Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

7. Supplementary Material

NodeState
AccessNode (uint 64 index, Payload* payload)
{

NodeState state;

Node* node = toPointer (ROOT + index);
state.node = node;

/* leaf node, setting values =/

if (isLeaf (node)) {
LeafNodex leaf = (LeafNodex) node;
state.isLeaf = true;
state.data.position = leaf->position;
state.data.radius = leaf->radius;
state.data.weight = leaf->weight;

}

/+* node is an internal node =*/
else {
InnerNodex inner = (InnerNodex) node;
state.isLeaf = computeloD (node, payload);
/+ whether children are all available x/
if (not state.isLeaf) {
uint64 d0 = (uint64)inner->children([0];
uint64 dl = (uint64)inner->children[1];
d0 = lookupBlockIndex (
d0 / BLOCK_SIZE_IN_BYTES
)i
dl = lookupBlockIndex (
dl / BLOCK_SIZE_IN_BYTES

INVALID_INDEX ||
INVALID_INDEX)
state.isLeaf = true;

}
/* create a fake leaf node =/
if (state.isLeaf) {
box3f bound = boxExtend(
inner->bounds[0],
inner->bounds[1]
)i
state.data.position = center (bound);
state.data.radius = 0.5 » diagonal (bound);
state.data.weight =
midpoint (node->valueRange) ;
}
/% continue traverse children =/
else {
state.child0 = doO;
state.childl = di;

}

return state;

}

Listing 3: In Section 4.2, we mentioned that for each brick format,
an additional wrapper function is required. Here we provide the
pseudo-code demonstrating the accessNode function for RBF

volume data.

NodeState

accessNode (
TraversalStackx stackPtr,
Payloadx payload)

NodeState state;
Node* node = addressNode (stackPtr->index);
if (isLeaf (node)) {
accessLeaf (node, state);
}
else {
state.isLeaf = computelLoD (stackPtr, payload);
/* node absolute index */
uint64 nid = childrenOffset (node);
/* block index =/
uint64 bid = nid / BLOCK_SIZE;
/* address translation x/
uint64 new_bid = lookupBlockIndex (bid);
uint64 new_nid =
new_bid x BLOCK_SIZE + nid % BLOCK_SIZE;

if (not state.isLeaf) {
/+ block is available in RAM «*/
if (new_block_index != INVALID_INDEX) {
updateCache (children_block_index) ;
Brickx brick =
addressNode (new_index) —->currentBrick () ;
state.range = brick->range;
state.childrenOffset = new_index;
state.childrenMask = childrenMask (node) ;
}
/+ block not loaded, send an I/0 request =/
else {
state.isLeaf = true;
if (lockCacheLine (children_block_index))
streamBlockAsync (children_block_index) ;
}
}
/+ access inner brick as a leaf voxel */
else {
state.data.value = midpoint (node->range);
}
}
return state;

}
Listing 4: In Section 4.1, we mentioned that for each brick format,
an additional wrapper function is required. Here we provide the

pseudo-code demonstrating the accessNode function for TAMR
particle volume data.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

a) Our TAMR encoding Scheme b) Value Definitions
1} 63bit Voxel Value [1]
00001111 | O |- .
00001201 |0 Address I Mask]O I 64bit
(empty space) Min [wmax]

Internal Brick (B;) ¢) Sparse Octree
B,
1 [1
1 (empty space) Bs
1 1 -
1 1 Internal Brick By
l, l. Unloaded Data Bricks)
Leaf Brick (B,) Leaf Brick (Bs) [
Figure 11: Same as Figure 6.
a) Value Definitions b) BVH encoding Scheme
| o |< BVH Node Header 5 :
ress Child 0 Address | BVH Node Header
R Primitive
Lower X Upper X H Boucnr::llilggoBox Bounding Box
Lower Y UpperY [+ Child 1 Address [
Lower Z Upper Z Child 1 Primitive Data
Bounding Box %—c\?
| Min | Max |‘ PR = wexp[—(=)]

Leaf Brick (B,)

Internal Brick (B)
c¢) BVH 4" BVH Node Header

Child 0 Primitive
B Bounding Box
/ Child 1 4 I £
(1€

A

Primitive Data
¢EZ?) Internal Brick B, Leaf Brick (B) Fe))
Leaf Brick (B
Leaf Brick (B,) [Unloaded Data Bricks] eaf Brick ()
Figure 12: Same as Figure 7.
Address [o] [mMin [™Max |

v 4 K

Leaf Value

Unloaded Data Bricks }

L Internal Brick [

Leaf Brick in RAM Leaf Brick in SSD

Figure 13: An example brick format design for the regular grid volume based on descrptions in Section 4.3.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

(A) Compustion (B) ExaJet Vorticity

Grayscale G_rayscale .
No Shading Gradient Shading

Jet Gradient
Shading

Jet No Shading

Figure 14: Datasets used in our benchmark. A) A simulation of multi-injection mixing and combustion at compression ignition en-
gines [TBB* 17]. B) A simulation of air flow (the vorticity field) around a jet plane [CHI4]. C) A cloud dataset rendered with and without
shading effects [Stu]. D) A simulation of an asteroid impact in deep ocean water [PG17]. We did not enable gradient shading in our bench-
marks because we used an unmodified OpenVKL example renderer as the immediate renderer, which does not implement gradient shading.

immediate static progressive static
N R =,

Figure 15: Image difference between our progressive rendering method and a normal ray marching method, rendering an RBF particle
volume. Left: image rendered using the progressive static mode. Right: image rendered using the immediate static mode. Middle: the image
difference. The data being rendered is created using the “bunny cloud” data provided by the OpenVDB project. In particular, we mapped
every voxel to a particle and using the voxel value as the particle weight.

immediate static progressive static

Figure 16: Progressive rendering can produce a slightly different image. However, this difference is expected because progressive rendering
will change sample positions along the ray, and this difference is not visible visually. Left: image rendered using the progressive static mode.
Right: image rendered using the immediate static mode. Middle: the image difference.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

1000000
£ 100000
©
i
< 10000
o
1000
35
o
& 100
Qo
£
1S 10
©
o
& 1
0 5

Frame Count

15

—e—no lock

—e—atomic

no atomic
L

A\

20 25

Figure 17: As mentioned in the third paragraph of Section 3.2.1, we implemented two ways to concurrently update hash flags. In our
preliminary experiments, we compared the effectiveness of different methods using the RBF particle volume implementation. Our non-
atomic version can significantly reduce the number of streaming requests made per frame. The “bunny cloud” particle data is used for this
experiment. We used two camera positions for each run, which caused the dip around frame 8.

FPS
o [N W H w (o)) ~ (o]

30

40

Frame Count

50

60

—e—immediate static

—e—immediate block

Figure 18: RBF particle volume rendering performance. Our streaming implementation (i.e., immediate block) slower than the baseline
version (i.e., immediate static), but our implementation is still interactive. We uses the no-atomic method for page table and LRU cache
updates. The “bunny cloud” particle data is used for this experiment.

/ Frame Color

Non-Progressive

/

/ L(xg, w)

/ Self-Refining Frame Color via k-Buffer

lo

Progressive

! G L G | CO |
ty t, t3
= f +T(t0,t1)f +T(t0,t2)f
to ty t2

s

t3
L(xp, w) =f T(to, t)q(t)dt ly - I, -! I
to

Lt) =I+ T(to,tD + ko, t;)l+ T(to,rg)l+ Tt t) s

(a) Ray Intersection

(b) Interval Accumulation

1t Frame
27 Frame
3 Frame
4t Frame

5t Frame

(c) Tile-based Progressive Rendering

Figure 19: Our progressive rendering system divides a volume integration (a) into K intervals. (b) At each frame, we calculate only one of the
intervals. The calculated value is stored in a K-buffer. Then we calculate the final frame color by compositing colors within the K-buffer for
each pixel. (c) Our progressive rendering system also supports a tile-based rendering mode. This mode further reduces memory consumption.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Q. Wu et al. / A Flexible Data Streaming Design for Interactive Visualization of Large-Scale Volume Data

Table 4: Benchmark Results. We tested each data using 8 modes: progressive static (PS), progressive treelet (PT), progressive block (PB),
immediate static (1S), immediate treelet (IT), immediate block (IB), tile treelet (TT) and tile block (TB). Because PT, PB, TT and TB provide
better scalability, we tested them using upsampled data. (1) Peak I/0 for static modes measures the the sequential read performance. (2) For
all progressive and tile modes, the Max FPS essentially measures the color composition performance. (3) For the IS mode, the frame time
for the 1" frame is used in the comparison because the converged frame is given by the 1*' frame. (4) For all static modes, the first number
measures the data pre-loading time, and the second one measures the rendering time; Both should be included when comparing with other
streaming methods, therefore all are listed.

Mode File Size Memory Footprint Peak I/O FPS Teonverge (s)
(GB) (GB) (MB/s) Max(? Min Interactive
PS 17.7 20.1 862.7(D 67.8 0.67 425 29.6® +159
PT 227 5.62 516.9 59.4 0.55 3.40 22.0
PB 17.7 5.49 136.4 59.8 0.29 1.60 429
T o 17.7 20.1 864.6(1) 0.09 0.09 0.09 317" +11.14)
=]
S 1T 227 6.66 790.1 0.07 0.07 0.07 69.9
& 177 6.01 2438 0.04 0.04 0.04 207.9
£ PT(x3) 178 6.69 592.9 60.6 0.18 2.52 66.3
PB (x8) 139 6.32 282.1 59.9 0.09 1.29 137.8
TT (x8) 178 5.61 683.8 585 0.77 N/A 99.6
TB (x8) 139 5.48 341.9 59.5 047 N/A 1823
PS 14.7 16.9 751.6(D 30.9 0.14 1.31 291@ 1619
PT 18.4 6.27 468.6 24.9 0.11 1.01 95.7
PB 14.7 6.00 270.1 25.6 0.05 0.48 240.2
g IS 14.7 16.9 819.8() 0.02 0.02 0.02 29.4® +50.00)
E IT 18.4 failed to converge
e' 1B 14.7 failed to converge
2] PT (x8) 148 failed to converge
PB (x38) 118 failed to converge
TT (x8) 148 6.18 905.9 257 0.32 N/A 3149
TB (x8) 118 5.79 749.0 28.7 0.17 N/A 728.8
PS 1.85 2.99 728.6(D 53.8 3.49 5.15 29@ 139
PT 243 531 69.8 53.1 229 3.58 6.4
PB 1.85 531 75.1 52.8 1.45 1.74 10.6
1S 1.85 2.99 778.11) 0.35 0.35 0.35 274 4 2.90)
?'é IT 243 5.51 256.2 0.24 0.24 0.24 34.6
g B 1.85 5.41 102.7 0.15 0.15 0.15 66.4
S PT(x64) 147 5.97 504.0 527 0.36 2.05 36.9
PB (X 64) 118 5.81 5217 523 0.23 1.08 69.4
TT (X 64) 147 5.44 546.8 55.2 1.51 N/A 72.1
TB (X 64) 118 5.39 464.5 524 0.89 N/A 1127
PS 331 5.65 825.9(D 484 2.59 3.36 48@ + 4.6
PT 425 531 108.6 51.8 2.10 248 75
PB 331 531 68.6 56.2 1.45 1.20 12.4
E IS 331 4.56 831.2(1) 0.25 0.25 0.25 499 4400
f’é IT 425 576 336.1 0.19 0.19 0.19 16.2
g B 331 5.49 142.8 0.12 0.12 0.12 45.0
S PT(x64) 267 6.19 758.1 50.5 0.46 1.63 407
PB (X 64) 212 6.19 525.1 50.8 0.32 0.83 72.1
TT (X 64) 267 5.84 783.8 48.0 1.80 N/A 79.7
TB (X 64) 212 5.58 704.7 492 1.17 N/A 120.1
PS 7.70 9.30 847.1D 66.7 0.92 6.16 1124 1738
PT 9.06 5.99 553.0 60.6 0.62 475 12.2
PB 7.70 573 474.9 59.7 0.41 247 21.7
IS 7.70 9.29 864.3(1) 0.20 0.20 0.20 11.1% +500)
Eom 9.06 6.64 570.8 0.16 0.16 0.16 433
g B 7.70 6.32 4282 0.10 0.10 0.10 100.6
PT (x8) 61.5 6.69 814.9 60.2 0.44 3.53 111.8
PB (x8) 72.0 6.67 770.4 65.0 033 1.82 173.1
TT (x8) 61.5 6.09 904.0 59.5 0.80 N/A 61.7
TB (x 8) 72.0 591 784.9 579 0.53 N/A 943

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

