Eurographics Symposium on Parallel Graphics and Visualization (2021)
M. Hadwiger, M. Larsen, F. Sadlo (Editors)

Performance Tradeoffs in Shared-memory Platform Portable
Implementations of a Stencil Kernel

E. Wes Bethell"z, Colleen Heinemann'~ , and Talita Perciano!

Lawrence Berkeley National Laboratory, Berkeley CA, USA
2San Francisco State University, San Francisco CA, USA
3University of Illinois, Urbana-Champaign IL, USA

Abstract

Building on a significant amount of current research that examines the idea of platform-portable parallel code across different
types of processor families, this work focuses on two sets of related questions. First, using a performance analysis method-
ology that leverages multiple metrics including hardware performance counters and elapsed time on both CPU and GPU
platforms, we examine the performance differences that arise when using two common platform portable parallel programming
approaches, namely OpenMP and VTK-m, for a stencil-based computation, which serves as a proxy for many different types
of computations in visualization and analytics. Second, we explore the performance differences that result when using coarser-
and finer-grained parallelism approaches that are afforded by both OpenMP and VTK-m.

CCS Concepts

* Computing methodologies — Parallel programming languages; * Theory of computation — Shared memory algorithms;

1. Introduction

As computational platforms become increasingly heterogeneous,
consisting of multi-core CPUs and accelerators like many-core
GPUs, an area of much recent research focuses on the idea of
software tools and programming environments to achieve platform
portable parallelism across different types processors. While there
are multiple design and implementation approaches for platform-
portable code, the performance tradeoffs between these approaches
is not always clear, nor are the performance tradeoffs within a sin-
gle approach where one may have multiple design strategies.

For example, OpenMP recently added support for GPU-
offload of OpenMP-parallel codes [Li20], and projects like VTK-
m [M*19] provide support for backends that run on multiple de-
vices, including multi-core CPUs and many-core GPUs. In both of
these examples, there are numerous ways to implement a particular
algorithm that produces the correct answer and that runs in parallel.

In this work, we examine the performance that results
when exploring multiple design pathways in multiple platform-
portable, shared-memory parallel programming frameworks,
namely OpenMP and VTK-m. The design trade-offs focus primar-
ily on coarser- versus finer-grained parallelism, and the study re-
sults reveal findings about cost of overhead associated with plat-
form portability. We use a methodology for evaluating performance
that goes well beyond runtime alone to examine hardware perfor-
mance counters on CPU and GPU platforms. This study is timely
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given the increasing emphasis on platform portability in heteroge-
neous computing environments.

The primary contributions and novelty of this work are: (1) a per-
formance comparison of a key computational kernel that is widely
used in analysis and visualization implemented using two differ-
ent methods for achieving platform portable parallel code, namely
OpenMP and VTK-m; (2) examination of performance differences
that result when using coarse- and fine-grained parallelism design
options in both frameworks including the potential cost of over-
head associated with platform portability; (3) a description of two
different VTK-m implementations of a stencil-based convolution
kernel.

2. Design and Implementation: Shared-memory Parallel
Stencl-based Convolution

2.1. Overview

In a stencil based computation, each point of a multidimensional
grid is updated with contributions from its neighbors. This form of
computation lies at the heart of many different types of scientific
computations, such as solving partial differential equations on a
regular, structured grid (c.f., [RRMc*97]). We include this compu-
tational pattern because it is common in many types of computing
applications, such as numerical simulation, image analysis/com-
puter vision, convolutional neural networks, as well as visualiza-
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Figure 1: The original data (left), obtained via computed tomography at the Advanced Light Source, is a 3D image of a sandstone sample,
and appears "grainy" or "noisy" when visualized using an isocontour. Application of the 3D version of the Gaussian smoothing kernel with
a large stencil size, 193, produces an isocontour that is much smoother (right), and closer to the results we would obtain using high quality
image segmentation methods (c.f., [PHC*20].) Such methods are an important part of the scientific data analysis workflow.

tion methods like isocontouring that perform computations using
stencils of mesh points.

In our study, we focus on a particular type of stencil-based com-
putation, namely convolution, using Gaussian weights, which is of-
ten used for image smoothing and noise reduction. This form of
computation is a structured memory access code, where memory is
accessed in a regular and predictable fashion.

In this computation, each destination pixel d(i) is a sum of
nearby pixels averaged using a weighting scheme that gives more
weight to pixels closer to i, and less pixels further away (Eq. 1).

d(i) =Y g(i,i) (1

where the Gaussian weights are given by

gin =t (8) @

In Eq. 2, 8(i,i) is the distance between pixels i and i. G is a
parameter that defines whether the weights are more tightly fo-
cused around the source pixel (somewhat less smoothing), or if the
weights are more diffuse, and give more weight to pixels further
away (somewhat more smoothing). Computation of the smoothed
pixel value consists of performing a sum of products of the source
pixel weights with the filter weights. An example for 2D image con-
volution appears in Listing 1, and this computation trivially gener-
alizes to N dimensions.

We focus on this form of implementation in this paper because
it is well understood and has been well studied elsewhere and in
different contexts (c.f. [RYQ11]). The study of alternative formu-
lations, such as the separable convolution [Cho17], which accom-
plish the same type of task but with fewer arithmetic operations,
would make for interesting future work. Our focus here is on the
potential overhead of programming in different environments and
using different coarse- vs. fine-parallelism tradeoffs with a well un-
derstood and well recognized algorithm.

An application that uses the smoothPixel method in Listing 1
will iterate over the pixels/voxels in a source image/volume, and
invoke this method at each pixel/voxel. This type of application is
straightforward to parallelize in that the sense that the computation
at each d(i) is independent of the computation at all other loca-
tions; these computations may be performed independently and in
parallel.

2.2. Parallelization with OpenMP

Listing 2 shows two such parallelizations using OpenMP: one is
more coarse-grained, while the other is more fine-grained. In the
coarse-grained parallelization, the loop parallelization occurs over
scanlines: eath OpenMP thread will be assigned one scanline’s
worth of pixels to process. OpenMP does assignments using one
of several different strategies, such as round-robin, etc. depending
on the setting of a runtime environment variable (c.f. [CMD*00]).
This type of parallelization is relatively coarse-grained in the sense
that each thread is assigned a significant amount of work.

In the fine-grained approach, shown in the lower part of List-
ing 2, the loop parallelization occurs over the entire collection of
pixels. In contrast to the coarse-grained parallel example, this fine-
grained approach has one pixel assigned to each thread.

2.3. Parallelization with VTK-m

One potential VTK-m implementation of this stencil operation is to
use the same computational kernel shown in Listing 1, but then let
VTK-m manage how this computation is invoked. To do so, we de-
fine a Field Map worklet that has input and output parameters that
are “arrays”; these are essentially std: :vector objects. Then,
after populating the input array with the source image, we invoke
the dispatcher that invokes the ImageConvolutionWorklet,
as shown in Listing 3, which is an abbreviated summary of the
worklet. Then, VTK-m will invoke that worklet once per array item
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using one of several different potential device backends, depending
upon user build configuration options and runtime choices (see the
VTK-m User’s Manual for more details [M*19]). In the case of our
application, this worklet is invoked once per input pixel.

In this case, the per-pixel invocation of the Field Map worklet is
like the fine-grained OpenMP parallelism approach shown in List-
ing 2. We refer to this design as the VTK-m-FM method, where FM
refers to the use of the Field Map Worklet, and which uses an ex-
plicit indexing computation to access specific locations in the input
and output image data arrays. Note that in principle it is possible in
VTK-m to implement a coarser-grained parallelism design, but do-
ing so would go "against the grain" of VTK-m’s design principles.

There are other potential implementations of this stencil that we
could pursue in VTK-m, implementations that could potentially
take greater advantage of VTK-m’s data parallel primitives (DPPs).
These DPPs include operations like Reduce, Sort, CopyIf, ScanEx-
clusiveByKey, and so forth. Some interesting future work would
entail exploring recasting the stencil computation in terms of us-
ing VTK-m’s DPP Device Algorithms, as has been done with other
types of computations, such as probabilistic graphical modeling op-
timization [LPH*18].

For this study, we explore a second VTK-m implementation,
namely one that uses a Point Neighborhood Worklet,
which we refer to as the VTK-m-PN algorithm. Like the VTK-m-
FM algorithm, VTK-m invokes the worklet once per input grid lo-
cation. One significant difference is that the VTK-m-PN algorithm
may access field values of nearby points within a neighborhood of
a given size, as opposed to having access to the entire mesh.

In other words, the VTK-m-FM method needs to do its own in-
dexing: it is handed a 1D input index, and then needs to use this
input to produce an index into a multidimensional array. In con-
trast, methods that use the Point Neighborhood Worklet
will use an inputData.Get () method to access data, rather
than using an index computation. Due to space limitations, we show
only an abbreviate listing of the VTK-m-PN code in Listing 4. In
both cases, VTK-m is performing extra work to manage worklet ex-
ecution, work is the overhead associated with its platform-portable
parallel capabilities.

3. Results

Our primary research objective is to identify performance differ-
ences of alternative implementations of a convolution kernel us-
ing two different platform-portable parallel coding environments
on two different platforms: GPU and GPU, and to use hardware
performance counters to help understand the nature of the perfor-
mance differences.

3.1. Methodology

Computational Platforms. All tests were conducted on Cori at
NERSC on specialized GPU nodes. Each node consists of two
2.40 GHz Intel Xeon Gold 6148 (Skylake) processors with 384
GB of DDR4 memory, and 8 NVIDIA Tesla V100 (Volta) GPUs,
each with 16 GB HBM2 memory [Nat21]. Our OpenMP-CPU tests
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were run on these Skylake processors, and our Cuda and OpenMP-
offload tests were run on the Volta GPUs.

Software Environment. For the VTK-m configurations, we make
use of VTK-m v1.5.0 [Mor21]. For the OpenMP on Skylake tests,
we used Intel’s icc compiler version 19.1.2.254, and used the
following flags to enable vectorization: -03 -march=skylake
-mtune=skylake -DNDEBUG -funroll-loops. For the
VTK-m tests with a Cuda backend, we used gcc/g++ 7.5.0 and
Cuda 11.1. For the OpenMP-offload tests with the Cuda backend,
we used clang 12.0.0.

Dataset and Algorithmic Parameters. We are using a scientific
dataset that was obtained by the Lawrence Berkeley National Lab-
oratory Advanced Light Source X-ray beamline 8.3.2 [D*15]. This
dataset contains cross-sections of a geological sample and con-
veys information regarding the x-ray attenuation and density of the
scanned material as a gray scale value. The original data consists
of a stack of 500 images at resolution 1290 x 1305. The images in
Fig. 1 are created with a subset of this data, and the performance
tests use an augmented version of a single 2D slice that is approxi-
mately 5K 2 in size.

Performance Measures and Tools. For this study, we are lever-
aging the LIKWID software infrastructure v5.0.0 [THW10,TG20].
LIKWID is a set of lightweight, command-line tools that are use-
ful for obtaining measurements of hardware performance counters
on Linux platforms in user space. On the GPU, we use nvprof,
which is part of the Cuda 11.2 distribution.

Testing Procedures. On the CPU platform, we measure and com-
pare elapsed runtime in seconds, vectorization level, number of in-
structions executed, L3 and L2 cache miss rate, and Cycles Per In-
struction (CPI), which is a derived metric computed as the quotient
of CPU_CLK_UNHALTED_CORE / INSTR_RETIRED_ANY to
give an estimate of the number of clock cycles per instruction (CPI)
(c.f. [PH14]). On the GPU platform, we measure and compare
elapsed runtime in milliseconds, a count of instructions computed
as the average per warp, and global_hit_rate, the L1 cache hit rate
for global memory loads.

3.2. Discussion of Results

When looking at the CPU performance data in Tab. 1, we see a
comparison of coarse- and fine-grained parallelism, along with a
comparison to a serial C++ run. Here, we see a C++ code with
OMP loop parallelism, both coarse- and fine-grained, along with
two different VTK-m implementations. For this problem, we see
similar measures of runtime, instruction count, vectorization level,
and memory utilization for the C++/OpenMP coarse and fine, and
the VTK-m-FM implementation. Looking at the number of instruc-
tions executed and compared to the serial version, both coarse and
fine OpenMP implementations and the VTK-m-FM implementa-
tion have similar levels of overhead, about 15%, 18%, and 22%,
respectively, that is attributable to the parallel runtime environment
associated with each parallel coding approach. The VTK-m-PN
implementation executes about 20 times as many instructions, a
significant amount of the overhead associated with VTK-m’s Point
Neighborhood worklet in this case.

In the GPU performance data in Tab. 2, we see both the coarse-
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and fine-grained OpenMP-offload methods have nearly identical Serial ~ Coarse ~ Fine  VIK-m-FM  VTK-m-PN
levels of performance in terms of runtime, number of instructions ) C++ OMP  OMP OMP OMP
executed, and global_hit_rate, which measures the L1 Cache hit Runtime (Secg 12428 1646 1634 16.18 526.50
rate. Both these versions are are approximately 20 times faster than Inst. exec. 10 468.52 54057 533.67 57188 10459.88

. i L . ) FLOPS Scalar 10°  30.78 3526  35.35 35.26 639.82
t!le se.rlal CBU version. The qgestlon of whether Qr pot .faster rur.1- FLOPS Vector 10°  193.07 22123 22176 22123 0.04
time is possible through additional OpenMP optimization, or via  vjectorization % 86.24 86.25 86.25 86.25 0.00
different environments like OpenACC would make for interesting  cpy 0.6 0.71 0.69 0.68 13
future work. L3 miss % 0.95 0.1 0.29 0.31 0.25

L2 miss % 0.01 0.01 0.01 0.01 0.02

In contrast, the VTK-m-FM method is executing significantly
more instructions, which is reflected in a much larger runtime.
Since this code uses essentially the exact same code for performing
the stencil computation as the C++/OpenMP code, but is invoked
from within a VTK-m worklet, the increased number of instruc-
tions is attributable to the cost of VTK-m overhead for mapping
the worklet onto warp threads. The VTK-m-PN method appears
to use even more overhead for simplifying access to field data by
the Point Neighborhood worklet code, as access to the input field
goes through a VTK-m getData () function rather than array in-

Table 1: Results of runs on the Intel Skylake CPU comparing multi-
ple coarse- and fine-grained parallel implementations. All four sets
of OpenMP runs are performed at 8-way concurrency.

OpenMP device offload for implementing a GPU-based version of
a staple analysis kernel, a stencil-based computation.

dexing. This function-brokered data access mechanism is why the OMle/agl?D A OMII:/IEED A VTCI;}IBZ:M VTCKUEAPN
vectorization level of the VTK-m-PN method on the CPU is 0%. Runtime (ms) 554 556 39341 734.72

Inst. exec. 10° 124.79 124.79 47244 183000
4. Related Work global_hit_rate% 44.32 44.32 97.72 99.09

In response to the end of Dennard scaling, system and processor
architectures have evolved to use deepening memory hierarchies
combined with increasing node-level parallelism [EBA*11]. Over
the past decade or so, numerous programming models and envi-
ronments — such as OpenMP [CMD*00], OpenCL [GHK*11],
Kokkos [ETS14], and OpenACC [Ope21], to name a few — have
emerged where the objective is to provide for platform portability
as well as efficient shared-memory parallelism.

In the visualization community, the VTK-m library [MSU*16]
follows a similar technology trajectory, where user code can
be executed with one of several different device- or platform-
level backends, such as TBB [Rei07], OpenMP [Li20], or
CUDA [Nvil8]. VTK-m is positioned to be a follow-on to the VTK
library [SML98], which has served as a stalwart in the visualization
community for more than two decades but is limited to predomi-
nantly serial use due to a combination of factors, including close
entanglement of data structures and execution models and use of
static variables that maintain state and are hence not thread-safe.

Given the community interest in VTK-m, our work here seeks
to provide more insight into the performance differences that result
when implementing algorithms using OpenMP and VTK-m, with
an eye towards understanding the performance differences that re-
sult in different algorithmic design patterns and on different plat-
forms.

There have been several recent works that look at comparing
the performance of traditional methods and those implemented in
VTK-m. These include raytracing (Larsen, et al. 2015 [LMNC15]),
particle advection (Pugmire, et al. 2018 [PYK™18]), and graph an-
alytics (Lessley, et al., 2017 [LPM*17]), to name a few. One thing
these have in common is use of runtime, or its derivative, as the
lone metric. The work here differs in that it includes the use of
hardware performance counters, considers coarse- and fine-grained
parallelism on both CPU and GPU platforms, and makes use of

Table 2: Results of runs on the NVIDIA Volta GPU comparing
coarse- and fine-grained parallel implementations.

There is a long history of performance analysis of stencil-based
codes, such as [RYQ11] and many others, including separable con-
volution approaches [Chol7]. Our focus here is on comparing per-
formance of this staple algorithm in two specific platform-portable
parallel coding environments, OpenMP and VTK-m that are of sig-
nificant interest to the HPC visualization community.

5. Conclusion and Future Work

This study sheds light on the performance characteristics of a key
computational motif, a stencil-based computation, in light of the
trade-offs that occur in multiple software environments that im-
plement platform portability in conditions where we vary coarse-
vs fine-grained parallelism. Due to growing interest in platform
portable approaches for heterogeneous computing, combined with
significant development effort being applied towards both OpenMP
and VTK-m for such uses, this study’s results are timely.

The study’s findings reveal there is a measurable cost of over-
head associated with VTK-m’s platform portability in this particu-
lar problem using these particular formulations. On the CPU, this
cost is clearly visible for the VTK-m-FM implementation. On the
GPU, these costs are clearly visible for both VTK-m-FM and VTK-
m-PN implementations. The fact there is an overhead cost associ-
ated with platform portability is not unexpected, but the magnitude
of the costs, depending on platform and VTK-m worklet, is some-
what surprising and opens the door for further investigations both
in terms of the underlying mechanism VTK-m uses to decompose a
large problem into smaller worklet-sized chunks as well as to appli-
cation to other computational motifs and platform-portable coding
environments.
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