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Abstract

Streamlines are commonly used for visualizing flow fields, but particle-tracing based streamline computation

usually does not scale well as the data size and complexity increase. Large flow simulations like global ocean

or climate models can obtain near perfect load balancing and the resulting data sets are generally analyzed in

two dimensional slices. To match the computational properties of these simulations, we propose the use of flux-

based stream functions for generating streamlines in parallel. In our method, local stream functions are efficiently

generated per block based on flux conservation property, followed by low-cost communication of flux offsets among

neighboring blocks. A scalar field is thus generated where streamlines can be extracted through parallel iso-

contouring. Experimental results show that our system offers higher streamline computation performance with

higher scalability than traditional particle-tracing based method.

1. Introduction

The need to analyze large flow data sets has driven the re-

searchers to strive for strategies that can generate streamlines

in parallel. Traditionally, parallel streamlines are generated

by parallelizing over the vector field domain and/or over the

seeds, where the path of a streamline is computed serially by

one processing element (PE) at a time (which may be passed

from PE to PE). Generating a single streamline in parallel by

multiple processing elements, has largely remained unsolved

due to the dependency among the consecutive streamline

segments. A parallel algorithm that can generate individual

streamline segments simultaneously, will reduce the process

of particle advection to only local computations and make it

highly parallel. In this work, we present such a new parallel

method to construct a streamline in parallel segments using a

flux-based technique for large two dimensional flows. Anal-

ysis of large two dimensional flow fields is of prime impor-

tance and often the most preferred means in many research
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areas and applications, including ocean and climate model-

ing that explore large three dimensional data sets slice-by-

slice. Our proposed algorithm addresses the needs of these

scientific domains by exhibiting much improved execution

time, scalability and load balancing compared to the tradi-

tional parallel advection methods.

Our reason for developing a new parallel streamline com-

putation method is for scalability and to match the compu-

tational properties of the source simulations. Flow simula-

tion models such as parallel ocean models are frequently

computed using a finite-element (FE) or finite-volume (FV)

method that scales well in parallel, by dividing the domain

among the processing elements and they achieve nearly-

perfect load balancing. With a FE/FV method, all processing

elements have an equal amount of work through indepen-

dent computation on several domains and bulk-synchronize

through “ghost cell” communication.

The various known parallel streamline methods do not fol-

low this computational and communication pattern, as they

use a mixture of strategies to achieve run-time load balanc-

ing. Frequently, they shuffle the domain or seeds among

processors. In contrast, our new parallel streamline algo-

rithm matches the computational, communication, and load-

balancing properties of the large flow simulation models
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(e.g., Parallel Ocean Program from Los Alamos National

Laboratory), by parallelizing over the domain, and it is able

to utilize and run in the same parallel framework as the

source simulation. We achieve this through a parallel flux

computation and isosurfacing strategy.

Instead of computing streamlines as a series of integra-

tions, an alternative solution is to calculate implicit stream-

lines by deriving a flux-based scalar field from a given vector

field. Then the isocontours of this field represent the stream-

lines. Computation of flux-based isocontours to represent

streamlines can be achieved efficiently in two dimensions

and for incompressible flows. Since generation of isocon-

tours in parallel is well optimized, in this work we take up

this approach to generate streamlines for large scale two-

dimensional flows. Apart from being load balanced, this

method provides faster data exploration through the use of

large number of streamlines. Also, space usage is reduced

since the original vector field can be discarded benefiting the

storage and processing of large data sets.

In our work, we adopt a novel divide and conquer strategy

to analyze large two-dimensional data sets. We formulate a

parallel streamline generation method that uses the load bal-

anced parallel data computation model of the existing flow

simulations. Given a data set, initially it is divided into mul-

tiple data blocks and flux-based scalar fields are computed

in these blocks in parallel. The isocontours of these local

flux-fields represent the streamlines in those local blocks.

The local data is then globally synchronized by propagat-

ing the flux offset values that allows for stitching of the

shorter streamline segments. Finally, the complete stream-

lines are generated in parallel by calculating isocontours of

the data blocks in parallel. Although this method is currently

designed to work on multi-processor environment, any GPU

based architecture can also benefit from this algorithm.

Our contributions in this work are multi-fold:

1. For analyzing large scale two-dimensional flow simula-

tion data, we use a flux-based approach to compute the

local streamlines of a region and assign flux ids to the

streamlines to store them in the form of a scalar field.

2. We propose a novel algorithm to stitch the different seg-

ments of a streamline seamlessly across local regions to

produce a longer streamline.

3. Our streamline generation algorithm provides an efficient

multi-processor work-flow to achieve speed up, scalabil-

ity and load balancing.

2. Related Works

Integral curves are very popular for analyzing vector data

and it has been widely used in the past. A comprehensive

discussion on the basics of streamlines and related issues

can be found in the survey by McLoughlin et al. [MLP∗10].

Due to the complexity of particle tracing and its data de-

pendency, how to compute streamlines in parallel has been

an important research topic. To compute streamlines on very

large datasets in a distributed setting, Camp et al. [CGC∗11]

study the benefits of parallelize-over-seeds and parallelize-

over-blocks, and propose a hybrid approach. Peterka et al.

[PR11] study data partitioning and job assignment for the

parallelize-over-blocks scenario and find that the Round-

Robin partitioning generally achieves better load balance.

Nouanesengsy et al. [NLS11] use a preprocessed graph rep-

resentation of the flow field to optimize block assignment

to the processes. Muller et al. [MCHG13] take the dynamic

job assignment approach to balance the workloads by a work

requesting algorithm for the parallelize-over-seeds scheme.

Kendall et al. [KWA∗11] propose a MapReduce-like frame-

work called DStep to achieve high scalability. Recently,

Agranovsky et al. [ACG∗14] provided an interpolation-

based integral curve generation method for performance and

accuracy improvement.

Although the use of numerical integration is popular for

generating integral curves, it can be problematic depend-

ing on multiple factors [KM92]: method of integration, se-

lected step size, interpolation scheme etc. Implicit integral

curves and surfaces are an alternative to numerical inte-

gration based methods which mostly stem from the idea

of stream functions that are popular for two-dimensional

incompressible flows as well as three dimensional flows

[Gie51,Yih57,Gre93,Kel96,ER92,Mat93,SF90,SH88] since

a long time. Some notable works in this topic were pro-

vided by Kenwright and Mallinson [KM92, KM96], Beale

[Bea97], Van Wijk [vW93]. A closely related concept is the

analysis of vector field using the popular Helmotz-Hodge

decomposition [PP03, TLHD03]. Although widely popu-

lar, implicit streamline generation using these methods was

mostly limited to serial sequential algorithms. In this work,

we take up the idea of implicit streamlines and extend it to

work efficiently in parallel environment.

Use of short streamlines are useful for flow visualiza-

tion and one of the most popular methods that uses short

streamlines was presented by Cabral and Leedom [CL93] in

their Line Integral Convolution (LIC) work. Recently these

streamlets [MLP∗10] were used to visualize vortices formed

near insects at the time of flight. Hlawatsch et al. [HSW11]

address the issue of redundant calculation during dense

streamline or pathline integrations such as LIC and FTLE

computation, and propose to concatenate short traces pre-

generated for each spatial or temporal regions of a vector

field. Since the pre-computed traces cannot cover all possi-

ble seed positions, interpolation of the stored traces is used,

which unavoidably induces errors. To reduce the errors while

keeping storage small, particle traces are computed in hi-

erarchical lengths. Bhatia et al. [BJB∗11] presented a new

data structure called Edge-maps to move away from the

issues incurred in numerical integration based streamlines.

Recently, another interpolation based streamline construc-

tion method was provided by Agranovsky et al. [AOGJ15]

where the authors generated stremlines at various level-of-
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Figure 1: A schematic representation of our system pipeline.

detail with varying degrees of accuracy. Compared to these

techniques, our method uses flux values to identify stream-

lines and based on this idea, we provide a complete par-

allel framework that facilitates load-balanced and scalable

streamline extraction.

3. System Overview

In this section, we briefly discuss the different stages of

our pipeline. The goal of this work is to generate stream-

lines in a distributed manner. We want to generate the differ-

ent segments of a given streamline independently and stitch

them seamlessly over the different blocks. To achieve this,

we leverage the flux invariance property of incompressible

flows. Given the data set, first the data set is subdivided into

different blocks. After this data partition stage, a local com-

putation is applied on each individual block. In this local

computation stage, the vector data is converted to a scalar

field such that the isocontours of the resulting scalar field

represent the streamlines. To achieve this, the flux values

of the local block are computed to implicitly store the local

streamlines. After the vector field of local blocks are con-

verted to scalar flux field, the flux values are synchronized

across the blocks. To achieve this, we exploit the additive

property of the flux values and each block sends out its flux

offset value to its neighbor. By propagating the flux values

across the neighbors, the global flux field is synchronized. To

generate the final streamlines, each block can extract the iso-

contours independently which are stitched across the blocks

seamlessly. These isocontours represent streamlines for the

input vector data set. A schematic view of our work flow is

presented in Figure 1.

4. Method

4.1. Flux-Based Ordering of Streamlines

Given a large two-dimensional vector field, ~V =< u,v > ∈
R2, initially the data set is decomposed into several blocks

to initiate the parallel local streamline generation process. In

the local computation stage, the goal is to assign unique local

identifiers to the streamlines of each data block without ex-

plicitly computing them. Since streamlines do not intersect

each other except at the critical points, each point in the spa-

tial domain can be assigned a scalar as the streamline iden-

tifier, where points with the same scalar are part of the same

streamline. This transformation from the input vector field

to a scalar field can effectively be used to implicitly com-

pute the streamlines. Although there are many possible ways

of finding unique streamline identifiers, assigning the iden-

tifiers based on flux values is more advantageous because,

a) no explicit streamline computation is necessary, and b)

these local streamlines can be stitched across the blocks effi-

ciently in the later stages of our pipeline according to the flux

conservation property of the flow. Compared to this flux-

based method of streamline ordering, other methods such as

employed by Van Wijk [vW93], do not allow for efficient

and smooth streamline stitching as they are not based on the

physical property of the fluid.

In the field of transport phenomena, flux refers to flow

per unit area. For a given quantity, this is measured as the

amount of transport normal to the infinitesimal surface patch

in three-dimensions. In two-dimensional scenario, flux Φ

across a two-dimensional curve is defined by the amount of

flow that is normal to that curve:

Φ(~C) =

∫
~C

~V ·d~c=
∫
~C

~V · (~Nc ∗dc) =
∫
~C
(~V · ~Nc)dc (1)

where the integral is performed along the curve ~C and ~Nc

is the unit normal to the segment d~c. A schematic example

is shown in Figure 2a where curve C1C2 with normal NC
is placed in the vector field V . In this vector field, if C3C4

is a streamline then the flux across this curve is 0. The key

property we leverage here is that flux is conserved within a

control area for steady state incompressible fluid flows with

zero divergence, i.e., divergence div(~V ) at every point fol-

lows this:

div(~V )≡
∂u

∂x
+

∂v

∂y
= 0. (2)

So, the total flow going into a finite area will be equal to the

total flow going out of that area. As a discrete approximation

of Equation 1, total flux FluxA1An
across a piecewise linear

curve A1An where n points on the curve A1An = {Ai}, i =
1...n, can be computed as :

FluxA1An
=

n−1

∑
i=1

(((V (Ai)+V (Ai+1))/2) ·N(AiAi+1))∗d(AiAi+1)

(3)

Here, V (Ai) returns the vector of location Ai, N(AiA j) de-
notes the unit normal to the segment AiA j whose length is

given by d(AiA j) and FluxAiA j
denotes the flux of segment

AiA j with Ai as the flux origin point. Here we note that,

FluxAiA j
= 0 if i = j. Instead of the trapezoidal rule pre-

sented in Equation 3, any other method (e.g. Simpson’s rule)

can also be applied to evaluate the integral of Equation 1.

To generate a field of streamline identifiers, we compute

c© The Eurographics Association 2016.

A. Biswas et al. / A Scalable Streamline Generation Algorithm 71



V

N
C1

C2

C C4

C3

(a) Two-dimensional

flux across planar

curves.

Flux=0

0 1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Local flux computation pro-

cess.

(c) LIC visualization of the Double Gyre data set. (d) Isocontours from the

flux field.

Figure 2: An illustrative example of flux-based streamline computation.

iso=-1

iso=-6

iso=-11

iso=-11

iso=-6

iso=-1

(a) Isocontours generated in parallel

without stitching.

(b) A schematic example of the re-

lationship of the flux values for the

neighboring data blocks.

iso=-11

iso=-6

iso=-1

iso=-11

iso=-6

iso=-1

(c) Isocontours generated in parallel

after stitching across the blocks.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d) A simple flux

propagation scheme

among the data

blocks.

Figure 3: Flux based stitching and parallel propagation.

the flux values from a flux origin for every grid point. As-

suming an arbitrary flux origin point A1 within a data block,

flux computation can be performed for a grid point An by ap-

plying Equation 3 along a path A1An that connects the grid

point and the local flux origin. Extending this to all the grid

points of the block, the local vector field can be converted

to the intenteded flux field. In our case, as shown in Fig-

ure 2b, we take the left-bottom most point of the rectangular

block as the local flux origin and propagate the flux values

to the neighboring grid points until all the grid points of the

block are assigned flux values given the local flux origin.

First the flux propagation is performed along the lower edge

(along the blue arrow) and then the flux values are propa-

gated column-wise (along the red arrows). The time stamps

shown in Figure 2b represent the order in which the grid

points receive the propagated flux values. The isocontours of

thus produced flux field yields the streamlines. In Figure 2c,

the Double Gyre data set is visualized using the popular Line

Integral Convolution (LIC) technique and a 10×10 block is

extracted as shown by the black box. The yellow curves of

the Figure 2d are the isocontours of the flux field that show

a good conformance with the numerical integration based

streamlines from the vector field. Next we discuss how this

flux-based ordering facilitates effective streamline stitching

across blocks.

4.2. Flux Based Stitching of Local Blocks

Using the grid based flux computation approach, it is pos-

sible to generate local isocontours as local streamline seg-

ments in parallel that are coherent within individual data

blocks. But when two neighboring blocks generate two seg-

ments of one streamline independently by generating iso-

contours of a given flux iso-value, the two isocontours (i.e.,

the two streamline segments) across blocks may not match

at the block boundary as shown in Figure 3a. This is be-

cause the flux values at each block were computed assum-

ing local flux origins. Figure 3a shows three isocontours

from two neighboring blocks where they show a mismatch

at the block boundary due to local computation. To achieve

a proper stitching of the streamline segments across blocks,

communication among the blocks is needed to synchronize

all the blocks to a common flux origin.

When an incompressible fluid flow is decomposed into

blocks, two neighboring blocks produce flux values assum-

ing local flux origins. Since flux is conserved across the

blocks and is independent of the path, for two neighbor-

ing blocks to have consistent flux values, their flux origins

need to be aligned. This synchronization of flux values can

be achieved using the boundary points shared by the neigh-

boring blocks. Following Figure 3b, two neighboring blocks

ABCD and BEFC initially compute local flux values with

respect to flux origin points A and B respectively. Due to

this mismatch of flux origins in the two blocks, given an

iso-value, the local isocontour segments of the individual

blocks are not globally coherent. Evidently, in general sce-

nario, FluxAB 6= FluxBB which causes the mismatch and the

flux values of the block BEFC require a change of origin to

be aligned with global flux origin A instead of local origin B.

The key property we leverage here is that when flux is con-

served in the domain, the flux difference between two points

B and C is independent of flux origin. In other words, when
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flux difference between B and C is computed assuming flux

origin Awithin block ABCD as ∆F1 = FluxAC−FluxAB and

the same flux difference is computed assuming flux origin B

within block BEFC as ∆F2 = FluxBC−FluxBB, then :

∆F1 = ∆F2 ⇒ FluxAC−FluxAB = FluxBC−FluxBB, (4)

Following this, synchronization of flux values across the

blocks is achieved by observing the flux difference between

the local and global origins, FluxAB − FluxBB and adding

this flux offset to all the flux values of block BEFC. Thus,

flux values can be directly communicated whenever two

blocks share a common grid point or a common edge. In

general, if two blocks B1 and B2 share a common point i

with local flux origins p1 and p2 respectively, then change

of flux origin from p2 to p1 for B2 is achieved as:

Fluxp1 j = Fluxp2 j+(Fluxp1i−Fluxp2i),∀ j ∈ B2. (5)

If B1 and B2 share a common edge, then any point i from

that shared edge can be chosen for this change of flux origin

following the flux conservation theory. To ensure that the

neighboring blocks have a shared edge or a point, we use

one layer of ghost cells in the data decomposition phase.

Given multiple data blocks and locally computed flux val-

ues, a parallel communication algorithm can be devised to

facilitate the flux offset propagation as shown in Figure 3d.

We assume that the global origin is contained in the left-

bottom most block. Thus, in Figure 3d, block 1 contains the

global origin and it sends the required flux offset value to

block 2 and block 5 in the first phase of communication.

Next, after receiving the offsets, the two blocks adjust their

local flux values to align with block 1 and then further send

out the flux offsets to their neighbors, block 3, block 6, and

block 9. The overall communication takes O(N
1
2 ) stages to

complete where N is total number of data blocks. Since only

a single flux-offset value is to be sent among neighboring

blocks, the communication cost is much less compared to

seed or data exchange in traditional parallelize-over-block or

parallelize-over-seed techniques. After this communication

stage, the resulting stitched flux field can be used to generate

isocontours that represent streamlines. Since isocontour ex-

traction routines are highly parallel and optimized for perfor-

mance, the final streamline generation stage is also very ef-

ficient. After this stitching, as shown in Figure 3c compared

to 3a, now isocontours of the same iso-value can be gen-

erated independently in two neighboring blocks that match

seamlessly the block boundary.

4.3. Error Handling

4.3.1. Handling Non-zero Divergence Regions

The flux-based parallel streamline generation and stitch-

ing algorithm provided above works very well for two-

dimensional data sets that have zero divergence. Although

incompressibility is a popular assumption in flow simula-

tions, the real data sets can consist of regions that contain

(a) A schematic example

of handling regions with

non-zero divergence val-

ues. Red regions indicate

larger divergence regions.

(b) A schematic exam-

ple of handling regions

with discontinuities. The

marked-circular glyphs in-

dicate cluster of disconti-

nuities.

Figure 4: Handling of erroneous regions while propagating

flux.

non-zero divergence values and the local flux values at these

regions contain uncertainty. Since flux computation is ad-

ditive, this uncertainty can spread from one region to an-

other if a simple flux computation algorithm is employed,

e.g., the method shown in Figure 2b. To restrict this uncer-

tainty from spreading throughout the domain, we devise an

error-aware flux computation in the local blocks. Here, we

use divergence of the field as the error indicator as described

by the Equation 2 and we assume an additive error model

since flux is also additive. Given a data block, a concep-

tual graph is created where each node represents a grid point

and absolute values of divergence errors are assigned to the

nodes as their weights. Undirected edges are present if two

nodes are neighbors. Now, a possible flux computation path

is found by finding a path starting from the start node that

visits all the nodes where the node weights are propagated

at each hop. Our goal is to find a path that minimizes the

sum of flux errors of all the nodes of this graph after the

flux values are computed for all nodes. Instead of finding

all possible spanning trees of the graph, we apply a greedy

flood fill like algorithm similar to Dijkstra’s algorithm for

the single-source-shortest-paths problem. The source node

is taken as the node with minimum divergence error and we

maintain a sorted list that determines the next node to be

visited. The neighbors of the current explored node are put

into this list sorted according to their divergence error val-

ues. This greedy scheme generates good quality results with

a small performance overhead.

A schematic example of this is provided in Figure 4a

where a 4× 4 block is shown and red marked regions are

non-zero divergence regions. Instead of applying a naive al-

gorithm, our error-aware algorithm defers the exploration of

the erroneous regions which in turn restricts the error propa-

gation. The numbers show the timestamps of regions as they

were explored. Global origin point is now selected to be the

grid point within the left-bottom most block (block 1) that

has the least error (or the divergence at this point is closest

to zero).
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4.3.2. Handling Discontinuities and Critical Points

Critical points are important features of the flow data sets

and their existence helps define the topology of the data. In-

variably, most of the interesting flow data sets generally con-

tain critical points. Although less prevalent, discontinuities

can also be observed in the data sets. Examples of this can be

an object inside the flow (flow around a cylinder data sets)

or presence of land in the ocean (Parallel Ocean Program

data sets). Using our method, isolated critical points are au-

tomatically handled as will be shown in the Results section.

For clusters of discontinuities, the parallel algorithm needs

to be aware of the fact that flux computation can not prop-

agate through those regions, instead it needs to go around

the discontinuities as shown in Figure 4b. Conceptually, this

is similar to a flood fill algorithm starting from region A.

Compared to the previously mentioned non-divergence re-

gions, in this scenario, we only need to ignore the processing

of the discontinuous regions. If there is a region that is sur-

rounded by discontinuities, for example region B in Figure

4b, then this region is not synchronized with other regions

but processed independently since no streamlines can leave

this block.

4.4. Quality Analysis and Quantification

The method described in the previous sections is calculat-

ing a global field based on the local properties of the data

set. Since the final outputs from the proposed method are

streamlines which are essentially isocontours of the stitched

flux field, it is essential to provide the uncertainty factors in

the analysis. The first important source of uncertainty for our

case is the local numerical integration for computing the flux

values for the blocks. Secondly, the other source of uncer-

tainty is the interpolation scheme for generating isocontours

to show the streamlines. Higher order integration and inter-

polation techniques can be applied to reduce these two types

of uncertainty without introducing much performance over-

head. Since the particle-tracing based streamlines are also

erroneous due to multiple factors [KM92], while checking

the quality of our method, we do not directly compare with

the streamlines; instead here we show point-wise error of the

generated scalar field and evaluate the quality. To achieve

this, we construct a vector field from the scalar flux field F

by taking the local derivative at every grid point and check

if it is everywhere normal to the origin vector field ~V . For-
mally, our error measure is given as:

Err(F,~V ) = (∇F) ·~V (6)

After generating this error field, we can visualize it to under-

stand the error in our method. For a perfect reconstruction,

the error should be 0 and the values closer to 1 will report

higher amount of error.

5. Results

Our experiments and scaling study were conducted on the

Blue Gene/Q Vesta system at the Argonne Leadership Com-

(a) LIC visualiza-

tion of Circle data

set.

(b) Stitched stream-

lines from the Circle

data set.

(c) Error visu-

alization of the

streamlines from

Circle data set.

(d) LIC visualiza-

tion of Saddle data

set.

(e) Stitched stream-

lines from the Sad-

dle data set.

(f) Error visualiza-

tion of the stream-

lines from Saddle

data set.

(g) Stitched streamlines from the Double gyre data set.

(h) Error of Double gyre data set.

Figure 5: Stitched Streamlines from different data sets and

their respective error visualizations.

puting Facility. Vesta consists of 2,048 nodes where each

node is equipped with 16 PowerPc A2 1600MHz cores and

16 GB of RAM. The total memory of Vesta is 32TB and it

has a General Parallel File System. Next we present the visu-

alization results and the correctness of the generated stream-

lines to show the efficacy of our proposed method at varying

block sizes.

5.1. Circle and Saddle Data Sets

First we apply our algorithm on two simple example data

sets to demonstrate its effectiveness. These two data sets

are generated using the code distributed by Turk and Banks

[TB96]. Both the data sets were set to a resolution of

6400× 6400. The first data set Circle describes a circular
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(a) Stitched streamlines from the time step

30 of flow around the cylinder.

(b) Stitched streamlines from the time step

60 of flow around the cylinder.

(c) Stitched streamlines from the time step

90 of flow around the cylinder.

(d) Vector field reconstruction error in the

time step 30 of the flow around the cylinder.

(e) Vector field reconstruction error in the

time step 60 of the flow around the cylinder.

(f) Vector field reconstruction error in the

time step 90 of the flow around the cylinder.

(g) LIC visualization of the POP data

set.

(h) Stitched streamlines from the POP

data set.

(i) Error visualization with the critical points shown.

Figure 6: Results for different time steps for flow around a cylinder data set and the POP data set.

flow. LIC visualization of the Circle data set is presented in

Figure 5a. The other data set, Saddle, describes a two dimen-

sional saddle structure and it is presented in Figure 5d. Both

the data sets contain critical points at the center. Initially, the

two data sets are divided into multiple small data blocks and

a flux field is generated using local flux based computation.

A very similar result can be obtained even if the block size

is varied. The local data blocks are then stitched across the

blocks through the propagation of flux values and the results

are presented in Figure 5. Figure 5b represents the stitch-

ing results from the Circle data set where yellow curves are

the isocontours in the stitched field that correspond to the

streamlines of the field. The data subdivision is shown as

white grids in the background of the figures. The quality of

the proposed method on this data set is shown in Figure 5c

where the error is quantified according to the measure de-

scribed in Section 4.4. Similarly, for the Saddle data set,

the stitched streamlines are depicted in Figure 5e.The cor-

responding error visualization is shown in Figure 5f. In both

the error visualizations, it is seen that most of the data set

has very low error and the highest error occurs near the cen-

ter critical point of the data sets. From these results, it can

be concluded that our proposed methods work quite well for

these data sets.

5.2. Double Gyre

Next we show our result on the analytic data set Double Gyre

which contains two symmetric vortices. This data set was

generated using the following equations:

u(x,y) = −π sin(πx)cos(πy)

v(x,y) = π cos(πx)sin(πy) (7)

over the region [0,2]× [0,1]. We test on the data set that

has a resolution of 2001×1001. To generate the results, we

first divide the whole data set into contiguous 101× 101

blocks and compute the local flux fields for each block in-

dependently. Then starting from the left-bottom corner-most

block, the flux values are propagated similar to what is

shown in Figure 3d. After the stitching process, the isocon-

tours are computed. In Figure 5g, we show the isocontours

computed from the stitched flux field of this data set and the

data partitioning is shown in the background of the figure.

From this figure, it can be observed that the maximum er-

ror is very small which reflects a good reconstruction of the

vector field.

5.3. Flow Around a Cylinder

Next we show the results on the data set that describes a

two-dimensional flow around a cylinder for multiple time

steps. This data set represents the karman vortex streets in

the fluid flow. From this data set, we have chosen three time-
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steps at equal intervals: time step 30, 60 and 90 and applied

our method. Each time step has a resolution of 768× 231.

For computation of the local streamlines within the blocks,

the block size was chosen to be 11× 11. Computation of

divergence field on this data set yields very small values

that suggests that this data set can be used as incompressible

flow without much error. This data set contains discontinu-

ities where the cylinder is placed inside the flow as shown

by the black color in Figure 6. Figure 6a represents the re-

constructed isocontours after the stitching across the blocks.

The effectiveness of the reconstruction is shown in Figure

6d. As can be seen in this figure, the flux field is in close

agreement with the original vector field. The higher error re-

gions are near critical points and regions of discontinuity.

Further, Figure 6b and Figure 6c represent the isocontours

from the time steps 60 and 90 with corresponding error vi-

sualizations provided in Figure 6e and Figure 6f. In these

figures, we again see that our local computation and stitch-

ing process was able to generate streamlines with very low

amount of error.

5.4. Parallel Ocean Program

Here we present the output of Los Alamos National Labora-

tory’s Parallel Ocean Program (POP) model as our next data

set and show the results. The full data set is three dimen-

sional with a resolution of 3600× 2400× 42 but scientists

generally use this data set slice by slice to explore the char-

acteristics of the different regions of sea. The velocity in the

z direction is often ignored for general analysis and we have

followed the same approach to produce our results. From

the data set, we have extracted a region near the land of the

South American continent with a resolution of 200×200 and

applied our method on it. A LIC visualization of this region

is provided in Figure 6g. From this figure we can see that

the flow in the selected region is quite complex and contains

many critical points with high curvature regions. Now we di-

vide the data into 11×11 chunks and apply our algorithm to

generate the flux field with stitching. The isocontours of this

stitched flux field is presented in Figure 6h. By visual analy-

sis, we can readily observe that the streamlines conform with

the flow directions shown in the LIC image. To estimate the

quality, we compute the gradient of the flux field and find the

dot product with the original vectors and present in Figure 6i.

Also, the critical points are highlighted as the red points in

this image to show the correlation of error and critical points

of the field. As we can observe, although the quality over-

all is quite good, near the critical points and high curvature

regions, we get higher error. We note that due to the non-

negligible divergence values in some regions of this data set,

the flux differences across the blocks had some mismatch

which was compensated by adding an extra flow amount in

the block. Despite this flux mismatch, as can be seen from

the resulting figures, the reconstruction has high accuracy in

other regions and generated streamlines are smooth and rep-

resent the flow features very well.
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Figure 7: Scaling study. (a) Strong scaling study performed

on upsampled circle data set. (b) Weak scaling study per-

formed on various upsampled circle data sets.

6. Discussions

6.1. Scaling and Performance Study

To understand the scalability of our proposed system, exper-

iments were conducted on multi-core machines and these re-

sults are presented in Figure 7. For the strong scaling exper-

iment, an upsampled version of the Circle data set was used

whose dimensions were 6400× 6400 for the vector field.

Number of processors were increased upto 1024 and total

running time (total running time = local flux computation

+ communication + isocontour extraction) was recorded as

shown in 7a. This log-log scale plot shows that our method

scales well with the increase in number of processors. Fig-

ure 7b represents weak scaling study where again the Circle

data set was used. For generating the plots, data resolution

and processor number were doubled starting from data size

400×400 with 2 processors upto data size 6400×6400 for

512 processors. In this weak scaling study, again a good scal-

ing can be seen.

Next we present the comparison of our flux based stream-

line generation method with a numerical integration based

approach. For this comparison, we have used the popu-

lar OSUFlow library that implements Peterka et al.’s pro-

posed method [PR11] of parallelizing streamline computa-

tion by distributing the data blocks across processors. This

method is chosen for comparison instead of parallel-over-

seeds since the execution model of large ocean simulations

is also parallel-over-blocks. For integration based stream-

line generation, a fixed step size of one voxel length was

used along with RK4 integration method. In our proposed

method, the VTK [SAH00] library was used to generate the

final isocontours. We have used 128 processors and varied

the generated streamlines from 103 to 105 in an upsampled

version of flow around a cylinder data set (with effective data

size 4800× 2000) and recorded the total running times in

Figure 8. As can be seen from this figure, our method takes

much less time than OSUFlow when more streamlines are

traced. Since the execution speed of our flux-based method

only depends on the data size rather than the complexity of

vector data, we expect to see similar speed-up trends and

scalability reports for other data sets of similar sizes. As

can be seen from the scalability and performance results, our

method is well suited for the use cases where a large number

of streamlines are to be generated.
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Figure 8: A comparison of performance between our flux

based method and OSUFlow generated streamlines.

6.2. Consistency

While generating long streamlines, generally numerical in-

tegration based approaches become less reliable due to the

accumulation of local integration errors at each step. Reli-

ability of numerical integrations vary depending on the in-

tegration method, step size and interpolation method used

as discussed by several researchers [BJB∗11,Bun88,KM92,

MP88, YP88]. Stream function based approaches generally

provide a more reliable solution compared to the numerical

integration based techniques. Apart from having a very low

error in the reconstructed vector fields, one specific exam-

ple can be shown to depict the consistency of our proposed

method. As described by Perry et al. [PCL82], in two dimen-

sional incompressible flow, the critical points can only be of

two types: center and saddle points. Now, if we start to trace

a particle using Runge-Kutta 4th order (RK4) method in the

flow around a cylinder data near a critical point (as shown in

Figure 9a), the ideal behavior should be to get a close loop

streamline. Instead, as depicted in Figure 9b, we see that the

streamline is spiraling and tending outwards from the criti-

cal point. This behavior should be observed near a spiraling

source but as we mentioned before, this data set does not

contain a source/sink. It is observed that, compared to Fig-

ure 9b, our method can produce more consistent results as

depicted in Figure 9c.

6.3. Limitations and Future Work

As shown in the Results section, the proposed approach per-

forms well for two-dimensional data sets that can be ap-

proximated as incompressible flows. In this section, we dis-

cuss about the possible extensions of our work for three-

dimensional fluids and compressible fluid flows. As men-

tioned before, the incompressibility assumption is quite pop-

ular in the CFD community and computation of divergence

is an indicator to the incompressibility of the generated data

set. When the divergence is relatively low or close to zero for

a data set, our proposed method performs very well. If diver-

gence is higher everywhere in the data set, e.g. for a com-

pressible fluid flow simulation, then the errors can become

non-negligible. To formally propose a solution for compress-

ible flows, the density can be considered in the mass flow

(b)

(c)
(a)

Figure 9: A comparison of RK4 method and our flux based

method. (a) LIC visualization of time step 30 of flow around

a cylinder data where a region near a critical point is se-

lected. (b) Streamline generated using the traditional RK4

integration incorrectly suggests the existence of a spiraling

source. (c) Our flux based approach correctly highlights the

existence of a center with a closed loop streamline.

computation. Following this approach, the data sets will re-

quire the density field along with the velocity fields for this

method to work and this is one of our future extensions to

this current algorithm. We note that, if the flow does not

have a z-component or if z-component can be ignored like

the POP data set, then even three-dimensional data sets can

also be handled by applying our algorithm on each slice. For

extending to general three-dimensional data sets, our algo-

rithm needs to be modified such that it generates a three-

dimensional flux field. The motivations for this can be taken

from three-dimensional stream function computations which

are computationally involved [Gre93,HD86,Mat93] but are

possible to compute with some constraints and assumptions.

Apart from extending our work to three-dimensional com-

pressible flows, we also plan to extend our work for uncer-

tain data sets as part of our future work.

7. Conclusions

In this work, we proposed a novel technique for generating

streamlines in parallel with high scalability for large two-

dimensional flow fields. Instead of applying the traditional

numerical integration schemes on the vector fields, we pro-

pose to compute a flux-based scalar field for implicit stream-

lines in parallel. Initially, data is subdivided into smaller

blocks and local flux field is generated whose isocontours

represent local streamlines. Since each block computes flux

values according to a local flux origin, alignment of flux

origins is needed to generate coherent streamlines across

blocks. To achieve this, we use the additive property of flux

and each block sends its local offset to its neighbors. Since

this communication stage involves sending one float value

across the neighbors of each block, it is efficiently performed

and a stitched flux field is generated. Finally, isocontours of

this stitched field is extracted in parallel to produce the final

streamlines. The results obtained from a variety of data sets,

both analytical and simulated, show the effectiveness of the

stitching method. Our experiments also reveal good strong
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and weak scaling properties as well as much improved exe-

cution time.
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