Eurographics Symposium on Parallel Graphics and Visualization (2016)
W. Bethel, E. Gobbetti (Editors)

Web-enabled server-based and distributed real-time
Ray-Tracing

G. Tamm"2and P. Slusallek 2

'DFKI Saarbriicken, Germany
2Saarland University, Germany

Abstract

As browsers expand their functionality, they continuously act as a platform for portable application develop-
ment within a web page. To bring interactive 3D graphics closer to the web developer, frameworks allowing a
declarative scene description in line with the HTML markup exist. However, these approaches utilize client-side
rendering and are thus limited in the scene complexity and rendering algorithms they can provide on a given
device. We present the extension of the declarative 3D framework XML3D to support server-based rendering.
The server back-end enables distributed rendering with an arbitrary hierarchy of cluster nodes. In the back-end,
we deploy a custom real-time ray-tracer. To distribute the ray-tracer, we present a load balancing method which
exploits frame-to-frame coherence in a real-time context. The load balancer achieves strong scalability without
inducing communication overhead during rendering to coordinate the workers.

Categories and Subject Descriptors (according to ACM CCS): C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Client/Server; 1.3.2 [Computer Graphics]: Graphic Systems—Distributed/Network Graph-
ics, Load Balancing; 1.3.6 [Computer Graphics]: Methodology and Techniques—Interaction Techniques, Web-
based/Browser Interaction; 1.3.7 [Computer Graphics]: Three-dimensional Graphics and Realism—Ray-Tracing,

Real-time

1. Introduction

Modern browsers continuously expand the functionality they
provide, and thus establish themselves as a platform for a
wide range of applications. The tendency is further reflected
in the restriction and ultimately removal of plugin-based ap-
proaches in recent and upcoming browser versions. These
plugins are a stability risk as they run with full privileges
on the client system, may contain platform- and OS specific
code, and therefore require a user dialog for installation. In
contrast, an application within the browser’s bounds enables
cross-platform development, and user access via a open web
page on any capable device.

One application area in the browser is interactive graph-
ics. The widely adopted WebGL allows the development of
GPU-accelerated 3D applications within a web page. How-
ever, WebGL is a low-level API. While higher level libraries
like three.js exist, they are still separate from HTMLS and
the Document Object Model (DOM), apart from the integra-
tion with the HTMLS5 canvas element for display. Therefore,

(© The Eurographics Association 2016.

DOI: 10.2312/pgv.20161182

graphics or library-specific programming knowledge is re-
quired to develop proprietary WebGL applications.

To make graphics content creation more accessible for the
web developer, approaches for the declarative description of
3D scenes, tightly coupled with the web page, have been de-
veloped [BEJZ09] [SKR*10]. Especially XML3D has been
designed as a HTMLS extension, and utilizes the DOM di-
rectly for scene hierarchy building and manipulation.

An aspect not addressed by above client-side WebGL li-
braries is server-based rendering. Not every device may have
the capabilities required to store and interactively render a
scene at the desired frame rate. Specific to the browser envi-
ronment, persistent storage for large binary data is limited,
and only a subset of the OpenGL features is available in
WebGL. Implementations are further limited by the reduced
features and performance of JavaScript (JS) compared to na-
tive code. Moving the rendering workload to a dedicated
server back-end can overcome these restrictions.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20161182

56 G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

In this paper, we present the extension of XML3D to sup-
port server-based rendering. We decided to use XML3D on
the client-side due to its HTMLS5-embedded, generic ap-
proach for 3D content creation accessible for the common
web developer. Further, XML3D is an established frame-
work. This allows us to make the server back-end available
to a range of already existing and upcoming applications.

The server back-end currently provides a rasterizer and a
real-time ray-tracer, which supports additional features and
material properties. Real-time ray-tracing has been a topic
of research for over a decade [PMS*99]. Being an embar-
rassingly parallel problem, the key for high performance is a
careful utilization of parallelism on modern processors.Still,
enabling advanced diffuse effects like ambient occlusion or
area lights in real-time at a high resolution is barely possible
on a single commodity machine. Therefore, running a ray-
tracer distributed on multiple machines is the consequence.

Our server back-end can operate in a distributed fashion,
allowing an arbitrary hierarchy of servers in a standard or
InfiniBand network. How well a ray-tracer scales on such
an architecture is determined by the load balancing process.
Ray-tracing workload can be highly heterogeneous. Some
areas in an image may be more expensive to compute than
others. To achieve optimal scaling, work must be balanced
to keep all processing units busy until the frame concludes.

We present a load balancing approach that exploits frame-
to-frame coherence in a real-time scenario. Based on cost
measurements for the previous frame, we demonstrate that
an accurate balance can be achieved for the next frame with
negligible overhead. There is no communication between the
master node, which accumulates the final rendering result,
and the rendering nodes during a frame, and no communi-
cation between the rendering nodes at all. The approach is
thus especially suitable when the connection between some
nodes can be a bottleneck or is not possible.

The following section outlines related work for server-
based rendering in the browser, real-time ray-tracing and
load balancing. The paper next focuses on the client-side ex-
tension of XML3D to support server-based rendering. It then
describes the server back-end and the load balancing method
for distributed ray-tracing. The results section provides mea-
surements and an analysis of the distributed ray-tracer.

2. Related Work
2.1. Web3D and server-based Rendering

There are two initiatives to embed declarative 3D content
into a web page, and thus make it accessible for the web de-
veloper without requiring domain-specific or graphics pro-
gramming knowledge. X3DOM [BEJZ09] [JRS*13] utilizes
the XML-based X3D format to describe 3D content within
a web page. In contrast, XML3D [SKR*10] [KSSS14] is an
extension of HTML5. A XML3D scene is part of the DOM,

and can be manipulated using the existing JS API developers
are accustomed to.

Tamm et al. [TS15] describe the state-of-the-art methods
for plugin free server-based rendering in the browser. One
approach is to receive images via a WebSocket (WS) con-
nection [WPJR11] [MPJ*13]. Motion JPEG (MJPG) over
HTTP is another widely supported technique used by sev-
eral systems [KPS10] [JBDW12]. Cloud gaming providers
prominently use more bandwidth-efficient video streaming.
To date, there are two options for plugin free real-time video
streaming. In Chrome, a video receiver can be implemented
with NativeClient (NaCl) [YSD*09], which allows to run na-
tive code within the browser’s secured sandbox environment.
Further, WebRTC [LR12] can be exploited to display a video
stream of rendered data in the browser.

Behr et al. [BMP*15] describe a service infrastructure for
visualization applications in the browser. The framework in-
cludes client-side rendering with hare3d [SLTB15] in addi-
tion to a server-side rendering component.

The above server-based rendering solutions are domain-
specific and require proprietary libraries to operate from a
web page. Further, there is no specific support for a dis-
tributed server back-end to facilitate high quality and per-
formance rendering. In contrast, we enable server-based ren-
dering in the declarative 3D library XML3D, which allows
to specify generic 3D content in actual HTMLS5. Custom ap-
plication logic can be built on top of XML3D with JS. Using
this approach, we make the distributed rendering back-end
available to a wide array of potential applications.

2.2. Real-time Ray-Tracing and Load Balancing

With the advances in parallel computing architectures, real-
time ray-tracing is a topic of increasing interest. Today, such
parallelism is available even on commodity multi-processor
machines. We give a brief overview of real-time ray-tracing,
and then focus on load balancing.

Parker et al. [PMS*99] describe an early interactive ray-
tracer. Wald et al. [WSO1] thoroughly outline the research
area and its challenges, and present their own distributed
ray-tracer. A generic, template-based interactive ray-tracing
framework is presented by Georgiev et al. [GS08]. Op-
tiX [PBD*10], a ray-tracing framework running on the GPU,
enables a range of applications including real-time usage.
More recently, a collection of optimized CPU kernels has
been made available with Embree [WWB* 14].

Load balancing is the process to distribute the potentially
heterogeneous ray-tracing tasks to the processing units, with
the goal to achieve maximum utilization. We distinguish be-
tween dynamic and static load balancing [CDRO02].

2.2.1. Dynamic Load Balancing

A dynamic load balancer assigns initial tasks of potentially
varying cost to the workers. If a worker becomes idle, it is as-

(© The Eurographics Association 2016.

G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing 57

signed still outstanding tasks on demand. The first approach
is to manage a central task queue. Workers request new tasks
from the queue as they finish their current work [Pla02].
Ize et al. [[BH11] describe an out-of-core ray-tracing system
which uses a queue both locally to schedule tasks on threads,
and globally for the nodes in a cluster. The queue manager
described by Wald et al. [WSO01] attempts to assign previ-
ously rendered tasks to nodes, facilitating good cache local-
ity assuming temporal coherence in interactive ray-tracing.

The second approach is work stealing [BL99]. Workers
attempt to steal tasks from others instead of relying on a cen-
tral queue. This effectively removes the queue manager as a
possible communication bottleneck, as different node pairs
can communicate in parallel. Tzeng et al. [TPO10] use work
stealing to assign irregular workload to the GPU, giving ray-
tracing as one application. DeMarle et al. [DGP04] initially
assign previously rendered tasks to exploit temporal coher-
ence in their distributed, shared-memory ray-tracing system.
This is crucial to minimize fetching missing data from an-
other node. After the initial assignment, work stealing is
used.

Dynamic load balancers are generically applicable to par-
allel problems, and naturally scale well even with heteroge-
neous computing resources. However, they can suffer from
communication overhead which increases with the number
of workers. A low-latency connection between the master
and the workers, or in case of work stealing between all
workers, is mandatory.

2.2.2. Static Load Balancing

A static load balancer determines fixed tasks before render-
ing a frame, and thus avoids task management and communi-
cation overhead during rendering. Our distributed rendering
back-end supports any hierarchy of nodes, and a dedicated
network setup is not mandatory. We do not assume a fast or
any link between the rendering nodes. Not even the master
is necessarily directly connected to a rendering node. There-
fore, we employ static load balancing. However, a static ap-
proach can not react to imbalance by shifting tasks to work-
ers which become idle. Thus, determining a task distribution
to accurately equalize the rendering cost on the workers de-
cides about the effectiveness.

Heirich et al. [HA98] discuss several load balancing
strategies for ray-tracing, including a randomized static as-
signment of pixels among workers. While such highly gran-
ular scattering can achieve an even cost distribution, it facil-
itates bad cache locality since each worker operates across
the whole image [WPSBO3]. Scattering pixels does further
not fare well with a modern ray-tracer which traces packets
of coherent rays.

More recent approaches attempt an estimation of the cost
distribution. From the cost predicate, a tiling into tasks of
equal cost can be derived. Moloney et al. [MWMSO07] cal-

(© The Eurographics Association 2016.

culate a per-pixel cost estimate for their direct volume ren-
dering system. Gillibrand et al. [GDCO0S5] propose to time
profiling rays at a lower resolution, and then applying the re-
sulting cost map to the full resolution image. They tested the
approach only with primary rays. Though, producing a rep-
resentative cost map by profiling can cause major overhead,
especially when considering secondary rays.

Similar to our approach, Cosenza et al. [CCDC*08] as-
sume temporal coherence in a real-time ray-tracing system.
Timings obtained for the previous frame are considered rep-
resentative for the next one. However, along with Gillibrand
et al. [GDCOS5], their approach suffers from inaccuracy as
timings are obtained in a lower resolution than the one of
the renderer. Each node only measures each task assigned to
it. Cost differences within a task can cause the average to be
largely off for contained rays or ray packets, which can lead
to unbalanced scheduling decisions. Consequently, they use
a task queue in addition to account for possible imbalance.

Cosenza et al. [CDE13] approximate the cost map for the
next frame by rendering a rasterized preview on the GPU.
The load balancer uses a summed area table based tiling al-
gorithm to derive tasks of equal cost from the map. Though,
there is a substantial loss in accuracy which prevents scaling
similar to a dynamic approach. Therefore, they ultimately
propose a work stealer which is optimized through sorting
of the initial tasks by the approximated cost.

In our method, each node obtains a cost map for its task
in the packet space of the renderer using high-resolution
timings. The load balancer can thus achieve a strong ac-
curacy while still only generating one static task per node
and frame, effectively minimizing communication and tiling
overhead. In contrast, Cosenza et al. [CCDC*08] [CDE13]
end up with variants of existing dynamic approaches due to
the limitation of their static attempts, nullifying the advan-
tage of not requiring communication during rendering. They
do not consider non power of two node counts and heteroge-
neous nodes. We extend the tiling of Cosenza et al. [CDE13]
to support any amount of and heterogeneous workers.

3. System Architecture

Figure 1 introduces the system architecture on a high level.
From the user’s perspective, accessing an application is as
simple as opening a standard web page. Embedded into the
page is a XML3D scene, as well as the application logic on
top of XML3D. If feasible and desirable, the client-side We-
bGL renderer can process the scene.

In addition, XML3D may offload rendering to a native
server back-end. There are two independent connections be-
tween the client and the master node, and between each pair
of connected nodes in the cluster. The first transfers the scene
updates from the client to the master. Each node forwards the
data to its child nodes. The second transfers the output from
the resident renderer and the child nodes down the pipeline.

58 G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

S O N

InfiniBand
Web page Raw
images
Scene
XML3D Master node

Encoded
images

Figure 1: Exemplary architecture of the distributed render-
ing system. XML3D clients connect to a rendering cluster
with a hierarchy of nodes connected via InfiniBand.

As there may be bandwidth restrictions between client and
master, this includes an encoding step on the master. Within
the cluster, the nodes send raw pixel data. Therefore, we sup-
port InfiniBand in addition to a standard network. The sepa-
rate connections enable an asynchronous pipeline where the
client already prepares and synchronizes the updates for the
next frame, while the current one is still in progress of ren-
dering or transfer to the client.

4. Client Side

A web page may contain a statically embedded XML3D
scene. However, the web developer can build application
logic on top of XML3D, manipulating the existing scene
or adding new elements or the entire scene dynamically.
With the server-based rendering extension, we want to keep
and utilize this flexibility to create arbitrary applications. We
therefore followed a minimal invasive approach, which ex-
poses the server-side functionality with a manageable set of
attributes. The attributes are an optional addition to existing
XML3D elements. There are no new elements the developer
needs to get accustomed to.

Consequently, existing applications can immediately be
used, and new ones created as before. The approach enables
a hybrid architecture where the client executes the applica-
tion logic in parallel to the server-side rendering. The server
does not need to adopt XML3D-specific features, which
avoids maintaining redundant functionality and makes the
server easily portable to another client.

The disadvantage is that the client still needs access to the
scene as XML3D allows the manipulation of resources like
buffers and textures. Also, there is overhead in synchroniz-
ing resources with the server. Though, the procedure is pro-
gressive, so rendering can already commence and provide
the user with intermediate results quickly while part of the
scene is still loading.

4.1. Connection Setup

To enable server-based rendering, the xm/3d HTMLS ele-
ment must contain a server attribute pointing to the address
and port of a rendering server. Otherwise, the scene will be
processed by the client-side WebGL renderer. The client first
establishes a WS connection to synchronize the scene data.
This synchronization channel is also used to send a hand-
shake to the server.

The handshake tells the method to encode and transfer the
image data. According to the selection, XML3D creates the
display channel which establishes the connection for incom-
ing images, and provides the HTMLS element to display the
images in the web page. The client places the display ele-
ment behind the transparent canvas element otherwise used
for local rendering. The canvas is still required to capture
user input, e.g. to select objects or move the camera. The ar-
chitecture is modular and enables to integrate several display
channel types (Section 4.3).

4.2. Synchronization

The data to be sent over the synchronization channel in-
cludes the resolution, camera and the lights. It also includes a
collection of meshes. A mesh does not store data other than
a transformation, but references buffers, textures, samplers
and material properties. Meshes may share references, en-
abling the reuse of data (e.g. for geometry instancing). The
separation offers a lot of flexibility to compile meshes. The
client can compress buffers with the deflate algorithm.

XML3D loads resources asynchronously and progres-
sively. An event notifying the initialization, change or dele-
tion of a data entry can be generated anytime. Instead of syn-
chronizing in-place with the event callback, the client sched-
ules the update on the main run loop. This loop runs at a
selectable rate to pass outstanding updates to the synchro-
nization channel. If at least one update occurred during an
iteration, the client sends a special message to the server re-
questing the rendering of a new frame.

The scheduling allows the client to postpone updates to
prevent a WS send buffer overflow. Especially the initial
loading of the scene may trigger heavy traffic for buffers and
textures, making a rate control necessary. Also, updates may
be triggered by the application logic at a higher rate than
the one of the run loop. The scheduling prevents excessive
rendering requests or redundant updates between requests.

4.3. Display

Independent of sending scene updates to the server, render-
ing results may arrive. We support several plugin free meth-
ods for transfer and display, which allows the application to
choose the most appropriate one given the conditions and re-
quirements. In a closed scenario, the focus may be on max-
imum en- and decoding performance. In a best-effort net-
work, bandwidth-efficiency may be of more concern.

(© The Eurographics Association 2016.

G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing 59

The server can transfer JPEG images over WS, and MJPG
over HTTP. To trade compression-ratio for more en- and de-
coding speed, there is support for S3 texture compression
(S3TC). S3TC enables fast parallel encoding. Using a com-
monly supported WebGL extension, the client can decode
S3TC images directly on the GPU. For more bandwidth-
efficiency, we further implemented a NaCl module to receive
H.264 video. Tamm et al. [TS15] present measurements re-
garding latency and bandwidth for all methods.

4.4. DOM Integration

We expose server-based rendering to the developer with a
set of attributes which can be added to the xm/3d HTMLS5
element. With the exception of the server attribute, the at-
tributes are optional.

e server: Address and port of a rendering server.

e renderer: The renderer to use, currently supporting the
reference rasterizer and the real-time ray-tracer (defaults
to the rasterizer).

e display: Method to transfer and display images, currently
supporting JPG and S3TC via WS, MJPG via HTTP, and
H.264 via NaCl (defaults to JPG).

e nodes: The maximum number of nodes to use for dis-
tributed rendering. It may be desirable to only use a subset
or single node to increase the back-ends client capacity. A
renderer may not require or benefit from several nodes.

Further, we extended XML3D with a set of new mate-
rial properties to reflect the capability of the server-side ray-
tracer. Refraction and reflection coefficients and the refrac-
tion index can now be specified for any material.

Figure 2 demonstrates the simple changes to port a scene
to server-based rendering. By simply removing or renaming
the server attribute, XML3D will fall back to the WebGL
renderer which silently ignores unsupported features.

Client-side rasterizer

<xml3d ...>
<lightshader ...>
<float3 name=‘intensity>...

<shader id="water">
<texture name="diffuseTexture” ...>...

</xmi3d>

Server-side ray-tracer
<xml3d server="localhost:8080”
renderer="ray-tracer” ...>

<lightshader ...>
<float3 name="intensity>...
<bool name="castShadow’>true

<shader id="water">
<texture name="diffuseTexture” ...>...
<float3 name="refractionCoefficients”>1 1 1
<float name="refractionindex”>1.333

</xmi3d>

Figure 2: The simplified original version of a scene (top)
and the adapted declaration for the server-side ray-tracer.

(© The Eurographics Association 2016.

5. Server Side

Figure 3 illustrates the main components of the server back-
end. Analogous to the client, the server manages a synchro-
nization and a display channel. The display channel is re-
sponsible for sending the rendering output to the client, and
thus interfaces with the local renderer. It applies scene up-
dates from the synchronization channel directly, or caches
them if the renderer is active. We call the last receiver in
the pipeline the display client. The master encodes the final
image to be sent to the display client.

Rendering Nodes

Cluster Network Raw
images
Master
Node
Renderer Child Display
Channels
Encoder Updates
. Synchronization
Display Channel Channel
Load Rendering
Balancer Tasks
Encoded Updates
images Best-effort Network P

Figure 3: The components running a distributed rendering
session in the server back-end.

For distributed rendering, synchronization and display
channel also act as a client by establishing a connection
to each of the participating child nodes. The corresponding
handshake requests a dedicated display channel for raw pixel
transport in the cluster network. The child nodes receive up-
dates from, and send their rendering output to their parents.
The master runs a renderer-specific load balancer to deter-
mine the rendering tasks for the next frame (Section 5.2). Ev-
ery node has the same capabilities, and can assume the role
of the master. This results in a flexible architecture, which
allows to chain an arbitrary hierarchy of nodes.

The server facilitates asynchronous execution through its
pipeline. The components in Figure 3 run in separate threads.
While the local renderer executes, rendering results from the
child nodes may arrive and be forwarded to the parent. Con-
currently, scene updates for the next frame may arrive to be
cached and forwarded to the child nodes. The server can im-
mediately issue a new frame from cached updates, keeping
the renderer occupied. The encoder can run in parallel to the
rendering of the next frame. Therefore, we achieve strong
parallel utilization of the computing and network resources.

60 G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

5.1. Renderers

The server provides an abstract API which developers can
implement to plug in their renderers. So far, we have in-
tegrated two renderers. The first is the reference rasterizer
which mimics the functionality of the client-side WebGL
renderer. The second is a custom CPU ray-tracer on top
of the Embree [WWB*14] ray-tracing kernels. The ray-
tracer is optimized for real-time performance. It operates
on packets of rays for both tracing and shading, capable
to utilize the SSE, AVX and AVX2 instruction sets. To run
the renderer locally on multiple cores, we utilize the Cilk-
Plus multi-threading language (originating from Blumofe et
al. [BJK*95]) and its internal work stealer.

The ray-tracer supports ambient occlusion, which is a
monte-carlo technique requiring a good amount of sample
rays to avoid noisy results. The cost can snowball quickly
with more samples, especially considering materials trig-
gering secondary rays. The feature is barely adequate for a
single commodity machine in real-time, thus motivating the
scaling in a rendering cluster.

5.2. Distributed Rendering

Nodes participating in rendering, which may include the
master, are called rendering nodes. For each type of renderer,
a rendering node stores a coefficient indicating its perfor-
mance relative to the other nodes in the cluster. In a cluster
of homogenous machines, all nodes have the same coeffi-
cient. It is up to the operator to determine coefficients re-
flecting the heterogeneous nodes in the cluster, for example
with benchmark tests. Section 6.3 describes our calculation
for the ray-tracer.

When the display client connects, the master requests the
coefficients of the renderers available in each child’s sub-
hierarchy. A child node will add its own renderer to the list,
and further traverse the tree by requesting the renderer list
from its children. Effectively, this process flattens the node
hierarchy, and the master ends up with the complete list of
coefficients. The master then selects the renderers to use in
this session, prioritizing stronger nodes if only a subset of
the available nodes should take part.

For the communication between two nodes, we support
TCP over Ethernet and InfiniBand. TCP enables the deploy-
ment in a commodity setup, but may be limited in band-
width. Since there is raw pixel data transport, we recommend
the use of at least a 10 Gigabit network to minimize delay.

To determine the screen-space rendering task for each
node in the upcoming frame, the master asks a renderer-
specific load balancer. The server provides an abstract API
for static load balancing, which a renderer implements to
benefit from distributed execution. A renderer may gener-
ate custom cost data for the current frame, which the node
transports to its parent along with the pixel data. The mas-
ter gathers the data from all nodes, and passes it to the load

balancer to generate the task distribution. The load balancer
may also consider the renderer coefficients to weigh nodes.

Concluding, our architecture enables a flexible setup of
possibly heterogeneous nodes with different roles. Nodes not
suitable for rendering may still contribute as a master dedi-
cated for encoding, or as a network hub giving access to a set
of rendering nodes otherwise not reachable. Since each node
can be the master, the definition of sub-clusters is possible,
allowing different kinds of clients access at a certain level. A
ray-tracing client may access the whole hierarchy, while it is
enough to restrict rasterization to a small branch. Due to the
static nature of the load balancing, rendering nodes must not
be connected with low-latency to each other.

6. Load Balancing

This section describes the static load balancing for the dis-
tributed real-time ray-tracer. The foundation is the obser-
vation that in a real-time scenario, view changes between
frames are likely small. Thus, timings for one frame are rep-
resentative for the following frame. This maps to our server
back-end and the ray-tracer, which are explicitly designed
for real-time operation.

The ray-tracer operates in packets of neighboring pix-
els. During rendering, it measures the cost to determine the
colors for each packet, effectively producing a cost map in
packet space. The renderer transforms the cost map into a
summed area table (SAT), which the display channel trans-
fers to the master in addition to the pixel space image pro-
duced for the current task. The SAT allows to determine the
cost of any rectangular region in constant time. Once the
SATs from the rendering nodes have been accumulated, the
load balancer uses them as input to determine a tiling into
tasks of balanced rendering cost. Figure 4 outlines the steps
to acquire the task distribution for the upcoming frame.

Rendering Nodes

Task frame N
Pixel space

Cost Map SAT

Network

Packet space

Tasks Frame N+1
Node 2 Expanded to pixel space
SAT array
Node 1 Node 3
— £7 —
Node 4
Node 2
Packet Space
Master Node
Node 4

Figure 4: The static load balancing for real-time ray-
tracing. In this example, the ray-tracer measures the cost for
packets of 2x2 pixels. Each node outputs a SAT to the mas-
ter, which runs the tiling algorithm on the array of SATs to
generate tasks of balanced cost for the next frame.

(© The Eurographics Association 2016.

G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing 61

Due to the high timing granularity in the packet space
of the ray-tracer and the frame-to-frame coherence present
in our real-time system, the load balancer can achieve a
strong accuracy and thus scalability (Section 7). There is no
communication during rendering, and no communication be-
tween the rendering nodes at all, making a basic deployment
with any setup of machines and network possible.

The load balancer requires each node to generate a cost
map during rendering, convert it to a SAT, and send the SAT
to the master. The overall overhead is constant, and depends
on the packet space resolution of the image. More nodes
effectively reduce the impact as they process continuously
smaller parts of the image in parallel. In contrast, the com-
munication overhead of a dynamic load balancer increases
with the number of nodes and tasks. More cores on a node
reduce the cost map generation overhead as they acquire tim-
ings in parallel. As rendering cost increases, the overhead
becomes increasingly negligible. In contrast, a dynamic ap-
proach may require a finer task granularity in response to a
high rendering time of individual tasks to avoid stalling on
a single worker and task in the end, in return increasing the
communication overhead.

6.1. Cost Map

The mechanism to measure the cost for the pixel packets
must be fine-grained and induce little overhead. We sup-
port two techniques reflecting the requirements. The proces-
sor time stamp counter (TSC) register stores the number of
clock cycles since the last reset. To acquire values which are
consistent across heterogeneous nodes, the ray-tracer divides
by the maximum core frequency in Kilohertz, assuming all
cores on a node run at this rate under the ray-tracing load.

In our tests, the TSC produced reliable results. Still, it may
suffer from issues which can reduce the timing accuracy. The
counters on different cores may not be tightly synchronized.
While the OS may attempt the synchronization on booting,
there is no guarantee. A thread switching the core between
two measurements can thus result in distorted values. Also,
processors with out-of-order execution support may shift the
execution order of instructions, which can cause a slightly
misplaced read of the counter. The processor switching its
frequency can cause further inconsistencies.

To account for the potential issues with the TSC, we al-
ternatively support the performance counter provided by the
Windows OS. If possible, the performance counter relies on
the TSC internally, thus also providing high precision and
speed. It adds logic to handle the TSC issues, and can be
considered as portable and reliable across recent systems.

6.2. Summed Area Table Generation

Hensley et al. [HSC*05] describe fast SAT generation on the
GPU. However, since our cost map resides on the CPU, we

(© The Eurographics Association 2016.

implemented a multi-threaded CPU version which induces
minimal overhead (Section 7). Part of the overhead is hid-
den by parallel execution as a rendering node sends its im-
age data asynchronously to the SAT generation. Also, this
enables the master to start the encoding of the accumulated
image while the SAT array is still incomplete.

Cost map and SAT store 32-bit values. In a bandwidth
setup of 10 GBit/s, this only accounts for around 0.737 ms
of constant transfer overhead for a 720p image and packets
of four pixels. The overhead is further mitigated through the
distributed sending, the master participating in the rendering
and possibly already ongoing encoding.

6.3. Tiling

The master gathers the SATs from the rendering nodes in the
SAT array data structure. The array is the input to the tiling
algorithm, which determines the tasks for the next frame.
The tiling executes asynchronously to possibly still ongoing
encoding, mitigating the already low overhead of the algo-
rithm. The array behaves like a single SAT in the overall
packet space resolution, providing the accumulated cost for
a rectangular region from the origin to any packet. Several
SATs may contribute to the cost, which Figure 5 illustrates.
The load balancer first sorts all SATs by their offset on the
x-axis, which then allows to quickly reject SATs, which start
beyond the requested region, with a binary search.

SAT 1 SAT 3
A
B
Area cost
=A+B
SAT 2 SAT 4

Figure 5: Sampling two SATs in the SAT array to obtain the
rendering cost for the pixel packets in an area.

The load balancer starts with a packet space resolution tile
with all the nodes attributed to it. Consulting the SAT array,
the balancer uses a binary search to split the tile into two
child sides with the cost balanced according to the nodes at-
tributed to each side. It will recursively split the children,
switching the axis on each level, until a leaf tile represent-
ing the task for a single node has been reached. For an even
count of homogeneous nodes, balancing means finding the
split which evens out the cost on both sides. However, the
load balancer also considers an uneven node count attributed
to a tile, and the presence of heterogeneous nodes. It weighs
nodes according to their renderer coefficient (Section 5.2).

A timing represents the cost to render a packet of pixels

62 G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

on a single core. But the performance may vary on hetero-
geneous nodes. We therefore statically assign a performance
coefficient to each node, which indicates the performance in-
crease for a single core relative to the node with the weakest
cores. The load balancer normalizes the cost values retrieved
from a SAT by multiplying with the performance coefficient
of the originating node. The coefficient is an empirical factor
which has to be chosen by the cluster operator. If all nodes
share the same processor family, we set the values propor-
tional to the node’s core frequencies.

Each node locally distributes the renderer to the num-
ber of logical cores with a work stealing load balancer. The
static balancer in the cluster thus assumes a linear scaling of
the ray-tracing performance to the number of cores on each
node. It therefore calculates a node’s renderer coefficient as
the product of the number of logical cores and the single-
core performance coefficient.

When splitting a tile, the algorithm balances the normal-
ized cost based on the ratio between the sum of renderer co-
efficients attributed to the first and the second child, thus ac-
counting for any node count and heterogeneous nodes. For
an uneven count, the balancer assigns the additional node to
the side which brings the sums on both sides closest together.
This facilitates producing child tiles of similar cost.

The balancer assigns tasks in a fixed order using a depth-
first traversal of the tile tree, resulting in each node sticking
to roughly the same image area. This facilitates good cache
locality, which can improve the rendering performance.

7. Results

This section demonstrates the performance of the server
back-end and the distributed real-time ray-tracer. The cluster
consists of 20 rendering nodes. Each node is equipped with
two Intel Xeon X5650 six-core processors running at 2.66
GHz. The processors do not support AVX instructions. Con-
sequently, the ray-tracer falls back to SSE with packets of
2x2 pixels. We compared the performance of the ray-tracer
in SSE and AVX mode on a modern machine, and measured
an average performance increase of 88.8% with AVX.

The nodes are connected with 1 GBit/s Ethernet. More-
over, there is a 10 GBit/s InfiniBand link between ten of the
nodes. The rendering nodes send RGBA output with 32 bits
per pixel. The master uses the S3TC encoder. The image res-
olution is 1280x720.

We used the example scenes shown in Figure 6 to produce
the results. The scenes are textured with diffuse and specu-
lar maps. The city has 65960, the tavern 1382164 and the
hacienda 7691995 triangles. All scenes contain parts where
there is heterogeneity in the rendering cost. The background
is the cheapest area. In addition, the city contains a river
causing secondary rays due to refraction. The tavern con-
tains a wet reflective table. The most demanding scene is the

hacienda with refraction for the glasses and the fountain, and
a large amount of alpha mapped leafs. Each scene has a sin-
gle light. There are 16 ambient occlusion rays per hit for the
city and eight for the tavern and hacienda scene.

For reproducible results, the master automatically replays
arecorded camera interaction loop for each scene. The view
changes between frames are small as expected in a real-time
scenario. The camera creates different viewing angles, ef-
fectively shifting the rendering cost distribution. The results
build on the following per-frame measurements.

Rendering node

e Kernel: The total cost spent in the ray-tracing kernel
across all threads to determine the colors for the pixel
packets. This is equivalent to the bottom-right entry of the
SAT generated from the cost map. The load balancer aims
to equalize the kernel cost on the nodes. Therefore, this is
the core measurement to show the scalability.

e Rendering: The time to determine the colors for the pixel
packets in the multi-threaded setup. The kernel executes
on the logical cores using a work stealing scheduler. This
value includes the threading and timing overhead.

e SAT Generation: The time to generate the SAT for the
rendering task from the cost map.

Master node

e Tiling: The time to determine the tasks for the next frame.

e Pipeline: The time spent in addition to the rendering to
send the final image to the display client, which includes
the encoding and in case of distributed execution, SAT
generation, image and SAT transfer, and the tiling.

7.1. Scalability

Table 1 outlines the single node performance for each scene
to set the benchmark. For the kernel and rendering measure-
ments, the table showcases the strong scaling efficiency in
the cluster. The values are the averages across all frames.
Figure 7 illustrates the performance increase as nodes are
added.

The kernel cost exhibits a super linear scalability. With
more nodes, the load balancer assigns increasingly smaller
tasks to the nodes in a fixed order. This can result in an in-
creased cache locality, which we attribute the super linear
effect to. Also, the foundation is the accurate rendering cost
balance which the algorithm can derive from the SAT ar-
ray generated for the previous frame. The scalability remains
stable over time with occasional minor fluctuation and out-
liers as Figure 8 illustrates.

Along with the kernel, we observe a strong scalability
of the rendering time. The rendering includes the threading
and work stealing overhead, which stays about constant with
more nodes. There is also the per-thread overhead to iterate
over and time the assigned pixel packets. This overhead de-
pends on the task size and does thus not necessarily decrease
comparatively to the kernel cost with more nodes. Therefore,

(© The Eurographics Association 2016.

G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

63

Figure 6: The city (left), the tavern (middle) and the San Miguel hacienda scene.

tasks is visualized.

For the city, the tiling into rendering node

20 - ' ' ' ' 20 - i ! ' 20 - ! ! '
Kernel —+— Kernel —+— Kernel —+—
18 Rendering —— 18 Rendering —— / 18T Rendering ——)

5 6f // 416 - 416 - 4

% 14 - 4 14 ¢ // 4 14+]

g 12 - // 112 / 112 F 1
S 10 110 110 F 1

é 8 - i 8t i 8r = 4

o 6r i 6t i 6r 4

4r i 4t i 4r 4
2 ')))))))) 1 2F ')))))))) 1 2r ')))))))) b
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
City Tavern Hacienda
Figure 7: The kernel and rendering performance increase as a function of the node count.

100 F which can cause the efficiency gradually falling as nodes are
96 | | added. We observed an almost identical single node render-
9 | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ing time with en- and disabled cost map generation. This

shows the timing overhead is minimal, and fades into obscu-
0 200 400 600 800 1000 1200 1400 1600 rity with increasing per-packet cost.
city In addition, due to the execution on multiple cores, the

100 [N b A - WWW [t rendering time is more susceptible to fluctuation and out-
96 | 4 liers caused by outside interference, like the OS occupying
92 + 4 a core for a different task. Such occurrences can temporary

reduce the scaling efficiency of the local work stealer. The

0 100 200 300 400 500 600 more nodes, the more likely a disruption on any node oc-
Tavern curs. Also, the efficiency of the work stealer can fluctuate by

itself. Local imbalance negatively reflects on our top level

100 1 load balancer in the cluster, which must assume a consis-
96 - i tent scaling to the number of cores across the nodes. There-
92 | fore, we increased the process and rendering thread priority,

0 100 200 300 400 500 600 700 800 900
Hacienda

Figure 8: The kernel scaling efficiency for eight nodes as a
function of the frame number.

the rendering time efficiency is naturally below the kernel ef-
ficiency. Further, as the per-node ray-tracing cost decreases
with more nodes, the constant overhead has a higher impact,

(© The Eurographics Association 2016.

which substantially reduced the appearance of outliers.

7.2. Pipeline Time

The tendency is the increase of the pipeline time with more
nodes. Since the master participates in the rendering, the net-
work load is reduced proportional to the task size assigned
to the master. The transfer speed for 20 nodes drops greatly
as we switched from InfiniBand to Ethernet.

We observe a higher pipeline time for the city than for the

64 G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

Table 1: The scaling efficiency and pipeline time for differ-
ent node counts given the single node (SN) performance.

City (SN Rendering: 384.1 ms, Pipeline: 0.884 ms)
2 3 4 5 6

Kernel 100.8% 100.9% 100.5% 100.7% 100.4%
Rendering 100% 99.6% 99.1% 98.7% 98.6%
Pipeline 2.645 2.275 2.393 2.801 3.358

7 8 9 10 20
Kernel 100.3% 100.4% 100.4% 100.6% 100.8%
Rendering 98.1% 97.7% 97.4% 97.3% 95.1%

Pipeline 3.714 4.022 4.29 4.495 36.98

Tavern (SN Rendering: 823.5 ms, Pipeline: 0.862 ms)

2 3 4 5 6
Kernel 100.9% 101.3% 100.9% 101% 100.7%
Rendering 97.9% 98.2% 97.8% 97.9% 97.9%
Pipeline 1.376 1.979 1.615 2.033 2.046

7 8 9 10 20
Kernel 100.8% 100.9% 101% 1012% 101.5%
Rendering 98% 98% 98.1% 98% 95.9%

Pipeline 2.315 2.637 2.363 2.892 35.23

Hacienda (SN Rendering: 818.7 ms, Pipeline: 0.861 ms)

2 3 4 5 6
Kernel 101.9% 102% 101.7% 101.5% 101.5%
Rendering 100.7% 99.1% 99.4% 99.2% 96.1%
Pipeline 24 2.259 2.098 2.307 2.187

7 8 9 10 20
Kernel 101.2% 101.1% 101.3% 101.5% 101.5%
Rendering 96.3% 94.8% 95.3% 95.5% 92.9%

Pipeline 2.266 2.112 2.322 2.331 33.5

other scenes in Table 1. All scenes show a strong scaling effi-
ciency of the renderer. However, the tavern’s and hacienda’s
higher rendering cost causes the nodes to send their results
with a higher absolute time offset to each other. Therefore,
when the last node finishes its task, a larger part of the overall
transfer already happened. This effectively relieves the net-
work interface on the master, since there is less overlap of the
incoming results. The hacienda shows a slightly reduced ren-
dering scaling efficiency compared to the tavern from node
count six onwards. Once more, the result is a higher offset
between transfer operations, which avoids a pipeline time
increase like in the other scenes.

The SAT generation overhead is low even on a single node
with around 0.244 ms across all runs. Due to the distributed
SAT array generation, we measured an additional average
performance gain of up to 34.2% with 20 nodes. As the gen-
eration of each SAT is multi-threaded, the threading over-
head naturally prevents a higher gain percentage-wise.

The tiling time increases with more nodes as the master
must split more tiles to find a task for each node. Most cru-
cially, the sampling of the SAT array becomes increasingly
expensive. However, the cost stays low with around 0.236 ms
across the 20 node runs. For much higher node counts, we
plan to extend the pipeline so that the master can also accu-
mulate cost maps to generate one overall SAT on its own. For
test purposes, we extended the tiling with multi-threading,
and ran it with 50000 tasks on one SAT. The average time is
0.67 ms. For high node counts, the heavily accelerated tiling
outweighs the distributed SAT generation benefit.

7.3. Comparison

We observe a similar scaling efficiency compared to Cosenza
et al. [CDEI13]. They utilize a cluster-level work stealing
scheduler, which makes a low-latency network between the
rendering nodes mandatory. In contrast, we achieve the re-
sults with a static load balancer allowing a flexible network
setup. Further, we repeated the run for the city and eight
nodes, but this time only measured the overall cost of a task
like Cosenza et al. [CCDC™08]. The scaling efficiency of the
kernel drops substantially to 49.8%. To achieve competitive
scalability, they incorporate a task queue to compensate the
inaccuracy. In contrast, our method remains static by relying
on the fine-grained timing mechanism.

We further performed a comparison with prevalent dy-
namic approaches on the thread-level. We repeated the runs
on a single node with disabled ambient occlusion, and used
three different load balancing methods to distribute the tasks
among the threads: our static load balancer, a task queue, and
work stealing. Table 2 shows the rendering performance of
the static method in competition with the dynamic ones.

The static method performs almost on a par with the
dynamic schedulers. Dynamic load balancers are ideally
suitable locally due to the direct link between a moderate
amount of cores. However, within a cluster, network com-
munication and the coordination of many nodes can de-
crease the efficiency of these approaches. The task queue
on the master can become a synchronization bottleneck if
there are many simultaneous requests. A low-latency net-
work is mandatory, and must be available between all nodes
in case of work stealing. In contrast, our method can scale
independent of the latency, and utilize nodes which are not
connected. Only the tiling overhead increases with the num-
ber of nodes, but stays at a negligible level.

7.4. Reduced Frame-to-Frame Coherence

The load balancer relies on a strong coherence between con-
secutive frames in real-time rendering. To test the method
under restricted conditions, we repeated the runs with the
city scene, but used a new interaction loop with coarser
view changes this time. The new loop contains only every
fourth view of the original loop. As expected, the accuracy of

(© The Eurographics Association 2016.

G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing 65

Table 2: The rendering performance of the static load bal-
ancer on the thread-level relative to prevalent dynamic ap-
proaches: a task queue using OpenMP’s dynamic scheduler,
and work stealing using CilkPlus (Section 5.1).

City Tavern Hacienda
Task Queue 3.6% -3.4% -1.4%

Work Stealing -09% -2.1% -1.4%

the load balancer drops with the larger discrepancy between
frames, which Figure 9 illustrates. Though, the scaling effi-
ciency is still strong. While the load balancer will break if
view changes become arbitrary, the results demonstrate the
method is feasible in an interactive environment with con-
tinuous camera movement.

20 F T T T
Kernel ——
18 Kernel (coarse loop) —<— }
N 16 B
o
g 14 r B
=l
= 12r 1
Q
e
S 10 i
£
£ 87 1
(5}
o 6 4
4 + i
2 |- .

2 4 6 8 10 12 14 16 18 20

Figure 9: The city scene kernel performance increase as a
function of the node count for the original and the coarser
interaction loop.

7.5. Multiple Clients

To test the system under more pressure, we repeated the run
with the city and eight nodes. This time, we connected three
clients simultaneously. For each client, we measured a ren-
dering time comparable to a single client using three nodes.
Due to a minor offset between the connections, there is a
short span in the beginning and end where not all renderers
are active. This brings the performance closer to what we
would expect from using nine nodes.

For each client, the load balancer still achieves a strong
kernel scalability which only drops by around 2.6 percent
compared to a single client. Due to the fine-grained timing
mechanism in packet space, the OS unlikely switches to an-
other thread during a measurement. Therefore, the measure-
ments within a rendering session are mostly unaffected by
the other clients, and remain stable. This allows the load bal-
ancer to operate each session accurately, which ultimately
results in an equally smooth execution for all clients.

(© The Eurographics Association 2016.

8. Conclusion and Future Work

The contribution in this paper is twofold. We presented the
extension of the XML3D framework, which enables declara-
tive 3D content in the web, with server-based rendering. The
minimally invasive integration keeps the application logic
untouched in the XML3D front-end, enabling arbitrary ex-
isting and upcoming applications to harness the back-end’s
power. The back-end is capable to run different renderers
in a cluster hierarchy. We presented a static load balancing
method to distribute a real-time ray-tracer in this architec-
ture. The load balancer exploits temporal coherence between
adjacent frames in the real-time scenario. Based on high-
resolution timings gathered for the previous frame, it derives
rendering tasks of balanced cost for the potentially hetero-
geneous nodes in the cluster. We demonstrated the strong
scalability and low overhead the approach can achieve.

The combination of XML3D, which enables generic and
portable graphics applications in the browser, and the dedi-
cated server back-end, which gives these applications access
to a selection of high-performance and possibly distributed
renderers, makes our architecture accessible to both the com-
mon web developer and the expert user in a closed scenario.

The main limitation of the current architecture is the ne-
cessity to synchronize the scene data, which the client-side
application logic may change at any time. We therefore plan
to investigate the execution of the XML3D page in a head-
less, server-side browser environment. This would enable us
to interface with the rendering back-end directly, and also re-
move potentially expensive XML3D features like data pro-
cessing and animations from a less capable client.

Acknowledgments

This work was supported by the European Union funded
"Dreamspace" project.

References

[BEJZ09] BEHR J., ESCHLER P., JUNG Y., ZOLLNER M.:
X3dom: A dom-based html5/x3d integration model. In Proceed-
ings of the 14th International Conference on 3D Web Technology
(New York, NY, USA, 2009), Web3D ’09, ACM, pp. 127-135.
doi:10.1145/1559764.1559784. 1,2

[BJK*95] BLUMOFE R. D., JOERG C. F., KuszmAUL B. C.,
LEISERSON C. E., RANDALL K. H., ZHOU Y.: Cilk: An effi-
cient multithreaded runtime system. In Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (New York, NY, USA, 1995), PPOPP 95,
ACM, pp. 207-216. doi:10.1145/209936.209958. 6

[BL99] BLUMOFE R. D., LEISERSON C. E.: Scheduling mul-
tithreaded computations by work stealing. J. ACM 46, 5 (Sept.
1999), 720-748. doi:10.1145/324133.324234. 3

[BMP*15] BEHR J., MOUTON C., PARFOURU S., CHAM-
PEAU J., JEULIN C., THONER M., STEIN C., SCHMITT M.,
LIMPER M., DE SOUSA M., FRANKE T. A., Voss G.: we-
bvis/instant3dhub: Visual computing as a service infrastructure

http://dx.doi.org/10.1145/1559764.1559784
http://dx.doi.org/10.1145/209936.209958
http://dx.doi.org/10.1145/324133.324234

66 G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

to deliver adaptive, secure and scalable user centric data visual-
isation. In Proceedings of the 20th International Conference on
3D Web Technology (New York, NY, USA, 2015), Web3D 15,
ACM, pp. 39-47. doi:10.1145/2775292.2775299. 2

[CCDC*08] COSENZA B., CORDASCO G., DE CHIARA R.,
ERRA U., SCARANO V.: Load balancing in mesh-like compu-
tations using prediction binary trees. In Parallel and Distributed
Computing, 2008. ISPDC ’08. International Symposium on (July
2008), pp. 139-146. doi:10.1109/ISPDC.2008.24. 3,10

[CDE13] COSENZA B., DACHSBACHER C., ERRA U.: Gpu cost
estimation for load balancing in parallel ray tracing. In Inter-
national Conference on Computer Graphics Theory and Appli-
cations (GRAPP) (2013), pp. 139-151. URL: http://www.
dps.uibk.ac.at/~cosenza/papers/CostMap. 3, 10

[CDR02] CHALMERS A., DAVIS T., REINHARD E. (Eds.): Prac-
tical Parallel Rendering. A. K. Peters, Ltd., Natick, MA, USA,
2002. 2

[DGP04] DEMARLE D. E., GRIBBLE C. P., PARKER S. G.:
Memory-savvy distributed interactive ray tracing. In Proceed-
ings of the 5th Eurographics Conference on Parallel Graph-
ics and Visualization (Aire-la-Ville, Switzerland, Switzerland,
2004), EGPGV °’04, Eurographics Association, pp. 93-100.
doi:10.2312/EGPGV/EGPGV04/093-100.3

[GDCO5] GILLIBRAND R., DEBATTISTA K., CHALMERS A.:
Cost Prediction Maps for Global Illumination. In EG
UK Theory and Practice of Computer Graphics (2005),
Lever L. M., McDerby M., (Eds.), The Eurographics Asso-
ciation. doi:10.2312/LocalChapterEvents/TPCG/
TPCGUK05/097-104. 3

[GS08] GEORGIEV 1., SLUSALLEK P.: Rtfact: Generic concepts
for flexible and high performance ray tracing. In Interactive
Ray Tracing, 2008. RT 2008. IEEE Symposium on (Aug 2008),
pp. 115-122. doi:10.1109/RT.2008.4634631. 2

[HA98] HEIRICH A., ARVO J.: A competitive analysis of load
balancing strategies for parallel ray tracing. The Journal of
Supercomputing 12, 1-2 (1998), 57-68. doi:10.1023/A:
1007977326603. 3

[HSC*05] HENSLEY J., SCHEUERMANN T., COOMBE G.,
SINGH M., LASTRA A.: Fast summed-area table gener-
ation and its applications. = Computer Graphics Forum 24
(2005), 547-555. URL: http://citeseer.ist.psu.
edu/viewdoc/summary?doi=10.1.1.90.8836.7

[IBH11] IzE T., BROWNLEE C., HANSEN C. D.: Real-time ray
tracer for visualizing massive models on a cluster. In Proceed-
ings of the 11th Eurographics Conference on Parallel Graph-
ics and Visualization (Aire-la-Ville, Switzerland, Switzerland,
2011), EGPGV ’11, Eurographics Association, pp. 61-69. doi :
10.2312/EGPGV/EGPGV11/061-069. 3

[JBDW12] JUNG Y., BEHR J., DREVENSEK T., WAGNER S.:
Declarative 3d approaches for distributed web-based scientific vi-
sualization services. In Dec3D (2012), Behr J., Brutzman D. P,,
Herman 1., Jankowski J., Sons K., (Eds.), vol. 869 of CEUR
Workshop Proceedings, CEUR-WS.org. URL: http://dblp.
uni-trier.de/db/conf/www/dec3d2012.html. 2

[JRS*13] JANKOWSKI J., RESSLER S., SONS K., JUNG Y.,
BEHR J., SLUSALLEK P.: Declarative integration of interac-
tive 3d graphics into the world-wide web: Principles, current ap-
proaches, and research agenda. In Proceedings of the 18th In-
ternational Conference on 3D Web Technology (New York, NY,
USA, 2013), Web3D ’13, ACM, pp. 39-45. doi:10.1145/
2466533.2466547. 2

[KPS10] KASPAR M., PARSAD N. M., SILVERSTEIN J. C.:
Cowebviz: interactive collaborative sharing of 3d stereoscopic

visualization among browsers with no added software. In Pro-
ceedings of the 1st ACM International Health Informatics Sym-
posium (New York, NY, USA, 2010), IHI 10, ACM, pp. 809—
816. do1:10.1145/1882992.1883113. 2

[KSSS14] KLEIN F., SPIELDENNER T., SONS K., SLUSALLEK
P.: Configurable instances of 3d models for declarative 3d in the
web. In Proceedings of the 19th International ACM Conference
on 3D Web Technologies (New York, NY, USA, 2014), Web3D
’14, ACM, pp. 71-79. doi1:10.1145/2628588.2628594.
2

[LR12] LORETO S., ROMANO S. P.: Real-time communications
in the web: Issues, achievements, and ongoing standardization
efforts. Internet Computing, IEEE 16, 5 (2012), 68-73. doi:
10.1109/MIC.2012.115.2

[MPJ*13] MARION C., POUDEROUX J., JOMIER J., JOURDAIN
S., HANWELL M., AYACHIT U.: A hybrid visualization system
for molecular models. In Proceedings of the 18th International
Conference on 3D Web Technology (New York, NY, USA, 2013),
Web3D ’13, ACM, pp. 117-120. doi:10.1145/2466533.
2466558, 2

[MWMSO07] MOLONEY B., WEISKOPF D., MOLLER T.,
STRENGERT M.: Scalable sort-first parallel direct volume ren-
dering with dynamic load balancing. In Proceedings of the 7th
Eurographics Conference on Parallel Graphics and Visualization
(Aire-la-Ville, Switzerland, Switzerland, 2007), EGPGV 07, Eu-
rographics Association, pp. 45-52. doi:10.2312/EGPGV/
EGPGV07/045-052.3

[PBD*10] PARKER S. G., BIGLER J., DIETRICH A.,
FRIEDRICH H., HOBEROCK J., LUEBKE D., MCALLISTER D.,
MCGUIRE M., MORLEY K., ROBISON A., STICH M.: Optix:
A general purpose ray tracing engine. In ACM SIGGRAPH 2010
Papers (New York, NY, USA, 2010), SIGGRAPH 10, ACM,
pp. 66:1-66:13. doi:10.1145/1833349.1778803. 2

[Pla02] PLACHETKA T.: Perfect load balancing for demand-
driven parallel ray tracing. In Proceedings of the Sth In-
ternational Euro-Par Conference on Parallel Processing (Lon-
don, UK, UK, 2002), Euro-Par ’02, Springer-Verlag, pp. 410—
419. URL: http://dl.acm.org/citation.cfm?id=
646667.700319.3

[PMS*99] PARKER S., MARTIN W., SLOAN P.-P. J., SHIRLEY
P., SMITS B., HANSEN C.: Interactive ray tracing. In Pro-
ceedings of the 1999 Symposium on Interactive 3D Graphics
(New York, NY, USA, 1999), 13D 99, ACM, pp. 119-126.
doi:10.1145/300523.300537.2

[SKR*10] Sons K., KLEIN F., RUBINSTEIN D., BYELOZY-
OROV S., SLUSALLEK P.: Xml3d: Interactive 3d graphics for
the web. In Proceedings of the 15th International Conference on
Web 3D Technology (New York, NY, USA, 2010), Web3D 10,
ACM, pp. 175-184. doi:10.1145/1836049.1836076. 1,
2

[SLTB15] STEIN C., LIMPER M., THONER M., BEHR J.: hare3d
- rendering large models in the browser. WebGL Insights (2015),
317-332. doi:10.1201/b18564-27.2

[TPO10] TZENG S., PATNEY A., OWENS J. D.: Task manage-
ment for irregular-parallel workloads on the gpu. In Proceedings
of the Conference on High Performance Graphics (Aire-la-Ville,
Switzerland, Switzerland, 2010), HPG ’10, Eurographics Associ-
ation, pp. 29-37. URL: http://dl.acm.org/citation.
cfm?id=1921479.1921485. 3

[TS15] TAMM G., SLUSALLEK P.: Plugin free remote visual-
ization in the browser. In Proc. SPIE, Visualization and Data
Analysis (2015), vol. 9397. doi1:10.1117/12.2077761. 2,
5

(© The Eurographics Association 2016.

http://dx.doi.org/10.1145/2775292.2775299
http://dx.doi.org/10.1109/ISPDC.2008.24
http://www.dps.uibk.ac.at/~cosenza/papers/CostMap
http://www.dps.uibk.ac.at/~cosenza/papers/CostMap
http://dx.doi.org/10.2312/EGPGV/EGPGV04/093-100
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCGUK05/097-104
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCGUK05/097-104
http://dx.doi.org/10.1109/RT.2008.4634631
http://dx.doi.org/10.1023/A:1007977326603
http://dx.doi.org/10.1023/A:1007977326603
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.8836
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.8836
http://dx.doi.org/10.2312/EGPGV/EGPGV11/061-069
http://dx.doi.org/10.2312/EGPGV/EGPGV11/061-069
http://dblp.uni-trier.de/db/conf/www/dec3d2012.html
http://dblp.uni-trier.de/db/conf/www/dec3d2012.html
http://dx.doi.org/10.1145/2466533.2466547
http://dx.doi.org/10.1145/2466533.2466547
http://dx.doi.org/10.1145/1882992.1883113
http://dx.doi.org/10.1145/2628588.2628594
http://dx.doi.org/10.1109/MIC.2012.115
http://dx.doi.org/10.1109/MIC.2012.115
http://dx.doi.org/10.1145/2466533.2466558
http://dx.doi.org/10.1145/2466533.2466558
http://dx.doi.org/10.2312/EGPGV/EGPGV07/045-052
http://dx.doi.org/10.2312/EGPGV/EGPGV07/045-052
http://dx.doi.org/10.1145/1833349.1778803
http://dl.acm.org/citation.cfm?id=646667.700319
http://dl.acm.org/citation.cfm?id=646667.700319
http://dx.doi.org/10.1145/300523.300537
http://dx.doi.org/10.1145/1836049.1836076
http://dx.doi.org/10.1201/b18564-27
http://dl.acm.org/citation.cfm?id=1921479.1921485
http://dl.acm.org/citation.cfm?id=1921479.1921485
http://dx.doi.org/10.1117/12.2077761

G. Tamm & P. Slusallek / Web-enabled server-based and distributed real-time Ray-Tracing

[WPJR11] WESSELS A., PURVIS M., JACKSON J., RAHMAN
S. S.: Remote data visualization through websockets. In
Proceedings of the 2011 Eighth International Conference on
Information Technology: New Generations (Washington, DC,
USA, 2011), ITNG 11, IEEE Computer Society, pp. 1050-1051.
doi:10.1109/ITNG.2011.182.2

[WPSB0O3] WALD I., PURCELL T. J., SCHMITTLER J., BEN-
THIN C.: Realtime ray tracing and its use for interactive
global illumination. In In Eurographics State of the Art Re-
ports (2003). URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.500.8528.3

[WS01] WALD I., SLUSALLEK P.: State of the art in in-
teractive ray tracing. In Eurographics (2001), pp. 21-42.
URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.23.6266.2,3

[WWB*14] WALD 1., WooP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: A kernel framework for efficient cpu ray
tracing. ACM Trans. Graph. 33, 4 (July 2014), 143:1-143:8.
doi:10.1145/2601097.2601199. 2,6

[YSD*09] YEE B., SEHR D., DARDYK G., CHEN J., MUTH R.,
ORMANDY T., OKASAKA S., NARULA N., FULLAGAR N.: Na-
tive client: A sandbox for portable, untrusted x86 native code.
In Security and Privacy, 2009 30th IEEE Symposium on (2009),
pp. 79-93. doi:10.1109/SP.2009.25. 2

(© The Eurographics Association 2016.

67

http://dx.doi.org/10.1109/ITNG.2011.182
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.500.8528
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.500.8528
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.6266
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.6266
http://dx.doi.org/10.1145/2601097.2601199
http://dx.doi.org/10.1109/SP.2009.25

