119 5.542 7.119 14.130 7.119 28.611
Projected Area 6284440 1.644 6332160 3.023 6332160 5.543 6332160 14.123 6332160 28.581
Shading Entropy 3.680 1.642 3.680 3.020 3.746 5.540 3.763 14.109 3.844 28.565
Viewpoint Entropy 3.872 1.654 3.876 3.027 3.876 5.544 3.876 14.151 3.876 28.638
Visibility Ratio 0.8660 1.652 0.8660 3.028 0.8692 5.545 0.8692 14.137 0.8692 28.268
Visible Triangles 147 1.643 148 3.024 148 5.542 148 14.125 148 28.597
VKL -0.2632 1.655 -0.2632 3.027 -0.2632 5.551 -0.2632 14.148 -0.2632 28.625

Table 5: Metric scores and execution times for all five budgets and all VQ metrics for our in situ evaluation using the Diagonal 43 search
algorithm with the Lulesh simulation. Using the first row as an example, with a budget of five cameras, the best camera with respect to Data
Entropy took 1.523s and produced a score of 1.633. If the budget was ten cameras, then the search cost went up (2.786s), but the score did
not go up. Going up to a budget of twenty cameras, the score went up very slightly, but the time also got longer. This cell is colored pink to
indicate its value increased with the larger budget. This table shows the results for cycle 50 of the Lulesh simulation, which is representative.

Metric 5to 10 Cameras | 10 to 20 Cameras | 20 to 50 Cameras | 50 to 100 Cameras
Data Entropy 0.17% 0.03% 0.09% 0.03%
DDS Entropy 0.08% 12% 2.3% 1.6%
Depth Entropy 5.6% 1.3% 11.1% 8.7%
Max Depth 2.2% 1.4% 11.6% 0.0%
PB 1.5% 0.0% 0.0% 0.0%
Projected Area 1.3% 0.0% 0.0% 0.0%
Shading Entropy 0.07% 4.7% 2.6% 3.6%
Viewpoint Entropy 1.1% 1.2% 0.7% 1.3%
Visibility Ratio 1.2% 0.3% 1.1% 0.8%
Visible Triangles 2.0% 0.7% 3.0% 0.8%
VKL 0.2% 0.4% 0.1% 0.1%

Table 6: The average percentage increase of each metric’s viewpoint quality score as budget increases using Diagonal 43. These averages

are calculated over all 100 cycles.

best camera placement when considering 20 cameras. VQ metrics
DDS Entropy, Depth Entropy, Max Depth, and Shading Entropy all
experienced multiple increases across budgets. Max Depth found
their best score when considering 50 cameras, while DDS Entropy,
Depth Entropy, and Shading Entropy found their best score when
considering 100 cameras. Overall, for the given cycle, the majority
of metrics found their best camera placement when considering 20
cameras or less, whereas only four metrics benefited from consid-
ering 50 or 100 cameras.

We then evaluated the average increase in score for each met-
ric when increasing the camera budget over all 100 cycles of the
Lulesh simulation. We did this by normalizing the VQ metric
scores for each cycle across all budgets. Once normalized, we cal-
culate the percentage change in metric score when increasing the
camera budget, and then took the average across all cycles. Table
6 shows the average increase in VQ metric score for each camera
budget.

On average, few of the metrics showed any substantial increase
in metric score when increasing the camera budget. Depth Entropy
and Max Depth had the most substantial percentage increase, each
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experiencing an average increase in score of 11%, when increas-
ing the number of evaluated camera positions from 20 to 50. Depth
Entropy also had an 8% increase in score when the number of eval-
uated camera positions increased from 50 to 100, but requires more
than doubling the in situ execution time. Shading Entropy also ben-
efited from increasing the camera budget, but to a lesser extent: ex-
periencing a 4.7% increase when budgeted cameras went from 10
to 20, and a 3.6% increase when budgeted cameras went from 50
to 100, but, again, results in an increase of in situ execution time.
DDS Entropy also experienced similar benefits: in particular a 12%
increase when the camera budget was increased from 10 to 20 cam-
eras, as well as percentage increases of 2.3% and 1.6% when the
budget was increased from 20 to 50 cameras and 50 to 100 cam-
eras, respectively. But for the seven other VQ metrics, they expe-
rienced very little benefit when increasing the number of evaluated
camera positions, and certainly not enough to offset the necessary
the increase in execution time. One reason for this could be that
for most of these metrics, a quality viewpoint is easy to find, so
increasing the budget may not necessarily yield a significantly bet-
ter viewpoint. Or alternatively, a quality viewpoint may be hard
to find, as some heatmaps from Figure 3 and Table 3 would sug-
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gest for individual VQ metrics. The percentage increases, or lack
thereof, reinforces the conclusions from Section 4.2: that, depend-
ing on the VQ metric, the search algorithms can find a viewpoint
with a reasonably high VQ metric score quite quickly, but finding
the “best” viewpoint with the highest metric score may take longer
than in situ constraints allow.

5. Conclusion

The goal of this research was to establish the viability of automatic
in situ camera placement, i.e., that good viewpoints can be found
quickly. This work is the first to parallelize these VQ metrics and
optimize them for both shared- and distributed-memory environ-
ments. To show the viability of in situ implementation we ran per-
formance study that shows VQ metrics are much less costly com-
pared to the rendering process. This work also introduced several
search algorithms and studied their behavior, first in a post-hoc en-
vironment, using processing resources that would be unavailable in
an in situ environment. From this preliminary phase, we found that,
depending on the VQ metric, good viewpoints for cycles of scien-
tific data sets are not sparse nor hard to find. The search algorithms
can find a viewpoint with a metric score in the 80" — 85" percentile
rather quickly, but finding a viewpoint in the 90" percentile would
require a rendering budget that is likely infeasible for in situ exe-
cution. Further, previous work [M*21] has shown that while users
dislike low scoring viewpoints, they often disagree on the highest
scoring viewpoints. As a result, we believe the best in situ strat-
egy is to quickly find a viewpoint that is “good” rather than taking
longer to find a viewpoint that is the “best.” Our belief in this strat-
egy is supported by our findings, in that increasing camera budget
led to only modest changes in VQ metric score. Overall, few met-
rics benefited significantly when the camera budget was increased
to 50 or 100 cameras, with most metrics experiencing the greatest
score increase when considering 20 cameras.

Immediate future work is two-fold: (1) examining the behavior
of optimal camera placement over time, (2) design and evaluate
best practices for how often a search should be conducted. In re-
gards to the first point, we plan to analyze optimal viewpoint place-
ment over time in order to determine the in situ behavior of optimal
viewpoints for a given scientific simulation. Based on these results,
we will be able to design a fixed search interval, that searches for a
new optimal viewpoint after a fixed number of time steps, as well
as design a trigger, that when activated will immediately begin a
new search for an optimal viewpoint search. Of note, the time-
varying version of this problem can amortize the burden of search
times over simulation cycles — a search can happen for one cy-
cle, and then a good camera can be re-used for many cycles before
a new search is needed. More broadly, future work could explore
and evaluate other search algorithms and VQ metrics. Moreover,
this work could be extended to consider other data sets and ren-
dering techniques, such as volume rendering, and multivariate data.
Other ideas include evaluating a camera pathline and saving a time-
dependent or -independent movie, or saving a spectrum of quality
images. Finally, our spherical coordinates-based search oversam-
ples at the poles, and there are better approaches for equally sam-
pling the space [L*18]. Incorporating such an approach should be
adopted in future work.
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7. Appendix

Listing 2: C++ code of the templated struct MaxValueWithChecks
that uses VTK-m for determining a valid maximum value.

template <typename T>
struct MaxValueWithChecks
{
MaxValueWithChecks (T minValid, T maxValid)
MinValid (minValid) ,
MaxValid (maxValid) {}
VTKM_EXEC CONT inline T operator () (const T
&a, const T &b) const

{
if (this—>IsValid(a) && this—->IsValid(b)
) { return (a > b) ? a : b;}
else if (!this—>IsValid(a)) { return b;}
else if (!this->IsValid(b)) { return a;}
else { return this->MinValid;}
}
VTKM_EXEC CONT inline bool IsValid(const T
&t) const
{
return !vtkm::IsNan(t) && t > MinValid
&& t < MaxValid;
}
T MinValid;
T MaxValid;
}s
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