Eurographics Symposium on Parallel Graphics and Visualization (2021)
M. Hadwiger, M. Larsen, F. Sadlo (Editors)

Interactive Selection on Calculated Attributes of Large-Scale
Particle Data

B. Wollet1*2®, S. Reinhardtu@, D. Weiskopf1®, and B. Eberhardt2®

University of Stuttgart, Germany
2Hochschule der Medien, Germany

Figure 1: Visualizations of the evaporation scenario we used to evaluate our method. On the left, the unselected dataset is shown. Selecting
particles on the liquid-gas interface and extending the selection on the neighborhood temperature results in selecting hot spots on and
beneath the interface area. The non-selected particles can be hidden to investigate hot spots within the liquid phase (on the right). The lazy
evaluation, including color-coding (in the center image), enables interactive selection and context-sensitive region growing.

Abstract

We present a GPU-based technique for efficient selection in interactive visualizations of large particle datasets. In particular, we
address multiple attributes attached to particles, such as pressure, density, or surface tension. Unfortunately, such intermediate
attributes are often available only during the simulation run. They are either not accessible during visualization or have to be
saved as additional information along with the usual simulation data. The latter increases the size of the dataset significantly,
and the required variables may not be known in advance. Therefore, we choose to compute intermediate attributes on the fly. In
this way, we are even able to obtain attributes that were not calculated by the simulation but may be relevant for data analysis
or debugging. We present an interactive selection technique designed for such attributes. It leverages spatial regions of the
selection to efficiently compute attributes only where needed. This lazy evaluation also works for intelligent and data-driven
selection, extending the region to include neighboring particles. Our technique is evaluated by measurements of performance

scalability and case studies for typical usage examples.
CCS Concepts

e Computing methodologies — Visual analytics; * Human-centered computing — Visualization design and evaluation

methods; Visual analytics;

1. Introduction

Particle-based simulations are widely used in many research dis-
ciplines, ranging, e.g., from molecular dynamics to astrophysics.
They have also gained importance in the field of computer graphics
to generate physically based simulations, e.g., of cloth or fluids. On
the one hand, increased memory and computing power have led to
more precise and faster simulations that can be calculated with an
ever-increasing number of particles. On the other hand, this makes

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/pgv.20211045

an efficient visualization and analysis of the dataset increasingly
challenging.

There are many different techniques to visualize the particle po-
sitions and associated data, as well as intermediate attributes cre-
ated during, and saved with, the simulation. For post-hoc analysis,
this requires many attributes of the particle data to be stored on
disk, which on the one hand increases the amount of disk space re-
quired, but, more importantly, also reduces the efficiency of high-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0003-2146-3947
https://orcid.org/0000-0002-7246-0423
https://orcid.org/0000-0003-1174-1026
https://orcid.org/0000-0001-6428-4610
https://doi.org/10.2312/pgv.20211045

64 Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data

Figure 2: The SPH scenario used to evaluate our selection tech-
nique. In this scenario, four inflow zones are defined that form
the liquid jets filling the pool and hitting static and dynamic rigid
boundary objects. It consists of up to 10M particles.

performance rendering techniques. Moreover, insights gained only
later during the analysis process may trigger interest in attributes
that were not even computed during the simulation. To calculate
these, either a rerun of the simulation or a modification of the simu-
lation code would be necessary, whereby only the desired attributes
would have to be calculated. Regardless of that, the desired at-
tributes are often needed only in a particular area of interest, e.g.,
they are needed to find critical areas, such as local pressure max-
ima or shock waves in the dataset. Detecting irregularities within
the simulation domain or evaluating new techniques often involves
analyzing the temporal domain, i.e., critical areas must be tracked
over time to analyze their development. Typical objectives of this
kind are, for example, the analysis of compressibility, surface ten-
sion, or new boundary handling strategies.

In this paper, we combine brushing on a 3D-view with a data-
driven selection-extension on lazily evaluated attributes. These at-
tributes are calculated from spatial or temporal coherence (e.g.,
density, pressure, velocity, or local density variance) to perform in-
telligent brushing. In particular, attribute computations that require
a neighbor search are supported. The extension of selected parti-
cles can be executed repeatedly to reach regions of bigger, smaller,
or similar attribute values. They can then be isolated in combina-
tion with our rendering engine. After finishing a selection, these
particles’ temporal evolution can be tracked when using particle
data with identifiers or consistent enumeration through several time
steps, as shown in Fig. 3. Our method calculates the attributes re-
quired for extension upon each new extension step in a lazy fashion
and allocates necessary memory only when needed. It is therefore
designed to suit the analysis of large-scale datasets. Besides, our
technique is conceptually split into different execution steps to of-
fer easy integration for repetition cycles to create attributes based
on other attributes or easily add additional calculation methods. The
main technical contributions of this paper are:

e Intelligent brushing using attribute-based region growing

e Lazy evaluation of attributes within particle data triggered on
demand by selection extension

e Dynamic memory allocation on evaluating attributes within sub-
sets of large-scale data

We evaluate our technique by measuring scalability and through
two use cases involving large-scale particle data. A simulation state
of the first scenario is depicted in Fig. 2, containing particles cre-
ated during an SPH-based fluid simulation. We analyze this sce-
nario with regard to pressure shocks. The second scenario is shown
in Figure 1. It is a molecular dynamics simulation of fluid evapo-
ration. In this scenario, temperature hot spots in the vicinity of the
interface are searched to investigate the temperature’s influence on
the fluid’s evaporation behavior.

Our technique is implemented in CUDA and provided as a plugin
for MegaMol [GKM*15], which enables basic user interaction. It
can be easily adapted to work with other visualization frameworks
using CUDA. Particle rendering of our use cases is performed us-
ing Nvidia OptiX [PBD*10] to provide high flexibility on possible
rendering techniques while creating high-quality pictures.

2. Related Work

The importance of combining various aspects of multidimensional
data within visualizations of particle-based data has been under-
lined and demonstrated by multiple visualization frameworks. The
open-source rendering framework MegaMol [GKM™15] facilitates
the visualization of raw particle data in real-time, presenting sev-
eral 2D plots and 3D views. It provides modules for CPU and GPU-
based rendering, relying on the work of Reina et al. [RE05] and op-
timizations of Grottel et al. [GRDE10]. Reinhardt et al. [RHD*17]
presented additional possibilities to visualize already existing at-
tributes for debugging purposes, using brushing-and-linking be-
tween 3D and 2D views, as well as dynamic color-coding for avail-
able simulation attributes. Price [Pri07] provides similar function-
ality for SPH simulation data in his interactive visualization tool
SPLASH. With SPLASH it is possible to render a previously se-
lected set of particles, tracking this set through multiple time steps
and calculating additional quantities not dumped with the original
dataset but limited to a particle’s information scope. In contrast, we
enable the computation of attributes that depend on the information
of the neighboring particles. Linsen et al. [LMD*11] introduced
SmoothViz as an interactive visual data analysis tool with increased
performance in complex 3D plots leveraging OpenGL. They in-
clude cluster-extraction on densities and offer additional plots for
multidimensional properties and coordinated views while depend-
ing on provided attributes saved during simulation time. SmoothViz
partly supports multi-threaded computation on GPUs [MFR*13].
SmoothViz and SPLASH both provide isosurface representations
and vector field visualizations.

Simulation runs produce increasingly larger amounts of data, and
their sheer volume in combination with limited computational re-
sources requires optimized memory usage to create scalable visu-
alization solutions. Although region growing was originally devel-
oped for image segmentation [HK98] and later adapted for data
classification in three-dimensional data [HMO03], it is still relevant
for extracting subsets of given datasets from given seed points. The
majority of applications can still be found to classify medical data
from CT or MRI [SBSGO06, TLMO05]. However, post-hoc extract-
ing features of interest from simulation data is still under active
research. In flow visualization and analysis, Sauer et al. [SYM13]
used region growing within voxel data structures to classify and

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data 65

(a) Selection (b) Dynamic attribute calculation

(c) Extension based on attributes

(d) Repeated extensions (e) Isolated temporal evolution

Figure 3: General workflow of our selection method. First, regions of interest manually are defined by selecting particles (a). Next, the
needed attributes are calculated in the local neighborhood (b), and the selection is extended based on the result of the calculation (c). This
process can be repeated either manually or automatically till no further particles are selected with the defined condition (d). The selection is
consistent throughout different time steps. That enables the investigation of the temporal evolution of the selected regions (e).

extract features. Sauer et al. [SYM14] extended the analysis of ex-
tracted features from joint particle and volume datasets into tempo-
ral correlations of recognized features to enable tracking through
several timesteps. In contrast to our approach, they match both vol-
umetric and particle data to extract features on the CPU.

Recent research picked up region growing for simulations in
smoothed particle hydrodynamics. Jiang et al. [JSZ18] analyzed the
behavior of separation during dissolution leveraging GPU-based re-
gion growing within their simulation. Additionally, selecting data
on volumetric displays is using either brushing or adaption to lasso
selections as described by Yu et al. [YEII12]. The extension of se-
lected regions can then be done automatically, based on available
contexts, as proposed by Sakou et al. [SWB15] within dense vol-
umes. The extension process is conceptually similar to our solu-
tion. Still, it limits the decision of whether the selection should be
extended to medians of potentially relevant, non-visual attributes
present within the provided dataset.

The need for interactive use of features for selection within
the visualizations of large datasets was discussed by Doleisch et
al. [DGHO3]. They presented a solution to use brushing within
linked 2D-views of logically combined features to select data pre-
sented in a linked 3D-view for analysis. Their solution also allows
for creating complex combinations of logical AND or OR selec-
tions of attributes existing within the dataset. Their research also
confirms the need to consider the spatial context for selections and
focus on the differentiation between selected and unselected con-
texts using different coloring. However, they limit selection pos-
sibilities to 2D-views and the combination of attributes to logical
operations, not combining the characteristics of spatial-correlated
elements to new ones. This limitation has been overcome by Jones
et al. [JMELOS8], who presented a visualization solution that uses
linked views on physical and derived attributes for flows and uses
temporal and spatial correlation as a basis for derived attributes.
However, their solution does not calculate attributes lazily when
required, nor does it allow for region growing of already selected
attributes.

Derived field generation was introduced as a multi-core solution
by Harrison et al. [HNM*12] and is included in today’s production
tools like ParaView [AGC05] and VisIt [CBW*12]. It has recently
been expanded to the dynamic creation of logical combinations
using just-in-time compilation systems by Ibrahim et al. [THL20].

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

They provide a set of primitives that enable the user to define ex-
pressions to derive visualization attributes without the necessity to
recompile the application. Our approach differs from theirs, as we
improve performance by limiting the field derivation to a spatial
subset and use region-growing on these subsets.

3. Data Characteristics and Design Goals

Especially particle-based simulations with a large number of parti-
cles generate very large datasets. The storage of additional "calcu-
lated, intermediary attributes” is not feasible due to the extra mem-
ory needed. Especially for very large-scale data, the possibility of
saving intermediary attributes along with simulation results is lim-
ited, as it drastically increases the additional amount of data to be
stored, transferred, or processed. This paper presents a solution for
interactively selecting subsets of these datasets with or without in-
termediary attributes saved during simulation time. However, we
restrict the investigations to restoring attributes that can entirely be
restored using neighboring particles, their positions, and attributes.
In the following, we first describe our input data’s typical charac-
teristics and develop design goals to match typical use cases for our
solution.

Since we do want to support all kinds of renderers of particle-
based data that support selection, the interfaces must be limited
to common properties of particle-based simulations. Therefore, we
assume to have particles consisting of three-dimensional position
data, color information, and optional attribute data saved during
simulation time as input parameters. When calculating attributes,
typical operations, kernels, and all accessible data saved during the
simulation need to be accepted as input values.

Using any available data as input adds the possibility of either
reconstructing intermediary attributes used during simulation time
or calculating additional attributes. The necessity of some possi-
ble attributes may not even be known during simulation time. It
can solely be linked with the analysis that is intended to be per-
formed on the dataset, i.e., downstream local variance analysis on
attributes. Although not focusing on this aspect, this behavior adds
the feature to use properties of a previous or following frame of
time-dependent datasets to our solution, enabling the creation of
additional time-dependent attributes.

66 Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data

Our interactive selection method on calculated attributes is in-
tended to isolate particles of specific characteristics within a local
neighborhood to explore regional evolutions through the dataset.
These evolutions can be better investigated by either isolating the
full subset of similar particles in one step or by observing the se-
lection’s progression through the data. Therefore, it is necessary to
either stop on each extension step or have the full extension exe-
cuted at once.

Aiming for improvements in the analysis of large-scale data, our
solution needs to do be able to limit extension to a defined sub-
space. This additional restriction can be necessary because of small
or reduced execution resources to achieve higher performance or
intentionally limit the extension to a predefined area.

Based on the expected input data, usages, and addressed prob-
lems, we identify three main functional requirements (R1-R3) and
two non-functional requirements (R4-R5):

R1 Processing 3D position and optional color data
R2 Lazy evaluation of attributes on data
- provided by the dataset
- calculated from provided attributes by the dataset
- calculated from calculated attributes
R3 Extension of the particle selection either step-by-step or to the
full extent, selecting all matching neighbors’ neighbors at once
R4 Restriction to manually created spatial subsets of input data
R5 Good scalability for large-scale data

4. Method

This section describes our technique for visual analysis of particle-
based data on dynamically calculated particle attributes. Our in-
teractive selection is started brushing on a 3D-view, as shown in
Fig. 3(a). After this manual selection is performed, an attribute and
a comparison, e.g., extend ‘to smaller than’ or extend ‘to the max-
imum value’ needs to be chosen. Based on this manual input, all
necessary attributes for neighboring particles are dynamically cal-
culated. These particles are highlighted in red color Fig. 3(b). De-
pending on the actual values and comparison chosen, the selection
is then extended to the neighboring particles. This step can be re-
peated until the desired state is reached or no more new particles
are selected. A fully extended selection of similar values of the cal-
culated density is shown in Fig. 3(d). When using particle data with
identifiers or consistent enumeration through time, the selected par-
ticles’ temporal evolution can be examined. Fig. 3(e) illustrates the
evolution within another frame, additionally isolating the selected
particles. Particle isolation, i.e., not rendering unselected particles,
is available with or without temporal evolution using our provided
rendering engine.

We split our method into four main steps to address issues of
scalability and compatibility with future attribute calculation or ex-
tension methods. An overview of the four execution steps is given
in Fig. 5, illustrating the systematical data flow, including possible
repetition cycles. The first step imports the data from a new manual
(interactive) selection or previously saved particle selections into
the general workflow. The second step is preparing a possible ex-
tension by calculating all necessary attributes for the following rep-
etition cycle. As the extension is done in parallel within the third

(a) Provided Particle Information

|P1|P2|P3| |P5|P6|P7| Pn
I ey
(b) Sorted Particle Indexe\es_,L v v
Ipg | ... | Ipt 1P2| Ip3 | | Ips 1P7|
Cell 1 Cell 2 Cell 3 Cell k
- '(E)‘Subsorting by selection st:;t;§ Tteal
Ip3 Ip1 | Ips Ipa |
unselected latest selected selected

Figure 4: Indexed Spatial Decomposition with particle indexes (Ipy
to Ipg) being sorted into buckets of precalculated sizes by count-
ing sort (b) and Subsorting with indexes being additionally sorted
within a cell by their particles’ selection states ((c), as discussed in
Section 4.2.2)

step, the last step consolidates the selection data. Fig. 5 illustrates
this process for two selected particles and their neighbors in detail.

Throughout the process, we need to know the adjacent, i.e.,
neighboring particles to the selection. For this purpose, we use spa-
tial decomposition, as described in the following section.

4.1. Spatial Decomposition

There is a wide variety of possible methods available to realize
spatial decomposition necessary for neighborhood search. Our so-
lution builds a regular grid either for the whole or a user-defined
subspace and sorts all particle indexes in this space into the grid,
applying a z-curve hash. Although we limit the evaluation to a
regular grid, our method can be adapted to any index-based spa-
tial decomposition, e.g., octrees or kd-trees, with an appropriate,
and potentially more costly, neighbor search. Even though this ap-
proach creates lots of scattered read-operations during sort oper-
ations, it enables us to obtain all data, e.g., positions, or optional
pre-calculated attributes, using only one single integer per particle
as an index. We use counting sort as a sorting-mechanism because
we expect the user to be interested in uniform areas of either higher
particle densities or less dense areas with an increased search ra-
dius. For either case, we expect the possible number of particles to
be much higher than the number of cells we sort them into. For se-
lection extension in dense areas of generally huge sparse datasets,
we offer the possibility to define a subspace of the grid to increase
performance. Particles outside of the boundaries of the subspace
will be omitted during the sort. This behavior addresses the require-
ment R4 - Restriction to manually created spatial subsets of input
data, defined in Section 3 and is pictured for particle P4 in Fig. 4.

Note that our non-destructive sorting process is similar to the
counting-sort process described by Green [Grel0], but calculating
the spatial hashing value on the fly, saving only the position within
the original data instead of a tuple of spatial hashing value and
index. Although this solution is inferior to counting-sort with in-
cluded radix-sort in computation time, we favor this solution to
reduce the necessity of having either additional spatial hashing

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data 67

(a) Injection (b) Preparation

(c) Extend selection (d) Consolidation

Figure 5: Systematic flowchart of our three repeatedly executed computation steps and the data injection. Manually selected particles
are imported into the workflow (a), necessary attributes are calculated (b), the selection is extended for each cell (c), and the results are

consolidated (d). If requested, another extension is triggered.

operations or reserve additional memory for the necessary data-
tuple. As described by Corman et al. [CLRS09], counting-sort is di-
vided into a count-phase, during which the occurrences are counted
into an auxiliary data structure and a sorting-phase where this data
structure is used to sort the data. The sorting step itself is destruc-
tive on the intermediately generated auxiliary array during sorting.
This creates the necessity of a partitioning phase, as described by
Green [Grel0]. To omit this partitioning phase, we extend the par-
allel prefix sum by Harris et al. [HSOO07], creating a copy during
the consolidation phase, and keep this copy as it stores the pointer
offsets to every cell and the number of particles per cell. These re-
sulting indexes of cell boundaries within the sorted particle indexes
ensure parallel access of O(1) on each particle by cell id. We pro-
ceed with counting sort as defined by Corman et al. [CLRS09] on
the original count array. The additionally needed memory, which
is one of the drawbacks of using counting-sort, is used afterward
to store links to our dynamic data structure as described in Sec-
tion 4.2.1.

The resulting indexed spatial decomposition is visualized as a
data structure in Fig. 4(b).

4.2. Selection-Growing Based on Attributes

After selecting regions of interest in the 3D view by brushing, the
selection can be extended using provided or dynamically calculated
attributes with scalar values. The selection is extended to particles
with similar values (within an adjustable range), all particles with
smaller or larger values, or the one particle in the neighborhood
with the maximum or minimum value.

Extending the selection to neighboring particles is executed
by the steps ‘Extend selection” and ‘Consolidation’, as shown in
Fig. 5(c) and Fig. 5(d). The actual extension is executed for each
cell containing selected particles, ignoring interdependencies be-
tween cells. During this parallel process, the particle selection
might be extended to other particles within one cell or neighbor-
ing cells within separate parallel execution scopes that match the
same particles in other parallel executions. Fig. 5(c) illustrates the

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

issue of two particles within the same cell being selected from dif-
ferent parallel executions in detail, visualizing the necessary con-
solidation. Efficiently consolidating data from separate parallel ex-
ecution scopes makes high demands on used data structures that are
discussed in the following section.

4.2.1. Used Data Structures

According to our requirement R5 - Good scalability, as described in
Section 3, we add as little as possible additional data while keeping
the original information intact.

We use an additional dynamic data structure that scales with the
number of cells that contain relevant particles during the extension
and another dynamic data structure that scales with the number of
calculated particle attributes. Particle attributes are stored for each
particle within our Dynamic Cell Information Offset by cell, keep-
ing particles’ order, and storing the cells attributes’ index as a field
within our dynamic cell information. This dynamic data structure
creates an organizational overhead of 64 bits per cell used during
extension. The essential link between our static cell information
available for all cells and our dynamic cell information is stored
in the Dynamic Cell Information Offset as shown in Fig. 6. Us-
ing already allocated intermediary memory by counting sort, as de-
scribed in Section 4.1, we compensate the overhead of 32 bits for
each cell within the subspace for analyzing and, therefore, the gen-
eral drawback of memory consumption of counting sort within our
implementation.

Synchronization between different scopes of parallel execution
is done using flags embedded into every data structure mentioned
above. We introduce two synchronization flags within our static cell
information. One flag uses the least significant bit and marks a cell-
content as dirty to sync between the two execution phases, extend
selection and consolidation. This flag is labeled with the letter ‘S’
in Fig. 6. Another flag, labeled with the letter ‘A’ in Fig. 6, dy-
namically uses one to three bits, indicating whether attributes for
this cell are already available. This flag’s dynamic size reflects the
requirement R2 - Lazy evaluation of attributes on data, defined in
Section 3, limiting the maximum capacity to eight attributes per

68 Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data

Static Cell Information

Algorithm 1: Extend particle selection

| Dynamic Cell Information Offset (28-30 bit) | A (1-3 bit) | S |
Dynamic Cell Information v
| Element Count | Cell Information A | Cell Information B | Cell Information n

numLastSelected attributeStartIndex

ﬁl

Element Count | Attribute(s) Cell A | Attribute(s) Cell B | Attribute(s) Cell n

| numUnselected

Dynamic Attribute Information

Figure 6: Structure of dynamic particle data in global memory.
The static cell information (top), with two flags keeping information
on whether a cell needs attributes or resorting. The dynamic cell
information (middle), with its included fields and the reference to
the dynamic list of lazily evaluated attributes (bottom).

particle, and giving at least 28 remaining bits to our dynamic cell
information. Our solution can address more than 250 million cells
containing dynamically calculated attributes, not making a relevant
sacrifice to our scalability requirement without using additional
memory.

In addition to data structures that are needed overhead for our
solution, the results, i.e., whether a particle is selected, need to be
stored. Our solution distinguishes two states of selection, internal
and external selection, as described in Section 4.2.2, which needs
two bits of additional memory. Contrary to our requirement to work
non-destructively on the provided data, we utilize the two least sig-
nificant bits of each particle’s alpha-channel to store this informa-
tion. This solution is a trade-off to our requirement of adding the
least possible amount of additional data. However, it fits all stan-
dard particle-rendering systems, as alpha-rendering is commonly
not supported because of performance reasons. In addition to this
static data structure, we use dynamically extended memory to store
information on attributes and enable on-device communication be-
tween our solution’s different execution steps.

4.2.2. Particle Selection States

To exclude already selected particles from being checked during
further extension steps and enable synchronization between parallel
execution of cells to extend particles from, we introduce three cate-
gories of particles within one cell. Previously selected particles, the
latest selected particles (during the last iteration), and unselected
particles can be distinguished. Isolating particles that we selected
during the previous extension step enables us to focus on particles
that are the source of extending the selection, while we exclude
already selected particles from any further considerations. With all
particles-indexes within one cell matching the same sorting criteria,
we can split the particles into three categories by sorting each cell
and implementing two counters. The counters are stored within the
dynamic cell information, as shown in Fig. 6. Subsorting the parti-
cle indices by selection state within a cell is possible without losing
the original intent of accessing all cell particles as described in Sec-

for all particles in base cell to extend from do
copy particle information of base cell to shared memory
while num latest selected particles # 0 do
if particle is latest selected then
for all unselected particles do
if EvalExtend (myAttr,myAttr[i]) then
MarkInternallySelected (i)
L SetCellSortFlag ()

MoveLatestSelectedToSelected()
| SortCellInSharedMem ()

MoveNewlySelInBaseCellToLatestSel ()
BlockSync ()
copy particle information of base cell to global memory
for all neighbor cells of base cell do
copy particle information of cell to shared memory
if particle in base cell is latest selected then
for all unselected neighbor particles do
if EvalExtend (myAttr,neighbAttr(i])
then
L MarkExternallySelSafe (i)
SetCellSortFlag()

copy neighbors’ particle information to global
memory

tion 4.1. Additionally, it adds the possibility to sequentially access
particles by selection state and thus help perform efficient calcula-
tions during an extension step. The structure of sorted data within a
cell is shown in Fig. 4. The subsorting is done upon two additional
particle selection states, distinguishing whether a particle has been
selected within a cell, is internally selected, or whether the reason
for this selection was located outside the same cell. Particles are
then marked as externally selected. We mark particles within two
bits each particle, as mentioned previously, and cells using a flag
created within our static cell information, as shown in Fig. 6.

4.2.3. Selection Growing

The above-mentioned categorization into particles that have been
selected within a cell or from a neighboring cell is fundamental
for reducing workload during extension. As already mentioned,
particle extension is done isolated on regions in parallel. All cells
containing particles selected by either newly created selections or
neighboring cells are checked for further extension during each se-
lection extension. At first, all particles within the same cell are con-
sidered and extended until no other particles are selected. With each
execution, the number of possibly selectable particles decreases,
which reduces necessary comparisons between particles. This op-
eration is illustrated in the second picture of Fig. 5(c). We use
subsorting on the cell’s isolated execution content, as described
in Section 4.2.2 and shown for global execution in Fig. 4(c). For
the upstream extension within a cell’s boundaries, we require an
additional temporary selection state for subdividing the group of

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data 69

Algorithm 2: Consolidate particle selection

Algorithm 3: Dynamic attribute computation

input : Cells that were involved in latest selection
output: Cells that need attributes, cells that are source of
extension

for all cells involved in selection do
ExternallySelectedToLatestSelected()
SortCellInSharedMem ()
WriteSortedIndexesToGlobalMemory ()
ResetCellSortFlag()
if cell contains latest selected particles then

AddToCellsAsSourceOfExtension ()

for all neighbor cells do

if neighbor cell has attributes not available then
L L AddToCellsNeedingAttributes ()

unselected to a new temporary group of newly selected within the
cell. We realize this by temporarily introducing another counter as a
border between the subsorted particles of different selection types.
When the extension within the cell to extend from is completed,
these are moved to the latest selected particles by adding the tempo-
rary counter to the number of latest selected particles, merging the
two groups. These particles are then marked as selected internally
and create the basis of extending to neighboring cells. All particles
in neighboring cells are then marked as externally selected. In ad-
dition to the particles being marked, the containing cell is marked
with a sort flag when parts of its content are selected. The whole
process is outlined in Algorithm 1.

Since the extension is done in parallel on possibly overlapping
cells and thus identical particles, downstream synchronization on
global memory is necessary. A visual example of the necessity is
shown in Fig. 5(d), where the initially selected particle of both dis-
played blocks selects other particles within a second iteration. In
this example, the second iteration results in the selection of a parti-
cle in overlapping cells.

During consolidation, all cells that were processed during exten-
sion are evaluated for further extension. Based on each particle’s
external or internal selection state, particles are grouped into un-
selected, latest selected, or selected. Particles that are selected in-
ternally have already been considered for extensions to neighboring
cells and are therefore directly moved to the selected group, exclud-
ing them from further considerations. Externally selected particles
are moved to the category of the latest selected particles. Cells con-
taining particles of this type are added as a source of extension
for the next extension cycle. Additionally, their neighboring cells
are checked for attribute availability and scheduled for dynamically
calculating attributes, if necessary. The above process is outlined in
Algorithm 2.

4.3. Dynamically Computing Attributes

As soon as lazy evaluation on attributes is triggered, the calculation
process is conceptually straightforward. Several provided and con-
figurable neighbor functions f are executed for each particle and

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

for all particles in cell to calculate attributes for do
copy particle information of base cell to shared memory
for all particles in cell do
myResult[i] +
EvalNeighborFunc (mylnfo,neighblnfo[i])
myResult +— ReductionFunc (myResult[i])

for all neighbor cells of base cell do
copy particle information of cell to shared memory
for all neighbor particles do
myResult[i] +
EvalNeighborFunc (mylnfo,neighblnfoli])
myResult +— ReductionFunc (myResult[:])

| copy myResult to global memory

neighbor-combination, accepting each combination’s positions and
additional information, e.g., previously calculated attributes as in-
put. Subsequently, the neighbor function’s results are passed to an-
other configurable reduction function r and stores the result back to
the particle’s attribute. By choosing f and r, as well as the number
of execution cycles, we are able to calculate several attributes on
first-, second-, or third-ring neighbors. With each additional ring,
our solution dynamically extends the range of needed cells, omit-
ting multiple calculations using the respective flags, as mentioned
earlier. The calculation is integrated within our ‘preparation step’
as shown in Fig. 5(b) and outlined in Algorithm 3.

4.4. Implementation Details

Our solution is implemented in CUDA, using predefined structs as
separated parameters to store basic configuration and pointers to
device memory in addition to the mentioned data structures as de-
scribed in Section 4.2.1. The parameters are available separately
for grid-, particle-, attribute- and extension parameters, as well
as optional uploaded attributes for attributes saved within the ex-
ternally provided dataset. The selection-growing process is fully
multi-threaded on the GPU and is divided into four main steps,
which are synchronized by CUDA kernel launches. Each launch is
adapted to the amount of work to be done within the step and can
be repeated until all necessary criteria to process the next steps are
met.

We built our examples using our plugin integration for the open-
source particle rendering framework MegaMol [GKM™15]. This
approach enables us to use different data sources compatible with
MegaMol and use several rendering engines provided by the frame-
work. To be able to visually distinguish particles of different selec-
tion states as described in Section 4.2.2, we created a rendering
module based on Nvidia OptiX [PBD*10]. Using this renderer and
other provided MegaMol plug-ins, additional features like color-
ing on attributes or hiding of (un)selected particles are additionally
available.

70 Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data

Figure 7: Analysis of the inflow scenario simulated with SPH. In-
verting the view, i.e., hiding all selected particles, reveals some
shocks present in the jet that arise from the inflow zone.

5. Evaluation

We perform two kinds of experiments to evaluate our technique.
First, two case studies are performed showing the versatility of the
presented method and, second, performance and scaling studies are
conducted discussing the techniques’ efficiency.

5.1. Case Study

In the following, we consider two use cases with different charac-
teristics. The first one is a large-scale smoothed particle hydrody-
namics (SPH) dataset from Reinhardt et al. [RKEW 19], where we
analyze one simulation state and perform spatial reconstruction of
attributes. The second one is a molecular dynamics dataset, simu-
lating a liquid’s evaporation on a stationary planar interface. It was
supplied by Heinen and Vrabec [HV19]. In this case, we use tem-
poral and spatial relations to reconstruct attributes.

5.1.1. SPH Inflow Case

In this case, we analyze a fluid simulation conducted with SPH.
‘While initially invented by Gingold and Monaghan [GM77] to sim-
ulate astrophysical phenomena, SPH is nowadays often used in the
field of computer graphics to animate liquids. The fluid quantities
A; at particle i’s location x; are smoothed over a compact neighbor-
hood N; using a weighting function (called smoothing kernel) W
via

A=Ax) = ¥ ZLaW(xi—x;.h), M

jen; Pi
where £ is the so-called smoothing length, m; the mass represented
by particle j, and p; the density at x;. The density p is one of the
most important quantities with SPH as it is characteristic for the
pressure and the resulting pressure forces, which on the other hand,
are the dominating forces of the simulation system. For a particle i,
it is computed using equation 1 and reads as

pi= Z m]'W(HX,'—Xj”,h). (2)
JEN;

For a more detailed introduction to SPH, we refer the reader to the
tutorial of Koschier et al. [KBST19].

Figure 8: Analysis of hot spots on a liquid’s evaporation along a
stationary planar interface. Particles on the surface with certain
attributes are displayed isolated.

A simulation state of the scenario we are investigating is depicted
in Fig. 2. The scenario consists of up to 10 million particles. To safe
disc space, only particle positions and velocities, as well as particle
type (fluid or rigid particle), were stored within the dataset. It was
computed using weakly compressible SPH [BT07] with consistent
Shepard interpolation [RKEW19]. To simulate fluid and rigid cou-
pling, the method of Akinci et al. [AIA*12] was used. As smooth-
ing kernel W, the cubic spline kernel [Mon92] was used.

As mentioned, density is one of the characteristic fluid quan-
tities. It is decisive for the volume conservation and the stability
of the overall simulation process. Large density differences result
in pressure shocks, which negatively influence the stability, and,
therefore, smaller simulation time steps are needed. Identifying
such shock waves is a challenging topic and typically achieved by
visualizing densities as colors and looking at the simulation.

Initially, some particles on the surface of one of the liquid jets are
selected manually. When growing the selection for larger density
values, it is observable that the particles are selected that not all
particles down the liquid jet are selected. In fact, when inverting
the view, i.e., hiding the selected particles (Fig. 7), we can observe
that these particles form some discs. These differences in density
result in pressure differences and can, therefore, produce shocks,
which have a negative influence on the stability of the system.

5.1.2. Molecular Dynamics Evaporation Case

The second case study is a molecular dynamics (MD) simula-
tion from Heinen and Vrabec [HV19]. In this scenario (shown in
Fig. 1), a liquid’s evaporation along a stationary planar interface
is investigated. They have obtained promising results for a vapor-
liquid equilibrium investigations [VKFHO06] and evaporation simu-
lations [HVF16] using MD. For a detailed introduction to MD, we
refer the reader to the lecture notes from Allen [Al104].

The investigated scenario is part of a study where the influence of
the hydrodynamic velocity on the evaporation flux is investigated
using the transversal temperature T; y, of a particle i. It is defined
by

_oomy 2 2
T ,;vv Via Vi 3)

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data 71

Prepare Summed ——
S Extend Pre-Calculated =
Consolidate

4
Z4 L
g

2

1 k-

0 : L

0 20 40 60 80

selected particles (in M)

Figure 9: Time measurements for the overall time to select par-
ticles in the 8OM particles fluid pillar scenario. The extension on
pre-calculated attributes is compared to lazily evaluated attributes.
All sub-steps of our solution are shown and scale linearly with re-
spect to the particle count. Median and interquartile boundaries
(p25, p75) are plotted for all measurements.

where kg is the Boltzmann constant, m; the particles’ mass, v; , and
vjy the thermodynamic velocity in x- and y-direction. A detailed
discussion can be found in Heinen and Vrabec [HV19].

This dataset consists of about 4.44M particles. The goal is to
identify hot spot regions, i.e., particles with high transversal tem-
perature, as in these regions, evaporation is analyzed. To compute
T; xy, we need the particles’ thermodynamic velocity. Therefore, the
attribute calculation for the selection-growing is performed in two
steps. First, the velocities are reconstructed from two subsequent
time stamps, and, secondly, the transversal temperature 7 yy is com-
puted as described in Equation 3. Additionally, the evaluation range
has been extended from the usual four to eight times the radius of
one particle.

The result in Fig. 8 can then be achieved using our growing
method for similarity, combined with hiding unselected particles.
The evaporation of particles on the surface can now be investigated
in subsequent frames while keeping the selection.

5.2. Performance

We conducted two different studies to measure the performance of
our solution and one study on memory usage. The measurements
have been executed on a notebook with NVidia GTX 1070 graphics
card with 8 GB memory using CUDA 9.0, measuring our solution’s
execution time separated for the three execution steps. As input
data, we used an SPH fluid pillar in seven different resolutions from
80k to 80M particles with an average amount of 8.5 particles per
cell, resulting in a total number of 11.2k to 9.4M cells. We executed
all measurements 100 times when measuring time values and are
displaying the median value and the interquartile boundary values
(p25, p75) in all figures.

In the first study, we selected one random particle for each mea-
surement within the 80M particle scenario and extended the selec-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

0.15
80M ——
10M ——
2.1M
640k ———
£
ZO0IR
~
— l\><//\
—
0.05 Lol Lol Lol Lo
10* 10° 10° 10 10%

selected particles

Figure 10: The overall time to process one particle while increas-
ing the selection. Median and interquartile boundary values (p25,
p75) out of 100 tests. It can be observed that the process costs per
particle slightly decrease until scenario boundaries are reached.

tion until all particles were selected. After each particle extension,
the number of additional particles and the required time has been
measured. The result is displayed in Fig. 9. The total time to per-
form all selection steps, and the time consumed by the monitored
sub-sets, scales linearly with the number of selected particles is
shown. It can be observed that the lazy evaluation of attributes con-
sumes about two-thirds of the total computation time. This ratio is
valid for our density evaluation and will differ for different work-
loads when calculating other types of attributes. In addition to our
lazily evaluated attributes, we measured the time consumed using
pre-calculated attributes, shown in Fig. 9. As expected, the time to
calculate all attributes upfront does not differ from the time that is
consumed by the preparation-step for all 80M particles. As the ex-
tension itself does not change, the resulting difference is found in
the phase of consolidation. In fact, the total time used for consoli-
dation is reduced when calculating all attributes before starting the
selection. However, as this step takes a neglectable portion of the
total processing time, our solution, using lazily evaluated attributes,
outperforms this approach until almost 90% of all particles are se-
lected.

In the second study, we evaluate the mean cost to process one
particle depending on the total amount of selected particles on four
different scenarios with varying particle count ranging from 640k
to 80M. The result of this performance study is shown in Fig. 10.
There are two main observations: first, the time needed to process
one particle in the selection is independent of the scenario size. Sec-
ondly, the cost to process one particle stays almost constant regard-
less of the overall number of selected particles. It is even slightly
reduced the more particles are selected. Increasing costs per parti-
cle close to the end of the measured selection processes are caused
by the reduced number of unselected particles remaining during ex-
tension close to the scenario’s boundaries. This leads to fewer parti-
cles being left for selection during each extension and, therefore, an
increasing execution time per particle. The randomly chosen first
particle leads to differences in unselected areas between the con-
ducted experiments during the last extension steps, explaining an

72 Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data

100 /

K80 F

£

by

& 60 |-

E

[

g 40

5 13% (1x 1D) ——

£ 20 50% (1x 1D) ——
50% (8x 1D)
75% (8x 3D) ——

0 | | | |

0 20 40 60 80 100
calculated attributes (in %)

Figure 11: The memory used while lazily evaluating attributes and
extending the selection in percent of using precalculated attributes.
Depending on the average occupancy of a cell (13%, 50% and
75%), as well as the amount and type of evaluated attributes, up
to 80% less memory is required.

increasing variance in this extension phase. In essence, the overall
time needed to process one particle is about 0.1 microseconds.

Within the same scenario, we measured the amount of necessary
memory for lazily evaluating attributes while increasing the selec-
tion. We compared the results to the amount of memory needed
when using previously uploaded attributes for the full dataset. The
numbers are shown in Fig. 11. The result mainly depends on the
average occupancy of particles within a cell and the number of at-
tributes calculated. For good coverage, we consider the following
four configurations: One low cell-occupancy of 13% with one 1D
particle evaluated, which matches the presented 80M scenario, re-
quires up to 18% less memory. The 75% occupancy with an evalua-
tion of eight 3D attributes, which represents the maximum capacity
of the presented solution, can use up to 80% less memory for small
amounts of attributes calculated. The memory increments depend
on the used resize strategy and can be optimized for better mem-
ory usage or performance. In general, our method is recommended
when smaller percentages of attributes are required and especially
useful with increasing numbers and dimensions of attributes.

The dynamic memory usage D depends on the number of par-
ticles within the scenario n, the maximum number of particles to
extend within one extension step emax, the average cell occupancy
Pavg, the number of attributes x, as well as the dimensions per
attribute d,. Its minimum percentage of the corresponding fixed
memory usage can be calculated via

Sn+ 2%t danx+2+ 3 4 emax
D(x) = Pave Pave

, 4
5n+ﬁ+dan—|—l

where a static approach uses three dimensions of position-data,
color information and indexes (5n), intermediate and count array,
as well as all attributes for each dimension. Additionally, one ele-
ment to calculate the number of particles in each cell with increased
performance is required. Our dynamic approach requires attributes
for each dimension only for calculated attributes but adds one ad-

ditional counter, the dynamic data structure of three elements per
cell, and a sync list containing all particles to extend within one
step.

The average cell occupancy and the maximum number of par-
ticles to extend within one step depend on the scenario. The pre-
sented scenario of 80M particles contains an average of 8.5 parti-
cles per cell with an emax of 250,000.

6. Conclusion

We presented an efficient technique for selecting particles based on
attributes in an interactive visualization of the simulation. The re-
gion of interest is first brushed manually and afterward grown intel-
ligently, based on attribute comparisons. These attributes may even
not necessarily be present in the dataset. If they are not present (e.g.,
for disk space reasons), they are lazily reconstructed, outperform-
ing precalculated attributes with respect to performance and mem-
ory usage for amounts of up to 90% attributes calculated within
most particle-based use cases. In this way, even new attributes or
measures may be constructed, which may arise during the anal-
ysis. These could also be used to compare different simulations
conducted with a concurring model. A more in-depth analysis of
such a use case would be a new topic in future work. For example,
measuring the density noise to compare as presented by Reinhardt
et al. [RKEW19] might be an interesting area for such cases. As
our presented solution uses a grid-based spatial decomposition, it
might be interesting to investigate the technique for other methods
like octrees or kd-trees.

Acknowledgements

This work was supported by “Kooperatives Promotionskolleg Dig-
ital Media” at Hochschule der Medien and the University of
Stuttgart.

References

[AGCO05] AHRENS J., GEVECI B., CHARLES: Paraview: An end-user
tool for large-data visualization. In Visualization Handbook, Hansen
C. D., Johnson C. R., (Eds.). Butterworth-Heinemann, 2005, pp. 717—
731. doi:10.1016/B978-012387582-2/50038-1.3

[ATIA*12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER B.,
TESCHNER M.: Versatile rigid-fluid coupling for incompressible SPH.
ACM Transactions on Graphics 31, 4 (2012), 62:1-62:8. doi:10.
1145/2185520.2185558. 8

[All04] ALLEN M. P.: Introduction to molecular dynamics simulation.
Computational soft matter: From Synthetic Polymers to Proteins 23, 1
(2004), 1-28. 8

[BTO7] BECKER M., TESCHNER M.: Weakly compressible SPH for
free surface flows. In Proceedings of Eurographics/SIGGRAPH Sympo-
sium on Computer Animation (2007), pp. 9-18. doi:10.2312/SCA/
SCA07/209-218. 8

[CBW*12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., WEBER G. H.,
KRISHNAN H., FOGAL T., SANDERSON A., GARTH C., BETHEL
E. W., CAMP D., RUBEL O., DURANT M., FAVRE J., NAVRATIL P.:
Visit: An end-user tool for visualizing and analyzing very large data. In
High Performance Visualization—-Enabling Extreme-Scale Scientific In-
sight, Bethel E. W., Childs H., Hansen C., (Eds.). CRC Press/Francis—
Taylor Group, 2012, pp. 357-372. 3

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.2312/SCA/SCA07/209-218
https://doi.org/10.2312/SCA/SCA07/209-218

Wollet et al. / Interactive Selection on Calculated Attributes of Large-Scale Particle Data 73

[CLRS09] CoORMAN T. H., LEISERSON C. E., RIVEST R. L., STEIN
C.: Introduction to Algorithms, 3rd ed. MIT Press, 2009. 5

[DGHO3] DOLEISCH H., GASSER M., HAUSER H.: Interactive fea-
ture specification for focus+context visualization of complex simula-
tion data. In Eurographics / IEEE VGTC Symposium on Visualiza-
tion (2003), The Eurographics Association. doi:10.2312/VisSym/
VisSym03/239-248.3

[GKM*15] GROTTEL S., KRONE M., MUELLER C., REINA G., ERTL
T.: Megamol - a prototyping framework for particle-based visualiza-
tion. [EEE Transactions on Visualization and Computer Graphics 21, 2
(2015), 201-214. doi:10.1109/TVCG.2014.2350479. 2,7

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed particle hy-
drodynamics - theory and application to non-spherical stars. Monthly
Notices of the Royal Astronomical Society 181, 3 (1977), 375-389.
doi:10.1093/mnras/181.3.375.8

[GRDE10] GROTTEL S., REINA G., DACHSBACHER C., ERTL T.: Co-
herent culling and shading for large molecular dynamics visualization.
Computer Graphics Forum 29, 3 (2010), 953-962. doi:10.1111/73.
1467-8659.2009.01698.x%. 2

[Grel0] GREEN S.: Particle simulation using CUDA. Whitepaper,
NVIDIA, 2010. 4,5

[HK98] HOJJATOLESLAMI S. A., KITTLER J.: Region growing: a new
approach. IEEE Transactions on Image Processing 7, 7 (1998), 1079—
1084. d0i1:10.1109/83.701170.2

[HMO03] HUANG R., MA K.-L.: RGVis: region growing based tech-
niques for volume visualization. In 7 /th Pacific Conference on Computer
Graphics and Applications. (2003), pp. 355-363. doi:10.1109/
PCCGA.2003.1238277.2

[HNM*12] HARRISON C., NAVRATIL P., MOUSSALEM M., JIANG M.,
CHILDS H.: Efficient dynamic derived field generation on many-core
architectures using Python. In 2012 SC Companion: High Perfor-
mance Computing, Networking Storage and Analysis (2012), pp. 583—
592. doi:10.1109/SC.Companion.2012.82.3

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel prefix sum
(scan) with CUDA. GPU Gems 3, 39 (2007), 851-876. 5

[HV19] HEINEN M., VRABEC J.: Evaporation sampled by stationary
molecular dynamics simulation. The Journal of Chemical Physics 151,
4(2019), 044704. do1:10.1063/1.5111759. 8,9

[HVF16] HEINEN M., VRABEC J., FISCHER J.: Communication: Evap-
oration: Influence of heat transport in the liquid on the interface tem-
perature and the particle flux. The Journal of Chemical Physics 145, 8
(2016), 081101. doi:10.1063/1.4961542. 8

[THL20] IBRAHIM S., HARRISON C., LARSEN M.: JIT’s complicated:
A comprehensive system for derived field generation. In In Situ Infras-
tructures for Enabling Extreme-Scale Analysis and Visualization (2020),
pp. 27—31. doi:10.1145/3426462.3426467. 3

[JMELO8] JoNEs C., MA K., ETHIER S., LEE W.: An integrated ex-
ploration approach to visualizing multivariate particle data. Computing
in Science Engineering 10, 4 (2008), 20-29. doi:10.1109/MCSE.
2008.88.3

[JSZ18] JIANG M., SOUTHERN R., ZHANG J. J.: Energy-based disso-
lution simulation using SPH sampling. Computer Animation and Virtual
Worlds 29, 2 (2018), e1798. doi1:10.1002/cav.1798.3

[KBST19] KOSCHIER D., BENDER J., SOLENTHALER B., TESCHNER
M.: Smoothed particle hydrodynamics techniques for the physics based
simulation of fluids and solids. In Eurographics 2019 - Tutorials (2019),
The Eurographics Association. doi:10.2312/egt.20191035. 8

[LMD*11] LINSEN L., MOLCHANOV V., DOBREV P., ROSSWOG S.,
ROSENTHAL P., LONG T. V.: SmoothViz: Visualization of smoothed
particle hydrodynamics data. In Hydrodynamics - Optimizing Methods
and Tools, Schulz H. E., Simoes A. L. A., Lobosco R. J., (Eds.). InTech,
2011, pp. 3-28. 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

[MFR*13] MOLCHANOV V., FOFONOV A., ROSSWOG S., ROSENTHAL
P., LINSEN L.: Smoothviz: An interactive visual analysis system for
SPH data. In Proceedings of the 8th International SPHERIC Workshop
(2013), pp. 350-356. 2

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics. Annual
Review of Astronomy and Astrophysics 30, 1 (1992), 543-574. doi:
10.1146/annurev.aa.30.090192.002551. 8

[PBD*10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: Optix: A general purpose ray trac-
ing engine. ACM Transactions on Graphics 29, 4 (2010), 66:1-66:13.
doi:10.1145/1778765.1778803. 2,7

[Pri07] PRICE D. J.: Splash: An interactive visualisation tool for
smoothed particle hydrodynamics simulations. Publications of the Astro-
nomical Society of Australia 24, 3 (2007), 159-173. doi:10.1071/
AS07022.2

[REO5] REINA G., ERTL T.: Hardware-accelerated glyphs for mono- and
dipoles in molecular dynamics visualization. In EG/IEEE VGTC Sympo-
sium on Visualization (2005), pp. 177-182. doi:10.2312/VisSym/
EuroVis05/177-182.2

[RHD*17] REINHARDT S., HUBER M., DUMITRESCU O., KRONE M.,
EBERHARDT B., WEISKOPF D.: Visual debugging of SPH simulations.
In 2017 21st International Conference Information Visualisation (IV)
(2017), pp. 117-126. d0i:10.1109/1v.2017.20. 2

[RKEW19] REINHARDT S., KRAKE T., EBERHARDT B., WEISKOPF
D.: Consistent Shepard interpolation for SPH-based fluid animation.
ACM Transactions on Graphics 38, 6 (2019), 189:1-189:11. doi:10.
1145/3355089.3356503. 8,10

[SBSG06] SEREDA P., BARTROLI A. V., SERLIE I. W. O., GERRITSEN
F. A.: Visualization of boundaries in volumetric data sets using LH his-
tograms. IEEE Transactions on Visualization and Computer Graphics
12,2 (2006), 208-218. doi:10.1109/TVCG.2006.39.2

[SWB15] SAKouU L., WILCHES D., BANIC A.: Region growing selec-
tion technique for dense volume visualization. In International Sym-
posium on Visual Computing (2015), pp. 745-754. doi:10.1007/
978-3-319-27863-6_70.3

[SYM13] SAUER F., YU H., MA K.-L.: An analytical framework for
particle and volume data of large-scale combustion simulations. In Pro-
ceedings of the 8th International Workshop on Ultrascale Visualization
(2013), pp. 1-8. doi:10.1145/2535571.2535590. 2

[SYM14] SAUER F., YU H., MA K.: Trajectory-based flow feature
tracking in joint particle/volume datasets. [EEE Transactions on Vi-
sualization and Computer Graphics 20, 12 (2014), 2565-2574. doi:
10.1109/TVCG.2014.2346423.3

[TLMO5] TzENG F.-Y., LuM E. B., MA K.-L.: An intelligent sys-
tem approach to higher-dimensional classification of volume data. IEEE
Transactions on visualization and computer graphics 11, 3 (2005), 273—
284. doi:10.1109/TVCG.2005.38. 2

[VKFHO6] VRABEC J., KEDIA G. K., FucHS G., HASSE H.: Com-
prehensive study of the vapour-liquid coexistence of the truncated and
shifted Lennard—Jones fluid including planar and spherical interface
properties. Molecular Physics 104, 9 (2006), 1509-1527. doi:10.
1080/00268970600556774. 8

[YEII12] Yu L., EESTATHIOU K., ISENBERG P., ISENBERG T.: Effi-
cient structure-aware selection techniques for 3D point cloud visualiza-
tions with 2DOF input. [EEE Transactions on Visualization and Com-
puter Graphics 18, 12 (2012), 2245-2254. doi:10.1109/TVCG.
2012.217.3

https://doi.org/10.2312/VisSym/VisSym03/239-248
https://doi.org/10.2312/VisSym/VisSym03/239-248
https://doi.org/10.1109/TVCG.2014.2350479
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1111/j.1467-8659.2009.01698.x
https://doi.org/10.1111/j.1467-8659.2009.01698.x
https://doi.org/10.1109/83.701170
https://doi.org/10.1109/PCCGA.2003.1238277
https://doi.org/10.1109/PCCGA.2003.1238277
https://doi.org/10.1109/SC.Companion.2012.82
https://doi.org/10.1063/1.5111759
https://doi.org/10.1063/1.4961542
https://doi.org/10.1145/3426462.3426467
https://doi.org/10.1109/MCSE.2008.88
https://doi.org/10.1109/MCSE.2008.88
https://doi.org/10.1002/cav.1798
https://doi.org/10.2312/egt.20191035
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1071/AS07022
https://doi.org/10.1071/AS07022
https://doi.org/10.2312/VisSym/EuroVis05/177-182
https://doi.org/10.2312/VisSym/EuroVis05/177-182
https://doi.org/10.1109/iV.2017.20
https://doi.org/10.1145/3355089.3356503
https://doi.org/10.1145/3355089.3356503
https://doi.org/10.1109/TVCG.2006.39
https://doi.org/10.1007/978-3-319-27863-6_70
https://doi.org/10.1007/978-3-319-27863-6_70
https://doi.org/10.1145/2535571.2535590
https://doi.org/10.1109/TVCG.2014.2346423
https://doi.org/10.1109/TVCG.2014.2346423
https://doi.org/10.1109/TVCG.2005.38
https://doi.org/10.1080/00268970600556774
https://doi.org/10.1080/00268970600556774
https://doi.org/10.1109/TVCG.2012.217
https://doi.org/10.1109/TVCG.2012.217

