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Abstract

This paper presents, to the best of our knowledge, the first parallel algorithm for the computation of the augmented Reeb
graph of piecewise linear scalar data. Such augmented Reeb graphs have a wide range of applications, including contour
seeding and feature based segmentation. Our approach targets shared-memory multi-core workstations. For this, it completely
revisits the optimal, but sequential, Reeb graph algorithm, which is capable of handing data in arbitrary dimension and with
optimal time complexity. We take advantage of Fibonacci heaps to exploit the ST-Tree data structure through independent
local propagations, while maintaining the optimal, linearithmic time complexity of the sequential reference algorithm. These
independent propagations can be expressed using OpenMP tasks, hence benefiting in parallel from the dynamic load balancing
of the task runtime while enabling us to increase the parallelism degree thanks to a dual sweep. We present performance results
on triangulated surfaces and tetrahedral meshes. We provide comparisons to related work and show that our new algorithm
results in superior time performance in practice, both in sequential and in parallel. An open-source C++ implementation is

provided for reproducibility.

1. Introduction

The current growth in size and complexity of modern scientific
data motivates the design of advanced data analysis techniques,
in order to support interactive data exploration. For this purpose,
topological methods [EH09, PTHT10, HLH*16] have now estab-
lished themselves as key tools for the concise representation of the
features of interest present in the data. In that context, notorious
topological constructs include merge trees [BWT*11,SM17], con-
tour trees [BR63, CSA00], Reeb graphs [Ree46, SKK91, PSBMO7,
BGSF08,TGSP09], or Morse-Smale complexes [DFFIM15]. These
fundamental topology-based data structures enable a wide range
of data analysis and visualization capabilities (going from feature
representation [VKvOB*97, WBP07,TP12,SPCT18a, SPCT18b] to
remeshing [VDL*17, TDN*12] or rendering [WDC*07]), which
have been used and documented in a variety of scientific applica-
tions [BWT*11,COH*13,FGT16, GABCG* 14, RWS*17].

Recently, the computational efficiency of topological data anal-
ysis techniques started to be challenged by the ever-increasing size
and resolution of scientific data, although the individual compu-
tational power of CPU cores stagnated since the mid-2000s. This
imbalance motivates the design of parallel versions of the existing
algorithms of the topological data analysis arsenal. However, such
a parallelization is challenging as most existing techniques are se-
quential in essence as they rely on global manipulations of the input
data.

For the merge and contour trees, which are fundamental
topology-based data structures in scalar field visualization, effi-
cient algorithms have been proposed for their parallel computation
[GFJT16,CWSA16,SM17,GFJT17,GFIT19]. Among those, some
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algorithms [GFJT16, GFJT17, GFJT19] even support the computa-
tion of augmented data-structures (i.e. where the arcs of the output
trees are augmented with regular vertices). Such an augmentation
is required to enable the full extent of applications of these tools,
such as data segmentation or level set seeding for instance.

Regarding the Reeb graph [Ree46], which is a generalization of
the contour tree to non-simply connected domains, which can po-
tentially contain loops and which is, because of this, notoriously
more challenging to compute, only one algorithm has been pro-
posed for its parallel computation [HR18] and only for triangulated
surfaces. To the best of our knowledge, no parallel algorithm exists
for the computation of augmented Reeb graphs.

In this paper, we address this problem and introduce a novel
algorithm for the fast computation of augmented Reeb graphs of
piecewise linear scalar data. Such augmented Reeb graphs are
generic and have a wide range of applications. This work shifts to
the problem of Reeb graph computation an overall strategy based
on local propagations that we recently introduced for the problems
of merge [GFJT17] and contour [GFJT19] tree computation. In par-
ticular, given that strategy, we detail how to revisit the optimal, but
sequential, Reeb graph algorithm [Par13], which is capable of han-
dling data in arbitrary dimension and with optimal time complexity.
We detail in the present paper the modifications of the local propa-
gation strategy that were required to shift to the Reeb graph prob-
lem, as well as original contributions specific to the Reeb graph
computation. Specifically, our method re-formulates Reeb graph
computation as a set of local tasks that are as independent as pos-
sible and that rely on Fibonacci heaps. This results in a parallel al-
gorithm with the same optimal time complexity than the sequential
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reference one. Our implementation provides superior time perfor-
mance in practice, in sequential as well as in parallel on shared-
memory multi-core CPUs thanks to the OpenMP task runtime. We
also provide an open-source C++ reference implementation of our
approach for reproduction purposes.

1.1. Related work

The Reeb graph, a graph that contracts connected components of
level sets on manifolds to points (Sec. 2.1), can be computed using
several sequential algorithms. The first approach [SKK91] which
has been proposed is based on a systematic cut of the mesh on all
vertices. Since then, new cut-based approaches [PSFO8, TGSP09,
DN13,DN12] have been introduced, cutting the mesh only at spe-
cific vertices. A contour tree algorithm [CSAOQO] or a local propa-
gation is typically used on the temporarily cut mesh. A final step
stitches the mesh back on each cut in order to obtain the final Reeb
graph. Because of the cuts, whose number and sizes are both pro-
portional to the number of simplices in the input mesh, these ap-
proaches have a quadratic worst case complexity.

Furthermore, in 2007 was introduced an on-line algo-
rithm [PSBMO07] for Reeb graphs computations. This approach is
able to operate in a streaming way, by processing the simplices of
the 2-skeleton of the input mesh (its vertices, edges and triangles)
in arbitrary order. A separate graph is used to reflect the neighbor-
hood of the input simplices so when a new simplex is encountered
the Reeb graph is updated locally to take this new simplex into
account. When all simplices have been visited, the Reeb graph is
complete. The final complexity of this algorithm is O(|6p| X |o1]),
where |0p| and |G| are respectively the numbers of vertices and
edges of the input mesh.

The first algorithm [CMEH* 03] to compute the Reeb graph us-
ing an ordered sweep of the data (similarly to merge tree algo-
rithms) has been introduced in 2003. Using a sweep on the data
set while explicitly maintaining the level set components, this ap-
proach only supports 2D data sets (data defined on triangulated
surfaces). In 2009 was introduced another method [DN09], using
a similar sweep for the mesh traversal as well as a dynamic graph
data structure to maintain the level set components. This approach
also works with 3D data sets (data defined on tetrahedral meshes).
Parsa improved this work in 2013 [Par13] and presented the first
algorithm able to compute the Reeb graph in any dimension with
an optimal time complexity of O(mlogm) steps where m is the size
of the 2-skeleton (see Sec. 2.2). This approach is the basis of the
new algorithm introduced in this paper.

Finally, a parallel algorithm [HR18] has been presented to com-
pute Reeb graphs on triangulated surfaces, based on the Cylinder
Map approach [DN12], with a scalar partitioning system similar
to the one introduced in [GFJT16]. This type of partitioning in-
troduces additional work for each supplementary thread. More-
over, results are only documented for the non-augmented graph,
i.e. without the mapping from the mesh vertices to the arcs of the
output data structure.

This work adapts to the Reeb graph problem an overall strategy
based on local propagations with Fibonacci heaps [FT87] that we
recently introduced for merge and contour trees [GFIT17,GFIT19].
This adaptation requires to completely revisit the data structures
employed at the core of the approach to track connectivity. In par-

ticular, the Union-Find data structure (typically used for merge
and contour trees [CSAO0]) is no longer adapted to the Reeb
graph problem (see Sec. 2.2), where more advanced connectiv-
ity tracking structures are required (supporting both online ad-
dition and removal, such as the ST-Tree [ST83]). An additional
notable difference is that, in the merge and contour tree setting,
the last propagation (monotone sequence of arcs called the trunk
[GFIT17,GFJT19]) could be processed very efficiently in an em-
barrassingly parallel way. However, such a specific processing is
no longer possible for the Reeb graph problem, where branching
(and loops) can still be discovered in the last propagation. This mo-
tivated us to introduce a new strategy in the present work, which we
call dual sweep, that partially compensates the absence of the trunk
acceleration. Moreover, as detailed below, we also present further
original contributions, such as an improved laziness mechanism for
the update of the internal Reeb graph data structures.

1.2. Contributions

This paper makes the following contributions.

1. A local algorithm based on Fibonacci heaps: we adapt a re-
cent strategy [GFJT17, GFJT19] based on local propagations
with Fibonacci heaps from the contour tree setting to the Reeb
graph problem. This results in the re-formulation of the opti-
mal sequential algorithm [Par13] into a set of independent, local
treatments.

2. An improved laziness mechanism for ST-Tree updates: we
improve the laziness mechanism presented by Parsa [Par13] by
handling one ST-Tree data-structure per local propagation. This
implies local hence smaller data-structures, which are indepen-
dently and efficiently updated by the local propagations when
they meet a saddle vertex. This results in a significant perfor-
mance improvement on most data sets.

3. Parallel augmented Reeb graphs: we show how the task run-
time environment of OpenMP can be used to implement a
shared-memory parallel version of the above algorithm. Our ap-
proach benefits from the dynamic load balancing induced by the
task runtime, without introducing extra work when new threads
are added.

4. Parallel dual sweep: we present an improved version of the
above parallel algorithm using two series of propagations to in-
crease the parallelism degree. The first series traverses the mesh
in increasing order of scalar values while the second one tra-
verses it in decreasing order, until all vertices have been visited
by at least one propagation.

5. Implementation: we provide an open-source C++ implemen-
tation of our approach for reproduction purposes, available as a
module of the Topology ToolKit [TFL*17].

2. Preliminaries

The theoretical background of our work as well as an overview of
our approach are presented in this section. It includes definitions
that were adapted from [TFL*17, GFJT19] for self-completeness.
We defer the reader to [EH09] for a thorough introduction to com-
putational topology.

2.1. Background
Our algorithm takes as an input a scalar field f defined on a
triangulation. Formally, f is a piecewise linear (PL) scalar field
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(a) (b)

Figure 1: Topology driven data segmentation. (a) Input scalar field
f (color gradient), level-set (red) on the dotted line and critical
points (blue: minimum, white: saddle, green: maximum). (b) Reeb
graph of f and its corresponding segmentation (arcs and their pre-
images by ¢ are shown with the same color).

f: M — R defined on a PL manifold M of arbitrary dimen-
sion (Sec. 6 presents results on triangulated surfaces and tetrahedral
meshes). In practice, f is given at the vertices of M, such that no
two vertices share the same f value (which can be obtained easily
by symbolic perturbation [EH09]). Linear interpolation is used to
extend the data values to any point of M. Two key notions (star
and /ink) are necessary to define traversals on M. The set of all the
simplices of M which contain a common simplex © is called the
star of ©, noted St(c). The set of all the faces of the simplices of
St(o) which have an empty intersection with G is called the /ink of
o, noted Lk(c). The vertices of the link of a vertex v can be classi-
fied without ambiguity as being above or below v with regard to f
(as f is enforced to be injective on the vertices of M as mentioned
above). This yields the notions of lower and upper links, respec-
tively defined as Lk™ (v) = {c € Lk(v) | Vu € o: f(u) < f(v)}
and Lkt (v) = {o € Lk(v) | Yu € 6 : f(u) > f(v)}. The vertices of
M for which both Lk~ (v) and Lk (v) are simply connected are
regular. The others are critical: v is a minimum if Lk~ (v) = () (blue
dots, Fig. 1), a maximum if Lk™ (v) = 0 (green dots, Fig. 1) and a
saddle otherwise (white, Fig. 1).

For visualization and data segmentation, three key geometrical
objects are of particular importance, namely the level set and the
sub- and sur-level set. The level set £~ (i) is the set of points of
M which all share the same f value i: £~ (i) = {p e M | f(p) =
i} (Fig. 1). The sub- and sur-level sets are defined similarly, by
trading the equality for an inequality, respectively: f__;o ()={pe
M| f(p) <i}and f (i) = {p € M| f(p) > i}.

The Reeb graph is a fundamental topological data structure
which tracks the evolution of the connectivity of the level sets of
f- Tt is a simplicial complex of dimension 1 (Fig. 1), noted R(f),
which is defined as the quotient space R(f) = M/ ~ by the equiv-
alence relation p; ~ p» which holds iff p € f~! (f(p1) > Where
! (f(pl))p1 is the connected component of f~!(f(p;)) which
contains p;. Let ¢ : M — R(f) be the segmentation map of R(f).
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It maps each point of M to its equivalence class in R(f). As de-
scribed by Reeb [Ree46], the pre-image of any vertex of R(f) by
¢ contains a single critical point of f (since f is injective on the
vertices of M, it is injective as well by construction on the subset
of critical vertices of M). Then valence-1 vertices of R(f) corre-
spond either to a minimum or a maximum of f, while the remaining
vertices, yielding branching in R(f), correspond to saddles of f,
where level set components join or split. In practice, the pre-image
¢*1 is particularly useful for data segmentation purposes (Fig. 1)
as the pre-image of each arc of R(f) is connected by construction.
In our data-structures, the pre-image of the segmentation map ¢ is
explicitly stored along each arc of R(f), by storing the list of regu-
lar vertices which map to it, hence effectively augmenting the arcs
of the Reeb graph with the corresponding segmentation (Fig. 1).

2.2. Reference computation with dynamic ST-Trees

The sequential reference algorithm for augmented Reeb
graphs [Par13] computes its output incrementally by sweep-
ing the data using a dynamic graph data structure, which represents
a level set sweeping continuously the domain. In the following,
we consider that an edge of M starts at its vertex of lower scalar
value and ends at the one with higher value.

Parsa’s algorithm is based on a global view of the data and starts
by a sort of the vertices of the mesh by scalar value. Then, vertices
are visited in increasing order of scalar value. At each vertex v vis-
ited by the growth procedure, the preimage f71 (v) is updated to
make the level set grow from the scalar value just below f(v) to the
one just above f(v). This preimage can be abstracted into a graph
G, named the preimage graph and used to identify the connected
component of level set to which each vertex belongs. This preimage
graph is implemented as an ST-Tree data structure [ST83]: nodes
of G, are edges of M intersecting the preimage, and arcs of G,
are triangles of M contributing to the preimage (connecting edges,
hence nodes together).

The update of the preimage graph is done using triangles inci-
dent to v. When v is the lowest vertex of the triangle #, (Fig. 3 (b)),
the two edges of #, starting at v are linked by an arc in G, to reflect
the level set entering #,. When v is the middle vertex in the trian-
gle #, (Fig. 3 (¢)), the arc in G, between the two lowest edges is
removed and a new arc is added between the two highest edges. Fi-
nally, when v is the highest vertex of the triangle #, (Fig. 3 (d)), the
level set is growing out of #, and the arc of G, remaining between
the two edges of the triangle ending at v is removed. Unlike the
Union-Find data-structure, which can dynamically track connected
components in a graph upon arc insertions (and which is used at the
basis of most merge tree algorithms, to model sub-level set compo-
nents), the ST-Trees can dynamically track connected components
upon both arc insertions and removals. Thus, ST-Trees can effi-
ciently track the connected components of G, (which models the
current level set component) at each iteration of the propagation.
In particular, the operations on the ST-tree (connected component
query, arc insertion, arc removal) are performed in at most logarith-
mic time with regard to its size, resulting to an overall time com-
plexity of O(m log m) steps, where m is the size of the 2-skeleton
of M (vertices, edges and triangles).

The output Reeb graph R(f) is updated at each vertex using
the preimage components on its neighborhood. Before the dynamic
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Figure 2: Overview of our augmented Reeb graph algorithm based on Fibonacci heaps and dynamic ST-Trees on a toy elevation example.
(a) The local minima of f (corresponding to leaves of R(f)) are extracted (red and blue points). (b) The arc Gy of each minimum is grown
independently along with its segmentation. These independents growths are achieved by progressively growing the connected components of
sub-level sets created at m, for increasing f values, and by maintaining at each step a priority queue 0, implemented with a Fibonacci heap,
which stores vertex candidates for the next iteration (disks colored according to their starting minimum). These growths stop at join saddles
as shown with the red one in (b). (c) The blue growth on the right has visited a split saddle and is now processing two arcs (orange and green)
thanks to the dynamic graph implemented with a ST-Tree data structure. (d) The blue growth is the last one to reach the left saddle and is
thus kept active. Here, the red propagation merges with the blue one. The corresponding priority queues are merged in constant time thanks
to the Fibonacci heap. (d) The last growth processes two arcs around the topological handle. (e) The augmented Reeb graph is complete.

4414

Figure 3: Evolution of the dynamic graph (red nodes and green
arcs) while a sweep is performed on a single triangle with an ele-
vation scalar field. The vertex being currently processed is shown
in blue.

graph is updated at f(v), the connected components are retrieved
using edges ending at v. If more than one component is retrieved,
v is a join saddle and the corresponding arcs of R(f) are closed.
After the dynamic graph update, the connected components are re-
trieved once again, using edges starting at v. If more than one com-
ponent is retrieved, v is a split saddle and each component leads to
the creation of a new arc in R(f). If no edge starts at v, the vertex is
alocal maximum and the corresponding arc is closed. Finally, if the
vertex v is regular in R(f) (both lower and upper components have
one connected component), v is simply added to its corresponding
arc in R(f).

2.3. Overview

Fig. 2 presents an overview of our approach for the computation
of augmented Reeb graphs. Our algorithm revisits the sequential
sweep approach of Parsa [Par13], described in the previous section,
but performs independent local growths for the mesh traversal. The
vertices of M are first visited to extract the list of minima of f

(Fig. 2 (a), Sec. 3.1). Then, a second procedure is launched: for
each local minimum at vertex v, a local growth in charge of con-
structing the augmented arc attached to v is executed, based on a
sorted breadth-first search traversal implemented with a Fibonacci
heap [FT87] (Fig. 2 (b), Sec. 3.2). A dynamic graph data struc-
ture corresponding to the growing level set components and imple-
mented as an ST-Tree data structure [ST83] is maintained during
the growth. As described in Sec. 2.2, this dynamic graph allows to
track both join and split saddles and to update the Reeb graph data
structure accordingly on the fly (Fig. 2 (b) to (e)). To ensure that the
lower link of any processed vertex has always been visited, only the
last growth reaching a join saddle can continue the processing, after
having processed the saddle as described in Sec. 3.3.

Each iteration of the local propagations performs only log-time
operations on the ST-trees [ST83], as well as on the Fibonacci
heaps [FT87]. Since these heaps can merge in constant time, this
results in an overall time complexity of O(m log m) steps, where
m is the size of the 2-skeleton of M (vertices, edges and trian-
gles), which is identical to the optimal but sequential reference al-
gorithm [Par13].

3. Local propagations for Reeb graph computations

We present here our new algorithm for the computation of aug-
mented Reeb graphs using local growths. The procedures corre-
sponding to the different steps of the algorithm are described, along
with specific treatments and optimizations. In particular, we de-
scribe how an overall strategy based on local propagations needs
to be adapted from the contour tree setting [GFJT17, GFIT19] to
the Reeb graph problem.

3.1. Leaf search

First, we construct the lower link Lk~ (v) of each vertex v € M.
This detects the minima (empty lower link Lk~ (v)), upon which

© 2019 The Author(s)
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(a)

0

Figure 4: On a 2D toy elevation example, priority queues (colored dots) and dynamic graphs (plain disks) in the proximity of critical points
are highlighted. First, on the left and on the top, the right growth (in blue) has passed a split saddle. The blue priority queue contains
candidates vertices from both sides of the split (blue dots) and handles two connected components of the preimage graph (orange and green
disks). Second, on the right and on the bottom, the left join saddle has been processed. The red and blue priority queues have merged in
constant time and a single growth is remaining, handling two arcs (purple and green). The red and orange components of preimage graphs

have also merged at the join saddle.

the growth procedure described in the next sub-section is started.
This very first step is identical to the leaf search procedure in the
contour tree setting [GFIT19].

3.2. Local growth

Given a local minimum m, a local growth procedure, named local
growth starting at m is called in order to progressively sweep all
contiguous equivalence classes (Sec. 2.1) between m and the next
join saddle s. In other words, this growth procedure will sweep the
connected components of sub-level set initiated in m while main-
taining a growing level set to construct the corresponding arcs of
R(f) on the fly.

The sweep on the connected components of sub-level set is
achieved thanks to an ordered breadth-first search traversal of the
vertices of M started in m. During this sweep, for each new vertex
v, the neighbors of v (not already visited) are added to a priority
queue Qy, (unless already present in it). Then, the next vertex v’ to
process is chosen as the minimizer of f in Q,,. We iterate the pro-
cess until reaching a join saddle s (Sec. 3.3). Breadth-first search
traversals grow connected components: this ensures that, for each
vertex v, all the edges of M connecting visited vertices to visited
candidates (stored in Qy,) are indeed crossed by the component of
F7Y(f(v)) which contains v. Hence, this sorted traversal indeed
maintains connected components of level sets at each iteration of
the local sweep. In practice the priority queues are implemented as
Fibonacci heaps.

During the sweep, the preimage graph G, is maintained on each
vertex using the same procedure as the reference algorithm de-
scribed in Sec. 2.2. In practice this preimage graph is implemented
as a ST-Tree data structure [ST83]. This is a notable difference with
the contour tree setting which only requires to maintain a simpler
Union-Find data structure, as further detailed in the next two sub-
sections.

© 2019 The Author(s)
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3.3. Saddle vertex handling

Join saddles. If the number of connected components of dynamic
graph in edges ending at v is greater than 1 before v has been pro-
cessed, v is a join saddle and the current growth stops (without up-
dating the preimage graph). Only the last local growth reaching the
join saddle can process it and continue. The last growth detection
can be done by looking at edges in the lower star of a join saddle
s: if all these edges have already been visited, the current growth
is the last one visiting s and is in charge of carrying on the compu-
tation. This situation is illustrated in Fig. 4. The arcs of the Reeb
graph in the lower star of s are retrieved using the dynamic graph
G, and closed at s like in the reference algorithm (red and orange
arcs in Fig. 4 (a)). Then, the dynamic graph is updated on s. Prior-
ity queues of local growths stopped at s are merged with the current
one before a new growth, initiated with the resulting priority queue,
is run. This merge is done in constant time thanks to the Fibonacci
heap. In Fig. 4, we can see the red priority queue merging with the
blue one at the join saddle.

Split saddles. If the number of connected components of dynamic
graph in edges starting at v is greater than 1 after v has been pro-
cessed, v is a split saddle. Like in the reference algorithm, the arc
ending here is closed (if v is not also a join saddle) and a new arc
is created for each component of dynamic graph in the upper star
of v. The current local growth continues the processing, handling
both arcs. Fig. 4 (a) shows an example of a local growth that en-
countered a split saddle (right white circle): the orange and green
arcs have been created at the split saddle and the same growth (blue)
handles both arcs.

3.4. Laziness mechanism for preimage graph

In the reference algorithm [Par13], a “lazy insertion” optimization
is described. In order to make the implementation faster, additions
and deletions of arcs in the dynamic graph G, are stored in a history
list, which serves as a record of operations. When a critical vertex v
is encountered, each arc which has been both marked as added and
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deleted from the history list is discarded and only the remaining
operations are applied to G,. This allows to grow at once the level
set modeled by G, up to the value f(v), without having to perform
the in-between operations which do not change the connectivity of
G,. This optimization requires to extract all critical vertices in a
pre-processing step, which can be done efficiently by counting the
number of connected components of lower and upper links of each
vertex (cf. Sec. 2.1).

This optimization is further improved in our work by breaking
this global history list of operations into local ones. A naive way
would be to have one history list per local growth. This way, when
a saddle vertex s is encountered, instead of updating the preimage
graph on the whole level set f(s) only the sub-level set component
containing s is updated. However, we found out that we can im-
prove this mechanism by subdividing the list of operations further,
having one history list per arc of the output graph R(f). This way,
when a local growth encounters a saddle vertex s, only the con-
nected component of level set containing s is updated, which cor-
responds to the minimal amount of operations to maintain a valid
preimage graph.

4. Task-based parallel Reeb graphs

In order to implement our new algorithm for the construction of
augmented Reeb graphs, we rely on the task parallel program-
ming paradigm, available e.g. in OpenMP [Ope15], Intel Threading
Building Blocks [Phe08], Intel Cilk Plus [Int], etc. The program-
mer only handles tasks, not threads. These tasks are then executed
concurrently and asynchronously by the runtime on the available
threads, whose number is fixed at execution time by the user. Our
new algorithm being based on local growths, and the growths start-
ing from minima being independent, the task-based parallelization
is straightforward. However, local synchronisations are required on
join saddles as the task corresponding to a join saddle growth can
only start its execution after all of the lower link of its saddle has
been visited: this will require task synchronizations. Also,we em-
phasize that our new algorithm based on local growths does not in-
troduce any supplementary computation in parallel, and that the dy-
namic load balancing of the task runtime will help improving par-
allel speedups in practice. We rely here on OpenMP tasks [Opel5],
but other task environments could also be used with only minor
adjustments.

In the following, we describe how we have parallelized the dif-
ferent steps of our algorithms. It can be first noticed that our im-
plementation starts with a parallel global sort of all the vertices ac-
cording to their scalar value (using the Standard Template Library).
Once this pre-sort is finished, all vertex comparisons can be done
by only comparing their position index in the sorted order: this is
faster than having to access the scalar values, and this also makes
this comparison independent of the data types used to represent
scalar values in the input.

4.1. Leaf search and saddle extraction

The extraction of the lower link Lk~ (v) of each vertex v € M
being a local operation, this step is embarrassingly parallel and
the correponding loop can be straightforwardly parallelized with
OpenMP. This step is identical to the contour tree setting [GFJT19].

When the optimization described Sec. 3.4 is enabled, both the

lower and upper links of v are extracted in order to also detect sad-
dle vertices. We recall that some vertices may be locally saddles,
but do not imply changes in the number of connected components
of level set and so end up being regular nodes in the output Reeb
graph.

4.2. Local growth

All local growths initiated at a leaf (minimum) are implemented as
tasks, starting at their previously extracted leaf. Each growth (task)
spreads locally and independently, until it finds a join saddle, by
managing its own Fibonacci heap, as well as its own connected
components of dynamic graph so that the update on each vertex
does not involve any data race. Similarly, the list of edge deletions
and insertions used for the laziness optimization (Sec. 3.4) only im-
pacts the preimage graph on components local to the current growth
and so no data race among concurrent growths may occur.

4.3. Saddle vertex handling

The saddle vertex processing presented in Sec. 3.3 can be imple-
mented in parallel with tasks. As discussed in Sec. 4.1, saddles of
f are first extracted in a parallel pre-processing step. However, not
all of these saddles will yield some branching in the output graph.
Therefore, join and split saddles (which respectively yield down-
ward and upward forks in the output graph, Sec. 2.2) must be dis-
tinguished among this initial set of saddles.

Split saddles can be identified on-the-fly during the growth, ex-
actly as in the original reference algorithm (Sec. 2.2). Join saddles,
however, require more attention. When a local growth reaches a
saddle s (red growth in Fig. 4(a)), to determine if s is a join saddle
or not, we use the saddle stopping condition described by Gueunet
etal. [GFIT17,GFJT19]. In particular, this condition states that if a
local growth g reaches a saddle s for which some of the vertices of
Lk~ (s) have not been visited before by the same growth g, then s is
a join saddle. Indeed, since each growth reconstructs a connected
component of sub-level set, such a configuration corresponds to
points where several components of sub-level set merge with each
other (hence the appearance of a join saddle).

As described in Sec. 3.3, we have to detect the last task reaching
ajoin saddle. For this, we rely only on lightweight synchronizations
(OpenMP atomic operations) as detailed in [GFJT17,GFIT19]. The
processing done by the last task reaching the join saddle (Sec. 3.3)
only involves already computed information. Arcs are closed, the
preimage graph updated and the Fibonacci heaps merged sequen-
tially by the last task: no task synchronization is required here.

5. Parallel dual sweep

In the parallel algorithm described Sec. 4, the number of indepen-
dent growths (i.e. the number of tasks) corresponds initially to the
number of minima and strictly decreases as join saddles are en-
countered, eventually reaching one. As a consequence, a substan-
tial part of the data set (at least all the region above the highest
join saddle) may be processed sequentially, using a single task and
undermining parallel performance. In order to reduce this effect,
we propose a parallel dual sweep algorithm traversing the data set
simultaneously from minima (in increasing order of scalar value)
and from maxima (in decreasing order of scalar value). These two
sweeps use local growths as described previously and stop when
they meet each other. Sweeping the data set using both minima and
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(a) (b) (d) (e)

Figure 5: Evolution of the number of active arcs for the local prop-
agation initiated at the blue minimum. The green arc is computed
by a decreasing growth and is only here to show an example of arcs
merging. (a): initially, there is one active arc (blue). (b): after the
join, there are two arcs managed by this growth (purple and or-
ange). (c): at the join, one arc is closed (orange) and one opened
(vellow); the number of active arcs remains two (purple and yellow
arcs). (d): an arc (purple) is closed at a maximum and only one
arc (yellow) remains active. (e): the last arc (yellow) of the growth
merges in an incoming arc (green), the growth has no more active
arc and stops.

maxima leads to the creation of a higher number of independent
growths and allows to process with a higher parallelism degree ar-
eas of the mesh that would have been processed by a few number
of task otherwise. We describe in the following how to adapt the
algorithm presented in Sec. 4 to this dual sweep strategy. Note that
this dual sweep is a completely original procedure which is another
notable difference with the contour tree setting [GFJT19].

5.1. Leaf search

In order to launch growths from minima and maxima, both are ex-
tracted in a single pass using the lower and upper links of each ver-
tex. Local growths initiated at maxima are symmetric to those start-
ing at minima and traverse the data set in decreasing order of scalar
value. In practice, this step is also in charge of extracting all sad-
dles, as required by the laziness mechanism described in Sec. 3.4.

5.2. Dual growth meeting points

The growths initiated at minima and those initiated at maxima will
eventually encounter each other. In the following, we describe how
to detect when two growths are crossing and how to merge the cor-
responding arcs.

Growths mark vertices they visit in two arrays: one for growths
sweeping in increasing order of scalar value and one for growths
sweeping in decreasing order. This information is used by a lo-
cal growth g to check if its current vertex has not already been
visited by an opposite one g’. If so, the current arc is marked as
merged with the incoming arc from the opposite growth g’ (see
Fig. 5 (e)), and the current growth g stops processing this arc. A
post-processing step described in Sec. 5.4 is in charge of comput-
ing the final arc, resulting from this merge. The candidate vertices
in Q,; corresponding to a merged arc can be discarded from the
remainder of the propagation g (which may itself continue to prop-
agate other arcs in other parts of M). Atomic operations are used
to visit (and check) vertices in order to avoid data races.

During the traversal, each growth keeps a local counter of the
number of arcs it handles (see Fig. 5). This counter is increased
when new arcs are created (Fig. 5 (b)) and decreased when arcs are
closed or merged (Fig. 5 (d) and (e)). For the last growth continuing
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(0) (1) (2) (3)
Figure 6: Two halves of an arc computed by opposite growths are
merged into a single arc. Regular vertices are updated accordingly.
The blue colors are used for arcs computed by downward growths
initiated at maxima, red colors for upward growths initiated at min-
ima.

at a join saddle s, its counter is incremented by the sum of remain-
ing active arcs associated with all the growths which merged at s. If
this counter reaches O during the computation, the current growth
has no more arc to process and can stop (Fig. 5 (e)).

5.3. Saddle vertex handling

At critical vertices, nodes of the Reeb graph are created using a
global lock (implemented as a critical section in OpenMP) so that a
given node cannot be created simultaneously by an upward growth
and a downward one. As detailed in Sec. 6, this global lock does
not have a significant impact on execution times in practice. If a
growth g tries to create an already existing node n, this means g is
crossing an opposite growth g’ (which created the node first). Thus,
the current growth g does not propagate further its arc(s) ending in
n.

5.4. Post-processing for merged arcs

When the dual sweep is performed in parallel, it is possible for two
arcs to merge in the middle of their construction (like in Fig. 5). A
post processing step is in charge of computing the final arc from
these two parts and to update the map ¢ of regular vertices accord-
ingly (see Fig. 6). In practice, this step takes a negligible time in
our computations (less than 5% of the total time).

6. Results

For the following performance results, we rely on a workstation
equipped with two Intel Xeon E5-2630 v3 CPUs (2.4 GHz, 8§ CPU
cores and 16 hardware threads per CPU), 64 GB of RAM, g++ ver-
sion 7.3.0 and OpenMP 4.5. Unless stated otherwise, we will use
32 threads on 16 cores. The implementation of our new algorithm
(called Fibonacci Task-based Reeb graph, or FTR) is built as a C++
TTK [TFL*17] module (provided as additional material). We have
used the Boost implementation of the Fibonacci heap [FT87], and
our own ST-Tree [ST83] implementation for the dynamic graph.

Our tests have been performed using ten data sets, five triangu-
lated surfaces (Fig. 7) and five tetrahedral meshes. For all of them,
the considered scalar field f is a height function, except for Me-
chanical, where the considered scalar data is the norm of a flow ve-
locity field. The first surface, Spring, is the boundary surface of the
first volume, Spring3D. It is made of four connected components
and its output Reeb graph has 24 leaves, each leading to a large arc.
The Eiffel data set is a synthetic, open surface produced by a graphi-
cal designer and counting many disconnected components. Most of
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Figure 8: FTR scalability on our various data sets. The gray area
denotes using 2 threads per core.

these data sets have been subdivided in order to obtain significant
execution times on our setup.

6.1. Performance analysis

Tab. 1 details the execution times and speedups of FTR on our data
sets. First, the sequential execution times approximately follow a
linearithmic evolution. The observed variations from the theoreti-
cal complexity are common to most Reeb graph algorithms, which
tend to be output sensitive. This behavior is greatly accentuated by
our ST-tree lazy update mechanism, which only triggers updates at
critical points. Regarding parallel executions, the embarrassingly
parallel critical point search offers very good speedups (averaging
at 18.4x). The key step for parallel performance is the Sweep step
performing the independents local growths. On all our data sets this
step is indeed the most time-consuming in parallel and offers an av-
erage speedup of 5.3x. The almost ideal speedups of the spring data
set (13.4x and 14.3x with 32 threads on 16 cores) can be used as an
evidence that neither the critical section on node creation nor the
atomic updates on visited vertices prevent good speedups.

Fig. 8 presents the parallel scaling curves of our FTR implemen-
tation. First, these curves are monotonically increasing. This means
that increasing the number of threads does not imply an increase in
execution time, and hence illustrates that our algorithm does not
yield extra work when run in parallel. This also justifies our default
choice of using 2 threads per core (instead of 1) since this results
in greater speedups for all data sets but one (gray band, Fig. 8). We
emphasize that the maximum number of tasks created for the local
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Figure 7: Gallery of Reeb graphs computed with our algorithm. From left to right: Eiffel, Neptune, Pegasus, Spring, Starknot.

growths is equal to the number of leaves in the output graph, which
implies that the speedups of the sweep step is bounded by this num-
ber of leaves. In practice, tasks merge together at saddles and the
number of available tasks quickly decreases. This translates in re-
duced parallel efficiencies: our speedups quickly reach 2 but seems
to reach a plateau around 4 for most data sets (further details in
Sec. 6.3).

In parallel, the dynamic load balancing of the task runtime can
lead to different schedulings between multiple executions over a
given data set. However, as already demonstrated in the case of the
merge tree in [GFJT17], this kind of task-based approaches offers
consistent computation times between executions. In our experi-
ments, the average standard deviation obtained using 10 runs on
our data sets is 0.6 second for a global average time of 19.3 sec-
onds.

In order to evaluate the performance gains obtained by our
improved laziness mechanism for the preimage graph update
(Sec. 3.4), we present in Tab. 2 execution times with and without
this optimization, using single-sweep sequential executions. This
optimization is especially efficient on 2D data sets, improving ex-
ecution times by a factor up to 160.92x. On our 3D data sets how-
ever, this optimization seems to have less impact with an average
gain of 1.13x. Tab. 2 also provides the number of internal rotations
performed by the ST-Tree data structures upon their updates, for
both the reference algorithm [Par13] and our approach. These inter-
nal rotations are performed in practice to decrease the depth of the
ST-Trees and thus improve their efficiency. Overall, this number of
operations is a relevant indicator of the amount of work performed
by the ST-Trees. Our improved laziness (using one history list per
arc) yields in average 22 times less rotations than the reference al-
gorithm [Par13].

Our dual sweep strategy (Sec. 5) aims at increasing the paral-
lelism degree, and so at improving the parallel efficiencies. The
gains obtained by this dual sweep strategy for a parallel execution
are presented in Tab. 3. Complete execution times are reported, as
the dual sweep method impacts both the critical point extraction
and the sweep steps. Starting from both minima and maxima leads
to a significantly higher number of tasks and allows to process ef-
ficiently in parallel regions of the mesh that would have been pro-
cessed by a low number of tasks using the single sweep method.
The dual sweep mechanism hence leads to an average speedup of
2.1x over the single sweep version.

Note that the dual sweep approach implies that upward and
downward growths can cross each others, visiting some vertices

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.



C. Gueunet et al. / Fibonacci Task-based Reeb Graphs 35

Table 1: Memory footprint and running times (in seconds) of the different steps of FTR on our data sets. |G| is the number of triangles in

M and |R(f)| the number of arcs in the output Reeb graph. These executions use the dual sweep strategy. File sizes are used to estimate the
input and output footprints. Peak reports an estimation of the maximum runtime memory footprint.
Memory footprint (MB) Sequential Parallel (32 threads on 16 cores)
Dimension |os ] Data set |R(f) Input Output Peak Overall Sort Crit. search Sweep Post. proc Overall Speedup
) 1,728k Spring a4 189 i3 1,795 740 | 0.05 0.2 0.37 0.01 0.55 1345
2 6936k Eiffel 372,944 752 79 7316 2400 | 0.29 0.59 2.88 0.32 4.08 5.88
2 8,009k  Pegasus 571 876 83 8,333 3567 | 036 070 1279 0.02 13.87 257
2 9552k  Neptune 486 || 1,045 100 9951 4266 | 031 0.77 14.68 0.03 15.79 270
2 9600k  StarKnot 2,835 1,050 100 10,014 4496 | 036 0.62 6.65 0.02 7.65 5.88
3 23098k  Spring3D 44 608 26 9465 58.87 | 042 0.75 2.94 0.01 4.12 14.29
3 32002k  Elephant 48 897 30 12618 7324 | 039 0.78 19.14 0.02 2033 3.60
3 48413k Hand 185 1362 45 18935 11351 | 057 137 2810 0.02 30.06 378
3 60,532k Skull 30 || 1.700 56 23763 169.87 | 0.79 169 5258 0.84 55.90 3.04
3 71486k  Mechanical 180 || 2.091 69 28,605 21114 | 084 176 38.16 0.02 40.78 5.18

Table 2: Left: execution times (in seconds) of the sweep procedure
using no laziness, compared to our approach (one list per arc).
Right: number of rotations made by the ST-Trees using the refer-
ence algorithm [Parl3], compared to our approach. These runs
use single-sweep sequential executions.

Time (s) Gain Rotations Gain
Data set no laziness Ours [Par13] Ours
Spring 40.14 4.40 9.12 8.52¢6 3.34e5 25.52
Eiffel 51.51 15.58 331 3.95¢7 6.82¢7 0.58
Pegasus 2,998.73 25.70 116.68 5.08¢7 8.98e6 5.65
Neptune 4,744.04 29.48 160.92 6.19¢7 1.51e7 4.10
StarKnot 1,945.30 32.35 60.13 1.70e8 3.10e7 5.49
Spring3D 36.30 36.97 0.98 1.68e8 5.81e6 28.98
Elephant 51.21 5122 1.00 6.75¢8 1.83¢7 36.82
Hand 82.67 82.54 1.00 1.50¢9 6.67¢7 2243
Skull 233.71 152.85 1.53 2.88¢9 5.96e7 48.35
Mechanical 189.18 162.52 1.16 2.95¢9 6.24e7 47.30

Table 3: Comparison of execution times (in seconds) between the
single and dual sweep strategies (presented respectively in sec-
tions 4 and 5) during parallel executions.

Data set Single sweep Dual sweep Speedup
Spring 0.90 0.37 243
Eiffel 245 2.88 0.85
Pegasus 26.74 12.79 2.09
Neptune 29.88 14.68 2.04
StarKnot 18.44 6.65 2.77
Spring3D 6.79 2.94 2.31
Elephant 43.89 19.14 229
Hand 53.76 28.10 1.91
Skull 103.46 52.58 1.97
Mechanical 90.51 38.16 2.37

of the mesh twice (along connected components of level sets). This
situation only occurs on a fraction of the output arcs and in practice
the work overhead is negligible: the average number of vertices vis-
ited twice is about 0.4% of the total number of vertices in average
in our test cases.

Table 4: Reeb graph computation times (in seconds) and ratios
between the reference algorithm [Parl3] and our approach (FTR)

using 1 and 32 threads (on 16 cores).

Times FTR Speedups
Data set [Par13] FTR (1) FTR (32) (1) (32)
Spring 20.80 7.40 0.55 281 37.82
Eiffel 59.98 24.00 4.08 2.50 14.70
Pegasus 65.18 35.67 13.87 1.83 4.70
Neptune 71.96 42.66 15.79 1.69 4.56
StarKnot 75.41 44.96 7.65 1.68 9.86
Spring3D 84.73 58.87 4.12 1.44 20.56
Elephant 97.23 73.24 20.33 1.33 4.78
Hand 156.48 113.51 30.06 1.38 521
Skull 221.96 169.87 559 1.31 3.97
Mechanical 217.53 211.14 40.78 1.03 5.33
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6.2. Comparisons

Tab. 4 provides a run time comparison between our approach and
the sequential reference algorithm [Par13], with an implementation
kindly provided by its author. Note that, the latter implementation
only produces a non-augmented graph on its output, without the
segmentation information. Moreover, the memory footprint of this
implementation is larger than ours. Internally, it pre-sorts the sim-
plices of the 2-skeleton in arrays (vertices of each edge, edges of
each triangle, adjacent triangles and edges of each vertex). These
arrays are used during the sweep to efficiently retrieve pre-sorted
vertices upon adjacency queries (hence speeding up the computa-
tion). We decided not to implement such a speedup mechanism as
we wanted our implementation to maintain a reasonable memory
footprint (Tab. 1), to improve its practical usability. Despite this,
FTR is in average 1.56 time faster in sequential, thanks to our im-
proved laziness mechanism. Using 32 threads on 16 cores, our im-
plementation leads to substantial improvements, speeding up the
computation by a factor of 11.14x in average.

6.3. Limitations

During the sweep procedure, the number of available tasks mono-
tonically decreases, as local propagations merge at join saddles.
When the number of remaining tasks eventually becomes lower
than the number of available cores (Fig. 9), we say that the compu-
tation enters a suboptimal section, where the computational power
of our multi-core CPU is not fully exploited, hence undermining
the parallel efficiency of the approach. This drawback was miti-
gated in the merge/contour tree setting [GFJT17, GFJT19] thanks
to the trunk procedure (see Sec. 1.1), which however is inapplica-
ble to the Reeb graph problem. This motivated us to design our dual
sweep strategy, which partially addresses this issue, by maintaining
the number of active tasks above 2 for the vast majority of the com-
putation. This is the reason why our approach achieves almost ideal
speedups when using only two threads (Fig. 8). For larger numbers
of threads, depending on the topological complexity of the data,
the suboptimal sections start at various points in the computation
times, resulting in a high variability in parallel efficiency overall
(from 16% to 90%, average: 38%).

7. Conclusion

We have presented the first parallel algorithm to compute the aug-
mented Reeb graph on shared-memory multi-core architectures.
For this, we have rewritten the optimal, but sequential, algorithm
[Par13] to design a new algorithm based on independent local
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Figure 9: Number of tasks through time (cropped at 16 to empha-
size the suboptimal section on our 16-core setup).

growths with Fibonacci heaps. The local nature of our approach
enabled us to improve the lazy update mechanism of the ST-Trees
(used to track level set components), which results in less work
than the reference algorithm and improved sequential performances
in practice. The design of our algorithm is conducive to paral-
lelism and we have presented an efficient task-based parallel ver-
sion. We have also presented a “dual sweep” strategy, which guar-
antees good speedups for low numbers of threads. Finally, we also
provide an open-source OpenMP/C++ reference implementation of
our approach (available in the Topology ToolKit [TFL*17]), which
is, to our knowledge, the only documented parallel implementation
to compute the augmented Reeb graph. In the future, we plan to
consider extensions of our approach to address distributed compu-
tations.
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