Eurographics Symposium on Parallel Graphics and Visualization (2019)
H. Childs, S. Frey (Editors)

Hybrid Remote Visualization in Immersive Virtual Environments
with Vistle

Martin Aumiiller'

THLRS, University of Stuttgart, Germany

© Reprojecti
© Proxy geometry: Screen
o ender: Same

Figure 1: Hybrid remote visualization of a pump turbine (courtesy of IHS, University of Stuttgart): a) surface components of remotely
rendered simulation data, b) local menus, user interaction elements and lower-dimensional simulation data, ¢) composited hybrid image, d)
the same hybrid remote visualization in the CAVE at HLRS.

Abstract

Because of the spatial separation of high performance compute resources and immersive visualization systems, their combined
use requires remote visualization. Remote rendering incurs increased latency from user interaction to display. For immersive
virtual environments, this latency is a bigger problem than for desktop visualization. With hybrid remote visualization we
enable the exploration of large-scale remote data sets from immersive virtual environments. This is based on three factors:
When appropriate, we enable the local rendering of remote objects. We decouple local interaction from remote rendering as
far as possible by depth compositing of remote and local images at a rate independent from remote rendering. Finally, we try
to hide this latency by reprojecting 2.5D images for changed viewer positions. In this paper we describe the integration of
hybrid remote rendering into the data-parallel visualization system Vistle as well its extension to a distributed system. Thereby
arbitrary combinations of object-based and image-based remote visualization become possible.

Categories and Subject Descriptors (according to ACM CCS): Distributed Systems [C.2.4]: Distributed applications—I.3.2 [Com-
puter Graphics]: Graphics Systems—Remote systems 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Virtual Reality 1.4.2 [Image Processing and
Computer Vision]: Compression (Coding)—Approximate methods

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

DOI: 10.2312/pgv.20191113 www.eg.org diglib.eg.org

https://orcid.org/0000-0003-2975-3332
https://doi.org/10.2312/pgv.20191113

90 Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle

1. Introduction

Immersive virtual environments with head tracking such as CAVEs
[CNSD93], constantly update the display according to the viewer’s
changing head position. So they provide more intuitive ways for
specifying the location of regions of interest, cutting planes, seed
points for particle traces, or reference points for isosurface extrac-
tion than desktop-based systems. This makes them a powerful tool
for gaining insight into complex 3-dimensional problems. These
immersive visualization environments require high frame rates and
low reaction latencies to achieve a high sensation of presence and
to avoid motion sickness [UAW*99] as well as to enable motion
parallax for discovering 3D object relations.

Complexity grows with problem size, hence visualization in vir-
tual environments becomes even more useful for large-scale data
and simulations. At the same time, interactive visualization of these
data faces even more challenges. Very often, only large parallel sys-
tems can cope with the amounts of data to be analyzed. Remote ren-
dering (the blue pathway in the distributed visualization pipeline of
figure 2) is an established method for visualizing data residing on
such remote computing resources that cannot be made available lo-
cally. However, it comes with the cost of increased latency from
user input to display output. This is a significant obstacle to navi-
gation and interaction with the visualization.

Combining the blue and black pathway in the distributed pipeline
was presented as a solution to these challenges by Wagner et al.
[WEFC*12]. Typically, simulation results are rendered on the remote
system while user interface elements and static context geometry
is rendered locally. On the local display system, this requires com-
positing of remotely and locally rendered images. They call the pro-
cess of compositing locally rendered images with warped RGB-D
maps from remote systems “hybrid remote rendering” (HRR).

In this work, we describe the integration of HRR into our parallel
system Vistle [Aum15] as well as its extension to a fully distributed
visualization system. This enables the creation of arbitrary hybrid
object- and image-based remote visualizations by building work-
flows employing any combination of paths along the arrows in fig-
ure 2: without restriction, the modules of a visualization workflow
can be assigned to different compute clusters, and pipeline objects
as well as image streams can be routed freely between those clus-
ters. The rates of local and remote rendering are decoupled, and
the resulting images composited. This empowers the user to build a
workflow which optimally employs local and remote resources for
a high-fidelity low-latency visualization. We call this hybrid remote
visualization.

Our main contributions in this work are

e a fully distributed data-parallel visualization system with the
ability to create arbitrary hybrids of local and image- and object-
based remote visualization,

o the adaption of HRR to output systems with non-flat display sur-
faces driven by a cluster,

e as well as a high-bandwidth compression algorithm for depth
images.

In the next section 2 we describe the main components of our
system together with the additions for this work. In section 3 fol-
lows a description of our implementation of HRR. We evaluate and

Acquire Acquire
~
L raw data L
A
Filter Filter
~
L filtered data L
T
Map Map local
~
i geometry L
A
Render Render
image
~A
Display

Figure 2: Data flow in a hybrid remote visualization pipeline: for
different parts of the data set, the jump from the remote (beige)
to the local (turquoise) system can occur after any stage, and any
combination of pathways is possible. The user is presented with
a composite of remotely and locally rendered images. The black
path is local rendering, the blue arrows show image based remote
rendering, and the red arrows enable object-based remote visual-
ization.

discuss our system in section 4. We put our system into context
of other related research in section 5, before we conclude with an
outlook on future work.

2. System Description

In this section we describe the main components of our system.
We start with an overview of the architecture of the parallel visual-
ization system Vistle. Then we describe two important modules:
the newly developed hybrid sort-last/sort-first parallel ray caster
DisCOVERay, as well as the virtual environment renderer Open-
COVER, which has been adapted to Vistle and extended for hybrid
remote rendering with a HRR client plug-in.

2.1. Vistle

Vistle [Aum15] is a scalable distributed implementation of the vi-
sualization pipeline. Workflows can be configured with a graph-
ical user interface as shown in figure 3. A hybrid image-/object-
based remote visualization is created by placing DisCOVERay (cf.
subsection 2.2) and other modules on a remote cluster (colored in
beige) and connect them to the renderer COVER (cf. subsection
2.3) running on the local system (colored in turquoise). Already
Vistle’s predecessor COVISE [WLR94] allowed to create pipelines
spanning several systems. This ability has been added to Vistle for
this work. Just as COVISE, Vistle targets especially interactive vi-
sualization in immersive virtual environments. But the tight inte-
gration of remote rendering is a new addition.

The second key-benefit over COVISE is the exploitation of data-
parallelism. Modules are realized as MPI processes on a clus-
ter operating on data partitions distributed across nodes. Within a
node, multiple threads are used as an additional level of parallelism
when processing a single partition. Within compute nodes, differ-
ent modules communicate via shared memory. As an alternative,

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle 91

Fle Edt View Moddes Help

New Open Swe Erecute Amange

CelTovert 4 CellToVert_5 CelTovert_6

. .

IsoSuface.7 CuttingsurfaceB

ColorAttribute_9 Color-10 Color-2

coveR-1

point size 0001000000475 -+

Parameters: DisCOVERsy_11 | Module Browser

Figure 3: User interface for configuring a distributed Vistle work-
flow: modules running on the local system are shown in turquoise,
those on the remote cluster in beige. Data flow is from top to bot-
tom.

Vistle can be compiled for a single-process environment, where
each module runs in a separate thread inside a single MPI pro-
cess. However, this requires a multi-threaded MPI implementation
(MPI_THREAD_MULTIPLE). TCP is used for communication be-
tween clusters. As operation policies of HPC systems often require
that communication be funneled through a single node, Vistle only
supports that mode for inter-cluster communication to date.

Arbitrary connections in the visualization pipeline can cross the
boundary between clusters: for this work, we implemented stream-
ing of both pipeline data objects as well as images. Message pay-
loads transporting those streams can be compressed with entropy
based algorithms, either LZ4 or Zstandard. Both of them achieve
high compression bandwidth, but LZ4’s bandwidth is a little higher
at the cost of lower compression. In addition, lossy data reduction
of floating point values is possible with the zfp [Lin14] floating
point compressor. As zfp exploits spatial coherency, this works best
with data on 2- or 3-dimensional structured grids.

Vistle and the other components described here are portable to
Linux, Windows and macOS and are available on GitHub.

2.2. DisCOVERay

DisCOVERay is a CPU based data-parallel ray casting render mod-
ule for Vistle. It builds on the ray tracing framework Embree
by Wald et al. [WWB™*14], which makes use of the SIMD units
of CPUs to reach interactive frame rates. It has to be examined,
whether OSPray [WJA*16], an additional layer on top of Embree
focussing on scientific visualization, can simplify implementing
DisCOVERay’s functionality. As each node in the cluster only pos-
sesses its own partition of the data set, sort-last [MCEF94] is used
for parallelizing the render process across nodes. As it is sufficient
to generate images of the same quality as the local renderer COVER
(cf. subsection 2.3), only primary rays have to be considered. It
would also be costly to trace secondary rays in the distributed

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

scene database. Within a node, the render load is distributed among
the local CPU cores by partitioning image space into tiles. Simple
load balancing is achieved by partitioning into more tiles than CPU
cores.

The Equalizer framework by Eilemann et al. [EMP09] was con-
sidered for compositing a complete color and depth image (2.5D)
after the parallel rendering. However, the IceT compositor frame-
work [MKPH11] was preferred, because of its ability to use MPI
as a communication layer and its promise to integrate more easily
with the existing system. As IceT only allows for one image be-
ing composited at a time, the rendering of multiple views (e. g. for
stereoscopic 3D or for the different sides of CAVEs) is serialized.
As shown in [LMIJC16], it might be worthwhile to explore other
configurations, e. g. combining all views into one image which is
composited in a single operation. However, this has to be exam-
ined further since, in our context, additional overlap is achieved,
as previous views are being encoded and transferred while IceT is
busy compositing consecutive views. On the master node of the re-
mote system, IceT’s result is divided into tiles, and color and depth
components are compressed independently and transferred to the
head-node of the local system as soon as ready. After all tiles for
all views have been sent, a final mark is transmitted to indicate the
completion of a frame. The primary motivation for building the ray
caster was that it does not depend on GPU support, such that it al-
lows to scale with the simulation even when there are no GPUs in
the compute nodes. Further, rendering on the CPU has the advan-
tage that no image transfer from GPU to CPU is necessary before
compositing on the remote cluster.

The purpose of this render module is to provide the hybrid re-
mote rendering service. Because of this, a rather light-weight im-
plementation was possible, as most of the application logic resides
in the HRR client. Only support for cycling through timesteps and
switching semantic parts of the geometry is integrated into the re-
mote renderer. The framework for providing the remote render-
ing service is organized into a library. Building on this, there is
also a GPU renderer implemented with OpenSceneGraph. The li-
brary also makes it easy to use existing image generation software
as a simple HRR server: it is sufficient to provide a combined
RGB/depth image as a response to a request with a viewport and
model/view and projection matrices.

2.3. OpenCOVER

OpenCOVER [RFL*98] was built as the render module of CO-
VISE [WLR94] for immersive virtual environments. It is based on
the OpenSceneGraph [WQ10] scene graph library, which employs
OpenGL for rendering. It supports desktop, head-mounted displays
(HTC Vive and Oculus Rift), as well as projection-based immer-
sive virtual environments. Projection-based environments consist-
ing of several output surfaces, such as CAVEs, nowadays are usu-
ally driven by a small cluster, where each node possesses one or a
few GPUs connected to the display devices. If OpenCOVER is used
in such a setting, one node is configured as the master node, which
receives all user input and distributes it to the slave nodes. The data
to be rendered is replicated across all nodes. As all nodes see the
same input, the application can be mirrored, running in lock-step
on all cluster nodes.

92 Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle

For the work presented here, OpenCOVER has been refactored
so that the connection to visualization systems is established with a
plug-in, allowing for also developing a plug-in for Vistle. All pre-
existing interaction methods for controlling e. g. cutting surfaces,
seed points for particle tracing or isovalues from virtual environ-
ments can be used together with Vistle. Relying on the established
OpenCOVER VR framework allows for combining all available
plug-ins with data from Vistle. One important use case is to pro-
vide context for large-scale simulation results with interactive 3D
environments, e. g. based on VRML, or point-clouds from 3D laser
scans.

2.4. HRR Client

The client application for HRR is implemented as another plug-
in to OpenCOVER, which establishes a dedicated TCP connec-
tion. This TCP connection is initiated between OpenCOVER’s head
node to DisCOVERay, when the output of DisCOVERay is con-
nected to the input of OpenCOVER from the workflow editor.
This means that image tiles received from remote have to be re-
distributed within the local CAVE cluster. Together with upload-
ing the received images to the GPU this redistribution is the ma-
jor source of frame rate jitter during hybrid remote rendering. In
the current implementation, the HRR client is implemented with
OpenSceneGraph and a couple of shaders for reprojection. This
takes care of compositing the remote image with local content. As
OpenSceneGraph does not provide a mechanism for asynchronous
texture upload from CPU to GPU memory, this problem cannot be
easily overcome.

3. Hybrid Remote Rendering in Vistle
3.1. Overview

To improve frame rate and reaction times, we try to decouple inter-
action from network latencies as far as possible, as recommended
by Taylor et al. [TIV*10], but still without requiring transferring
huge data to the client. Only features extracted from simulation re-
sults are rendered either directly on the simulation host or on a re-
mote visualization cluster. But interaction cues for the parameters
controlling the visualization algorithms applied on the visualiza-
tion cluster, 3D interaction menus and possibly “context informa-
tion” such as essentially static geometry, as e. g. turbine shapes, are
rendered locally, at a rate independent of the remote rendering. As
both remotely and locally rendered images are composited on the
display system, we call this technique “hybrid remote rendering”.
Just as in sort-last [MCEF94] parallel rendering, this compositing
usually takes pixel depth into account, but it might also use opacity
information.

The left part of figure 1 illustrates HRR with a visualization of
the simulated water flow in a Francis pump turbine. The image pre-
sented to the user results from local context information and remote
simulation data. The remote system is used for post-processing the
results of the flow simulation and rendering the corresponding vi-
sualizations, such as an isosurface of the pressure as well as a plane
colorized according to turbulence (top left). The casing, blades and
vanes are also rendered on the remote system, as they have been
extracted from the simulation data. The local system renders the

menu and interaction elements, e. g. for moving the cutting plane or
positioning the seed points for the streamlines. But also the stream-
lines are rendered locally, as only surface geometry is well suited
for reprojection (bottom left).

All the interactive features of the visualization system are avail-
able even though parts of the rendering are delegated to a remote
system. For instance, new seed points for streamlines can be placed
by interacting with the visualization. Only the fact that the remote
parts of the image are updated less frequently makes this visualiza-
tion distinguishable from a purely local visualization.

3.2. HRR Protocol

The HRR protocol was originally layered on top of VNC by means
of the library LibVNCServer, as we wanted to take advantage of
its event distribution and image compression features. But as HRR
requires synchronization between RGB and depth images, all the
machinery for encoding images had to be implemented within the
HRR framework. So it was easy to remove the dependency on
VNC, which allowed for employing Vistle’s native message for-
mat together with built-in compression facilities. The HRR proto-
col supports the following functionality:

e Transmission of depth data (z-buffer) from server to client for
enabling compositing with image contributions rendered on the
client

Transmission of color data synchronized with depth image
Reception of model/view and projection matrices sent by client
Reception of configuration of light sources in the scene
Controlling animated sequences and switching of semantic parts
of the data set

3.3. Compression
3.3.1. RGB Image Compression

Interactive rendering requires high throughput. Depending on im-
age sizes and network connectivity, different compression methods
are useful. Image transmission can take advantage of the available
lossless message compression methods. Alternatively, we use the
TurboJPEG library for compression of color images. Just as when
used in VirtualGL for sending 3D rendered images, we also subdi-
vide the image into tiles of 256 x 256 pixels, which allows to use
several threads to encode the image in parallel.

3.3.2. Compression of Depth Buffer Data

High-throughput compression of depth buffer data is not yet solved
in a satisfactory manner. Most color image codecs are not viable
for depth image compression, as most of these handle only chan-
nels with 8 or 10 bit precision. It has been tried to adapt color im-
age codecs to depth compression though, albeit with limited suc-
cess [PKW11]. Implementations of algorithms dedicated to depth
image compression do not seem to be widely available. Hence we
implemented one based on two orthogonal components: a lossy
compression step (“Quant”) followed by a lossless entropy encod-
ing.

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle 93

Lossy Compression: Depth Quantization Similar to Di-
rectX/S3TC texture compression [INHO3], the lossy step of the
algorithm operates independently on image patches consisting
of 4 x 4 pixels. For each patch, we store two depth values, the
minimum and maximum within the patch. For each pixel in a
patch we store a fixed number of bits as a weight for interpolating
between the two stored depth values. This quantizes the depth data
within a patch to just a few possible values between minimum
and maximum. In addition, for the common case where within
a patch the background (maximum framebuffer) depth occurs,
an optimization is implemented: if the maximum depth value
of the patch is stored first, the highest interpolation weight is
interpreted as background depth, thereby decreasing the number
of representable discrete values between minimum and maximum
by one. This is illustrated in figure 5 for a depth buffer with 8-bit
precision and just 2 bits interpolation weight per pixel: the source
patch, the compressed data, and the restored patch are shown from
left to right. Hence, the algorithm is able to resolve background
and two depth planes within a single patch. An important property
of the algorithm is that pixels on the far plane are always encoded
without error. The regular data pattern with a fixed number of
output bits per input patch allows for an easy and efficient parallel
implementation on GPUs. The lowered data rate reduces the
transfer overhead from GPU to CPU.

Figure 4: Left: Reprojection of a sphere showing “comet tail” ar-
tifacts caused by rubber banding to pixels on the far plane, which
have not been correctly eliminated from the image. Middle/right:
Depth map used for evaluating lossy depth compression and corre-
sponding color image of a jet break-up in a non-Newtonian fluid in
air (courtesy of ITLR, University of Stuttgart).

Compression ratio and quality depend on the precision of the
original image and the precisions of the stored depth values and
interpolation weights. Initially we evaluated two different config-
urations: storing minimum and maximum depths with 24 bits and
3 bits interpolation weights/pixel, or 16 bits for extrema together
with 4 bit weights. But as already first visual tests showed that the
16 bit variant was inferior for our use case, it was dropped. Both
configurations use 96 bits per 4 x 4 pixel patch. This reduces the
data size to 25%.

Lossless Entropy Compression Orthogonal to the lossy depth
compression step, entropy based compression is employed for loss-
less depth compression on the CPU. The implementation of the
lossy depth compression tries to ensure good entropy compression
ratios by emitting a uniform pattern for patches consisting of only
the background depth: all bits are set in the compressed data for
such a patch.

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

255(255) 1 | 1 255(255| 1 | 1

25512902928

25512902929

= [2o [t [falolofsfel2l2lt]l lololole] ~
1213|1415

15|15 (15]15

1{2|3]4 1)1

Figure 5: Lossy depth compression. Left: 4 X 4 pixel patch with 8
bit precision with far-depth (255). Middle: encoded as maximum
depth (except far) first, minimum depth, and then 2 bits/pixel used
as interpolation weight, highest value reserved for far. Right: de-
coded depth image.

3.3.3. Evaluation of Lossy Depth Compression

‘We compare the performance of our algorithm against zfp in dif-
ferent settings on a Sandy Bridge running at 2.6GHz. zfp was oper-
ated in three different modes: “precision” was set to 16, “accuracy”
to 1/1024, zfp’s “fixed” rate was set to 6, so that it achieves almost
the same compression ratio as our algorithm “Quant”. Except for
when operating at fixed rate, zfp achieves somewhat better peak-
signal to noise ratio (PSNR) as Quant, but with better compression.
However, our algorithm is faster at decompression and significantly
so at compression. Our measurements (see the the columns marked
with +LZ4 or +Zstd in table 1) show that both algorithms, zfp and
our own, work well when chained together, entropy compression
after lossy compression. In practical use, the compressed depth map
requires about as much bandwidth as the JPEG compressed color
image.

3.4. Hiding Latency with Reprojection of 2.5D Images

When just displaying the images that have been rendered remotely,
the system is slow to react to view point changes, e. g. due to a new
head position or when the object has been rotated. This is mitigated
by reprojection [PHE*11] of 2.5D images, i. e. the on-screen po-
sition of a pixel rendered for a previous viewer position is adapted
for the current viewer position.

3.4.1. Reprojection Artifacts

Whenever a surface segment covers more pixels from the new van-
tage point, gaps between reprojected pixels will open (see figure 8
at top left). These small black lines can be closed by simply draw-
ing points covering more than one screen pixel. In order to retain
sharp edges, the point size has to be adaptive. While [WFC*12]
seems to adapt the size of reprojected pixels solely based on their
viewer distance and their movement (cf. figure 8 top center), we
take the distance to reprojected neighbor pixels into account: up to
a limit for the point size of 3 pixels, we reliably fill gaps between
reprojected pixels (cf. figure 8 bottom middle).

However, this is not possible when large areas which are hidden
in the original view become visible, such as parts of the isosurface
or areas previously obstructed by the isosurface. One common way
of avoiding this is to render a mesh of quads with the original pixels
as vertices (cf. figure 8 top right). However, this will fill areas where
there is simply no information, e. g. when surface segments become
visible that have been obstructed before. As we like to convey that

94

Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle

PSNR Comp.rate Decomp.rate Rel. size +LZ4,rel.size +Zstd, rel. size

Codec (dB) (MPix/s) (MPix/s) (%) (%) (%)
raw/memcpy 39.0 1726.3 100.0 102.3 99.4
zfp prec 87.7 27.2 74.4 12.6 7.0 6.2
zfp accu 88.7 27.0 74.0 12.7 7.1 6.2
zfp fixed 71.0 17.7 453 25.0 17.9 14.8
Quant 86.9 72.8 101.0 25.0 17.8 16.7

Table 1: Results for compression of depth map as shown in the middle of figure 4 with different settings for zfp and our algorithm “Quant”:
peak signal-to-noise ratio, bandwidth for compression and decompression in mega-pixels/second, relative size of compressed data of resp.
lossy codec alone or when its output is compressed by LZ4 or Zstandard.

there is no information for a screen area, we also allow for dis-
carding fragments where triangles become too distorted (cf. figure
8 bottom center). For future improvements, we consider integrat-
ing more sophisticated reprojection algorithms such as described
in [SSB*17].

The holes appearing in reprojected images are the most obvious
artifacts. In addition, shading is not exact as reflectance calculations
have been done for the previous viewer position. This last problem
could be mitigated by an approach similar to “deferred shading”,
where color and normal are sent to the display system and shading
is computed locally. This could even be extended so that classifica-
tion is handled locally on the display system by sending raw data
together with an index into an array of transfer functions which
should be applied.

3.4.2. Amplified Compression Errors

The achieved PSNRs of more than 80dB for the depth codecs (cf.
table 1) are relatively high compared to codecs for color images.
In the case of HRR we still have to deal with two kinds of errors
caused by this. On the one hand, a qualitative visual error can oc-
cur, if these values are used for depth compositing of local and
remote images: based on the depth value of a pixel, its color value
is chosen from either the remote color image or the local rendering.
Hence, a pixel is either displayed correctly or in a completely unre-
lated color. As these artifacts can appear and disappear from frame
to frame, they might be more noticeable as the PSNR suggests.
Figure 6 illustrates such artifacts. On the other hand, together with
reprojection quantitative errors can occur, when the shape of an ob-
ject observed from a different vantage point becomes distorted as
the pixel position has been wrongly estimated. One especially dis-
turbing effect are “comet tail” artifacts exhibited by zfp as shown
in the left of figure 4: at the edges between the far plane and the
object, some pixels from the far plane are moved slightly closer to
the viewer and thus show as very distorted triangles when a mesh
is used for reprojection. This can be partially healed with the mesh
shader that discards these distorted triangles. But our compression
algorithm does not show this behavior.

Together with reprojection, JPEG chroma subsampling (e.g.
when using the YUV420 color space) is not advisable: strong z
variations, especially where neighboring pixels correspond to dif-
ferent objects will place neighbor pixels from the source picture
with averaged colors at very different screen positions, and hence
the averaging error will become much more obvious, see figure 7.

Figure 6: Artifacts due to lossy depth compression: left with lossy
compression, correct rendering in the middle and with highlighted
differences at the right.

However, we avoid the especially problematic case where pixels
on the far clipping plane receive a wrong color by clipping those
pixels.

Figure 7: Reprojection of JPEG compressed color images with
chroma-subsampling (YUV411, left) and without (YUV444, right).

3.5. Multi-Screen Projection Systems

The naive approach to handling multi-screen systems is to generate
remote images with 1-to-1 pixel mapping. In this case, disocclusion
artifacts also appear at the the edges of these display surfaces. An
easy solution is to fill in holes with pixels from neighboring dis-
plays. In a system like a CAVE, this requires a lot of pixels to be
distributed to all display nodes, and for stereoscopic displays this
has to be done for both eyes. Instead, we chose to render a collec-
tion of six images arranged on the faces of a cube centered at the
point in the middle of the viewer’s eyes, similar to a cube map, and
reproject those. As the reprojection is done from the same source
image for both eyes, this halves the number of pixels that the re-
mote ray caster has to render, composite and send to the CAVE

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle 95

cluster head node. Optionally, we do not render the cube face be-
hind the viewer (“Cube map 5”) and we render all but the front
face at reduced resolution: the number of pixels to render can be
reduced significantly with only little loss in image quality. For in-
stance, halving the resolution of the side images in each dimension
means that the total size of the images is only two (instead of five)
times the size of the front image (“Cube map 1+%”).

Figure 8: Reprojection artifacts (in reading order): reprojection
with constant point size, with point size adapted to depth of current
pixel, as a mesh, direct rendering with correct viewing parameters,
with point size taking reprojected screen position of neighbor pixels

into account (our method), as a mesh with holes instead of distorted
triangles.

4. Evaluation and Practical Experience

For evaluating the system, we used the 5-side CAVE at HLRS: for
each side, there is a projector with two video inputs. Every input has
its dedicated Sandy Bridge (2 x 4 cores at 3.3 GHz) node with an
NVidia Quadro P6000 GPU rendering 1600 x 1600 pixels. There is
an equal head node with an output window of 1600 x 1000 pixels.
This adds up to the 27.2 million pixels in table 2. The 11 nodes are
connected with InfiniBand QDR. The remote end of the setup was
part of the HLRS Vulcan cluster consisting of 32 Skylake nodes
(2 % 20 cores each) running at 2.0 GHz and InfiniBand EDR inter-
connect. There was a shared Gigabit Ethernet connection from rank
0 to the head node of the CAVE cluster.

The data set used for testing was an OpenFOAM simulation of
a pump turbine. The simulation was conducted by IHS (Institute
of Fluid Mechanics and Hydraulic Machinery at the University of
Stuttgart) on 128 cores and hence consisted of 128 partitions. Of
the available 273 timesteps, every 5" was used. Each timestep has
5.8 million unstructured cells. In the example workflow (also cf.
figure 3), the boundary of the domain was cut open and added as a
spatial reference. Per-cell mapped data fields were interpolated to a
vertex-based representation. A pressure isosurface was extracted as
well as a colored cut through the turbulence measure nuSgs. These
data were rendered remotely with DisCOVERay (see 2.2). In addi-
tion, stream lines were computed. But they were sent as geometry
together with the mapped velocity to the CAVE cluster, where a
transfer function was applied and the data was distributed to all the

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

nodes. This work distribution was chosen, as warping 2.5D images
of lines does not produce satisfying results.

Navigation within the visualization was made easy because of
quick position updates with reprojection. Also precise placement
of cutting planes or reference points for isosurfaces was possi-
ble. Interaction with the visualization modules might become even
quicker in such a remote setting: DisCOVERay does not need to
replicate the local geometry to the other nodes because of the sort-
last compositing step, while COVER has to broadcast the local ge-
ometry to all other nodes. Measurements were taken (cf. table 2)
while the timesteps were advanced without any interaction going
on. The turbine as shown in figure 1 was centered on the front
screen. This means that a new rendering is only requested after an
animation frame was received and rendered, so that also the time to
upload the new frame data to the GPU limits the achievable remote
frame rate.

We tested different configurations for the proxy geometry, for
which remote images are rendered. The first part of table 2 labelled
“10+1 screens” shows the data for the naive approach: for each of
the 10 local screens in the CAVE and for the cluster head node, a
remote image with exactly matching pixel dimensions is rendered.
In this configuration, the master node receives 10 equally sized im-
ages from the remote renderer, and every display node is only sent
the image corresponding to its own image area. This means that
each node only receives the data for a single RGB-D image. But
this also means that rendering does not have to take into account
a lot of geometry, so that local frame rates of 60Hz are achiev-
able. For this proxy geometry, different combinations of codecs for
depth and RGB images have been tested. In table 2 we show the lo-
cal frame rate, the bandwidth used for transmitting the image tiles
from remote master to local master node, the latency which is added
to the system by remote rendering, the rate at which remote images
are rendered, together with the relative sizes of the compressed im-
ages.

In both “Cube map” configurations, the proxy geometry covers
five faces of a cube, with the front side orientated towards the front
wall of the CAVE, and every node of the CAVE cluster renders the
same proxy geometry, but with different projections. This means
that a larger number of pixels has to be broadcast to every cluster
node and has to be copied from CPU to GPU, which leads to lower
local frame rates. On the other hand, the additional latency incurred
by remote rendering is halved for both “Cube map” configurations
compared to rendering “10+1 screens”. For a “Cube map 1+3” con-
figuration, both local and remote frame rates are much higher, and
as the most import screen of a 5-side CAVE is the front, image
quality is not severely affected. Because of this, we generally rec-
ommend the “Cube map 1+%” setting and to occasionally engage
COVER'’s high-quality mode initially introduced for volume ren-
dering [SDWWLO1] by clicking a button on the 3D input device
while holding it above one’s head: until another mouse button is
clicked, pixel-exact remote images will be streamed.

The effect of compression on frame rate and latency is limited:
as long as there is sufficient bandwidth, the additional latency is
0.2s for the “10+1 screens”, and only when the Gigabit link be-
comes saturated, remote frame rate drops to 0.5Hz. The entropy

96 Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle

Total Local Remote Relative Relative
image frame Added frame depth RGB
Proxy Depth RGB size rate Bandwidth latency rate size size
geometry codec codec | (MPix) (Hz) (MB/s) (s) (Hz) (%) (%)
raw raw 110 2 0.5 100.0 100.0
L74 L74 42 0.2 4.0 8.0 3.0
Zstd Zstd 32 0.18 4.3 6.4 1.6
Zstd JPG 35 0.18 43 6.4 22
1041 screens zfp Zstd 27.20 60 40 0.17 43 8.1 1.5
zfp/Zstd Zstd 6.7 0.16 4.3 0.3 1.5
Quant Zstd 65 0.24 33 18.8 1.5
Quant/LZ4 174 16 0.16 4.3 1.3 3.0
Quant/Zstd Zstd 10 0.16 4.3 1.0 1.5
Cube map 5 Quant/Zstd ~ Zstd 12.80 30 2.9 0.09 4.6 0.5 0.9
Cube map 1+% Quant/Zstd Zstd 5.12 50 43 0.07 7.7 1.2 2.3

Table 2: Performance of different color and depth image codec combinations and of different proxy geometry configurations.

compressors L.Z4 and Zstd both achieve a significant reduction in
bandwidth, both for color and depth data. Probably due to the larger
amount of empty pixels than in the data for table 1, the reduction
is more prominent. As expected, Zstd achieves better compression
ratios than LZ4, but observed performance is very similar. The zfp
compressor with a configured “precision” of 16 achieves better
compression than our depth codec (see 3.3.2, “Quant”). The out-
put of both zfp and our codec is still a good target for subsequent
entropy compression, as the depth codec combinations “zfp/Zstd”,
“Quant/LZ4“ and “Quant/Zstd” show. Those codec combinations
are especially advantageous in low-bandwidth settings, e. g. over a
DSL line or Wi-Fi links. But if bandwidth is not severely limited,
we recommend LZ4 for both depth and RGB data.

If more frequent updates are requested from the ray caster while
the viewer position changes or the user is navigating, frame rates
increase up to 20Hz for “Cube map 1+3”, but they are still limited
by the performance of the remote ray caster and compositor.

Figure 9: Pump turbine at HLRS booth at SC ’14 in New Orleans
with stereo 3D hybrid remote rendering in Stuttgart.

An early version of the system was demonstrated successfully
at the HLRS booth (see figure 9) at the Supercomputing confer-
ence in New Orleans in 2014: post-processing and rendering took
place on a cluster at HLRS in Stuttgart, Germany. The results have
been displayed on a stereo 3D display with 1400x1050 pixels (2.94

megapixels per stereo frame) with head tracking. Interaction was
smooth due to high local display update rates. Placing cutting sur-
faces and changing the isovalue was possible from within the vir-
tual environment. After less than a second, updated images for
the new parameters have become available, even though network
round-trip times to Stuttgart were about 200 ms. A shared net-
work connection with a bandwidth of about 10 MB/s was used.
With full compression, display updates occurred at rates of about
10 frames/s. The system is also usable across a broadband Internet
connection (50 Mbit/s DSL) on single screen systems, e. g. a lap-
top computer. These use cases show that remote hybrid rendering
and visualization is a promising approach: it is applicable to long-
distance links, display systems with high pixel counts and multiple
surfaces, and low-bandwidth connections.

5. Related Work

In the remainder of this section we give a concise overview of im-
portant parallel visualization frameworks, discuss other uses of hy-
brid remote rendering, study techniques for 3D image reprojection,
and explore compression of depth maps.

Parallel Remote Visualization Remote visualization is enabled
by several parallel visualization systems. They allow for distribut-
ing the visualization pipeline [Mor13] over several clusters: Vislt
[ACB*11] and ParaView [Ayal6] take the algorithms for most of
their modules from VTK [SMLO06] and build their own pipeline
execution model around it, while EnSight [FK12] relies on inde-
pendent implementations. Common to those systems is a client-
server architecture. Distributed processing is restricted to data ob-
jects travelling from one remote cluster server to a local display
client system, but they cannot be routed between remote servers
in an arbitrary order. Interactivity can be improved by streaming
objects at reduced resolution [AWD*09]. Even though there are
generic solutions, which enable remote execution of a wide variety
of applications [SMEQ2], streaming of RGB images from the server
to the display application is an integral part of the systems. Render-
ing typically takes place either local or remote [CGM*06]. So far,

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle 97

hybrid approaches do not seem to be available in these common
systems.

Hybrid Remote Rendering Hybrid remote rendering is a combi-
nation of local and remote image generation. It is employed in a
variety of ways. Most often, the aim is to balance the use of local
and remote resources as well as network bandwidth for optimal per-
formance, while taking data availability into account. In the volume
rendering system described by Engel et al., a low-resolution model
that can be rendered locally is shown during interaction until high-
fidelity still images from a more powerful remote system are avail-
able [EHT*00]. Tamm et al. [TK] describe a volume rendering sys-
tem where rendering work is scheduled dynamically either on the
remote system or the local client, depending on data availability
and changes in available bandwidth and system performance. The
Semotus Visum system by Luke et al. [LHO2] used a combination
of geometry and image streaming to facilitate warped re-rendering
of remotely generated images. Wagner et al. [WFC*12] describe
a visualization system based on the Vista framework that provides
hybrid remote rendering: local and warped remote images are com-
posited. In contrast to our work, there do not seem to be any provi-
sions for object-based remote visualization.

3D Image Warping, Re-Rendering and Reprojection Warping
of 3D images for adjusting to different projections or viewer po-
sitions is, as summarized by Mark [Mar99], a well-established
technique. Common use cases are hiding of latency for adjust-
ing projections for HMDs to head rotations [PLW13], adjusting
to new viewer or object positions [SVLBF10], generating a sec-
ond view from a monoscopic rendering for a stereoscopic projec-
tion [SSB*17], or aligning camera images with the real world in
AR applications [SOS*17].

Planar 2.5D images are most common, but Doellner et al.
[DHK12] use a collection of six images surrounding the viewer
as a cube in so called “G-buffer cube maps”, where each of them
contains several layers such as viewer distance, normals and colors
as input for renderings from new vantage points. This allows them
to re-render image streams on mobile devices with correct lighting.
We follow a similar approach, but do not rely on G-buffers, saving
the transmission of normals in addition to RGB-D images.

There are different approaches to handle areas disoccluded in the
target projection. In our system we implement basic ideas: adapt-
ing the size of reprojected points — but at the cost of not filling
all holes, and rerendering the depth image as a height field — which
leads to “rubber banding” in the filled areas. Didyk et al. [DRE*10]
propose to warp a grid adapted to the depth map and reuse informa-
tion from previous frames. Schollmeyer et al. [SSB*17] present a
high-quality solution by inserting blurred background images — the
farther into the hole, the more blurred. These approaches should
work well in our context, and could be implemented in the future.
More difficult to apply is the proposition of Pajak et al. [PHE*11]
to fill holes based on motion vectors.

Compression and Transmission of RGB-D Images Transferring
depth images with 24 bits per channel as needed by hybrid remote
rendering requires efficient — both in terms of compression ratio and
rate — codecs for high-precision images. Common image codecs

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

such as JPEG only work on channels with 8 or 10 bit precision,
which is not sufficient for encoding depth maps used for composit-
ing. Because of this, there are efforts e. g. by Pece et al. [PKW11]
to encode the depth data as RGB, so that regular video codecs
can be reused for depth images. But due to the lossy color chan-
nel compression and the subsampling of chroma components they
only reach rather low precision. As depth maps can be represented
as floating point images, dedicated codecs like sz as described by
Di et al. [DC16] or zfp as described by Lindstrom [Lin14] can be
used. But e. g. zfp is not optimal for the use case of depth images,
where a lot of background depth occurs, as there is significant error
at the edges between background and the data set. Lossless video
codecs as employed by Leaf et al. [LMM] for storing floating point
volume data are more promising.

There are also algorithms dedicated to compressing depth im-
ages, such as by Cappellari et al. [CCRCKO09] and Schiopu et al.
[ST12], but they do not provide the achieved compression band-
width. Mehrotra et al. [MZC*11] propose an algorithm that is
adapted to the varying accuracy of their capturing device and, while
only operating on 16 bit values, they achieve high compression
ratios at a rate comparable to our algorithm. Our own algorithm
achieves higher precision at a lower compression rate, and with
its regular data pattern, it lends itself to an implementation on the
GPU, although up to now this has only been done for the compres-
sion part.

Another approach is to compress a geometric representation of
the depth map as e.g. in the Semotus Visum system [LHO02] or
based on BSP trees as by Sarkis et al. [SZD10]. Often this has the
added benefit that warping can reuse the data structure that has been
employed for transmission.

6. Conclusions and Future Work

Overall, our results show that with Vistle and HRR it is efficiently
possible to explore remote data sets from immersive virtual envi-
ronments in high quality, and there is flexibility in order to adapt
to available network and compute resources. While we did not yet
examine the scaling properties of the system for a large number of
nodes and cores, we expect to be able to make use of a large com-
puting systems, as the employed algorithms promise logarithmic or
better scaling behavior.

In the future, we plan to improve reprojection quality by incor-
porating more sophisticated methods including deferred shading.
Also, with the advent of IPv6, we hope to benefit from direct con-
nections between render nodes and display nodes, instead of rout-
ing all network traffic through head nodes.

7. Acknowledgments

This work has been supported in part by the CRESTA project
that has received funding from the European Community’s Seventh
Framework Programme (ICT-2011.9.13) and in part by the bw Visu
and bwVisu2 projects funded by the Ministry of Science, Research
and the Arts of the country of Baden-Wiirttemberg.

We thank the institutes IHS and ITLR at the University of
Stuttgart for providing the data used in the evaluation. We also
thank the anonymous reviewers for their valuable suggestions.

98 Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle

References

[ACB*11] AHERN S., CHILDS H., BRUGGER E., WHITLOCK B.,
MEREDITH J.: Vislt: An end-user tool for visualizing and analyzing
very large data. Proc SciDAC (2011). 8

[Aum15] AUMULLER M.: The Architecture of Vistle, a Scalable Dis-
tributed Visualization System. In Solving Software Challenges for Exas-
cale. Springer International Publishing, Cham, Feb. 2015, pp. 141-147.
2

[AWD*09] AHRENS J. P., WOODRING J., DEMARLE D. E., PATCHETT
J., MALTRUD M.: Interactive remote large-scale data visualization via
prioritized multi-resolution streaming. In UltraVis '09: Proceedings of
the 2009 Workshop on Ultrascale Visualization (New York, USA, 2009),
ACM, pp. 1-10. 8

[Ayal6] AYACHIT U.: The Paraview Guide, updated for ParaView ver-
sion 5.0 ed. Community Edition. Kitware, Inc., Nov. 2016. 8

[CCRCK09] CAPPELLARIL., CRUZ-REYES C., CALVAGNO G., KARR
J.: Lossy to Lossless Spatially Scalable Depth Map Coding with Cellular
Automata. 2009 Data Compression Conference (2009), 332-341. 9

[CGM*06] CEDILNIK A., GEVECI B., MORELAND K., AHRENS J. P.,
FAVRE J. M.: Remote Large Data Visualization in the ParaView Frame-
work. In EG PGV’06: Proceedings of the 6th Eurographics conference
on Parallel Graphics and Visualization (2006), pp. 163-170. 8

[CNSD93] CRUZ-NEIRA C., SANDIN D. J., DEFANTI T. A.: Surround-
screen projection-based virtual reality: the design and implementation of
the CAVE. Proceedings of the 20th annual conference on Computer
graphics and interactive techniques (1993), 142. 2

[DC16] D1 S., CAPPELLO F.: Fast Error-Bounded Lossy HPC Data
Compression with SZ. IPDPS (2016). 9

[DHK12] DOELLNER J., HAGEDORN B., KLIMKE J.: Server-based ren-
dering of large 3D scenes for mobile devices using G-buffer cube maps.
In Proceedings of the 17th International Conference on 3D Web (New
York, New York, USA, Aug. 2012), ACM, pp. 97-100. 9

[DRE*10] DIDYK P., RITSCHEL T., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: Adaptive Image-space Stereo View Synthesis. VMV
(2010). 9

[EHT*00] ENGEL K., HASTREITER P., TOMANDL B., EBERHARDT
K., ERTL T.: Combining local and remote visualization techniques for
interactive volume rendering in medical applications. IEEE Visualization
(2000). 9

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equalizer -
A Scalable Parallel Rendering Framework. IEEE Trans. Vis. Comput.
Graph. () (2009). 3

[FK12] FRANK R., KROGH M. F.: The EnSight Visualization Applica-
tion. In High Performance Visualization—-Enabling Extreme-Scale Sci-
entific Insight, Bethel E. W., Childs H., Hansen C., (Eds.). Oct 2012,
pp. 429-442. 8

[INHO3] IouRcHA K. I., NAYAK K. S., HONG Z.: Fixed-rate block-
based image compression with inferred pixel values. 5

[LHO2] LUKE E., HANSEN C. D.: Semotus Visum - A Flexible Remote
Visualization Framework. IEEE Visualization (2002), 61-68. 9

[Lin14] LINDSTROM P.: Fixed-Rate Compressed Floating-Point Arrays.
Visualization and Computer Graphics, IEEE Transactions on 20, 12
(2014), 2674-2683. 3,9

[LMJC16] LARSEN M., MORELAND K., JOHNSON C. R., CHILDS H.:
Optimizing multi-image sort-last parallel rendering. LDAV (2016), 37—
46. 3

[LMM] LEAF N., MILLER B., MA K.-L.: In situ video encoding of
floating-point volume data using special-purpose hardware for a posteri-
ori rendering and analysis. In 2017 IEEE 7th Symposium on Large Data
Analysis and Visualization (LDAV), IEEE, pp. 64-73. 9

[Mar99] MARK W. R.: Post-rendering 3D image warping: Visibility, re-

construction, and performance for depth-image warping. PhD thesis,
University of North Carolina at Chapel Hill, 1999. 9

[MCEF94] MOLNAR S., CoX M., ELLSWORTH D., FuCcHS H.: A sort-
ing classification of parallel rendering. Computer Graphics and Appli-
cations, IEEE 14,4 (1994), 23-32. 3,4

[MKPH11] MORELAND K., KENDALL W., PETERKA T., HUANG J.:
An image compositing solution at scale. In High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2011 International Confer-
ence for (2011), pp. 1-10. 3

[Mor13] MORELAND K.: A Survey of Visualization Pipelines. Visu-
alization and Computer Graphics, IEEE Transactions on 19, 3 (2013),
367-378. 8

[MZC*11] MEHROTRA S., ZHANG Z., CAI Q., ZHANG C., CHOU
P. A.: Low-Complexity. Near-Lossless Coding of Depth Maps from
Kinect-Like Depth Cameras. 2011 IEEE 13th International Workshop
on Multimedia Signal Processing (2011),16. 9

[PHE*11] PAJAK D., HERZOG R., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: Scalable Remote Rendering with Depth and Motion-
flow Augmented Streaming. Computer Graphics Forum 30, 2 (2011),
415-424. 5,9

[PKW11] PECEF., KAUTZ J., WEYRICH T.: Adapting Standard Video
Codecs for Depth Streaming. In Joint Virtual Reality Conference of Eu-
roVR 2011 (2011), Blach R., Coquillart S., DCruz M., Steed A., Welch
G., (Eds.). 4,9

[PLW13] PEEK E. M., LUTTEROTH C., WUNSCHE B.: More for less
- Fast image warping for improving the appearance of head tracking on
HMDs. IVCNZ (2013), 41-46. 9

[RFL*98] RANTZAU D., FRANK K., LANG U., RAINER D., WOESS-
NER U.: COVISE in the CUBE: An Environment for Analyzing Large
and Complex Simulation Data. 2nd Workshop on Immersive Projection
Technology (1998). 3

[SDWWLO01] ScHULZE-DOBOLDJ., WOSSNER U., WALZ S. P., LANG
U.: Volume rendering in a virtual environment. In Immersive Projection
Technology and Virtual Environments 2001 (Vienna, 2001), Frohlich B.,
Deisinger J., Bullinger H.-J., (Eds.), Springer Vienna, pp. 187-198. 7

[SMEO2] STEGMAIER S., MAGALLON M., ERTL T.: A generic solu-
tion for hardware-accelerated remote visualization. In Proceedings of
the Symposium on Data Visualisation 2002 (Aire-la-Ville, Switzerland,
Switzerland, 2002), VISSYM ’02, Eurographics Association, pp. 87—f.
8

[SML06] SCHROEDER W., MARTIN K., LORENSEN B.: The Visualiza-
tion Toolkit. An Object-Oriented Approach to 3D Graphics. Kitware,
Inc., Dec. 2006. 8

[SOS*17] ScHops T., OSWALD M. R., SPECIALE P., YANG S.,
POLLEFEYS M.: Real-Time View Correction for Mobile Devices. Vi-
sualization and Computer Graphics, IEEE Transactions on 23, 11 (Nov.
2017), 2455-2462. 9

[SSB*17] SCHOLLMEYER A., SCHNEEGANS S., BECK S., STEED A.,
FROEHLICH B.: Efficient Hybrid Image Warping for High Frame-Rate
Stereoscopic Rendering. Visualization and Computer Graphics, IEEE
Transactions on 23,4 (2017), 1332-1341. 6,9

[ST12] ScHIoPU 1., TABUS I.: Depth image lossless compression using
mixtures of local predictors inside variability constrained regions. IS-
CCSP (2012),14.9

[SVLBF10] SwmiT F. A., VAN LIERE R., BECK S., FROHLICH B.: A
shared-scene-graph image-warping architecture for VR: Low latency
versus image quality. Computers and Graphics 34, 1 (Feb. 2010), 3—
16. 9

[SZD10] SARKIS M., ZIA W., DIEPOLD K.: Fast Depth Map Com-
pression and Meshing with Compressed Tritree. In Solving Software
Challenges for Exascale. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010, pp. 44-55. 9

[TJIV*10] TAYLOR, II R. M., JERALD J., VANDERKNYFF C., WENDT
J., BORLAND D., MARSHBURN D., SHERMAN W. R., WHITTON
M. C.: Lessons about Virtual Environment Software Systems from 20
Years of VE Building. Presence: Teleoperators and Virtual Environ-
ments 19 (2010), 162 178. 4

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Martin Aumiiller / Hybrid Remote Visualization in Immersive Virtual Environments with Vistle

[TK] TAMM G., KRUGER J.: Hybrid Rendering with Scheduling under
Uncertainty. Visualization and Computer Graphics, IEEE Transactions
on 20, 5,767-780. 9

[UAW*99] USOH M., ARTHUR K., WHITTON M., BASTOS R., STEED
A., SLATER M., BROOKS F.: Walking > walking-in-place > flying,
in virtual environments. SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques (July
1999). 2

[WFC*12] WAGNER C., FLATKEN M., CHEN F., GERNDT A.,
HANSEN C. D., HAGEN H.: Interactive Hybrid Remote Rendering for
Multi-pipe Powerwall Systems . In Virtuelle und Erweiterte Realitcit - 9.
Workshop der GI-Fachgruppe VR/AR, Geiger C., Herder J., Vierjahn T.,
(Eds.). Shaker Verlag, Aachen, Aug. 2012, pp. 155-166. 2, 5,9

[WJA*16] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GUNTHER J., NAVRATIL P.. OSPRay — A
CPU Ray Tracing Framework for Scientific Visualization. Visualization
and Computer Graphics, IEEE Transactions on PP, 99 (2016), 1-1. 3

[WLR94] WIERSE A., LANG U., RUHLE R.: A system architecture
for data-oriented visualization. In Database Issues for Data Visualiza-
tion, LNCS, vol. 871, Lee J. P., Grinstein G. G., (Eds.). Springer-Verlag,
Berlin/Heidelberg, 1994, pp. 148-159. 2, 3

[WQ10] WANG R., QIAN X.: OpenSceneGraph 3.0: Beginner’s Guide.
Packt Publishing, Dec. 2010. 3

[WWB*14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: a kernel framework for efficient CPU ray tracing. ACM
Transactions on Graphics (TOG) 33,4 (July 2014), 143-8. 3

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

99

