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Abstract

Bounding volume hierarchies (BVH) are essential for efficient ray tracing. In time-constrained situations such as
real-time or large model visualization, fast construction of BVHs usually compromises hierarchy quality, resulting
in reduced rendering speed. We propose a parallel framework for the state-of-the-art BVH construction algorithm
with spatial splits (SBVH) that provides highest quality hierarchies within a time frame competitive with low-
quality builders optimized for construction speed. We leverage both data and task parallelism to employ threading
and single instruction, multiple data (SIMD) capabilities of modern CPUs. Our key contribution is a lightweight
memory management and load balancing scheme that maximizes parallel efficiency.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

Ray tracing is a versatile method for rendering, collision de-
tection and related problems. Efficiency ray tracing relies on
acceleration structures that organize the scene data in a hier-
archical fashion. This reduces the algorithmic complexity of
a search query from O(N) to O(logN) where N is the num-
ber of primitives in the scene.

In recent years the bounding volume hierarchy (BVH)
with axis-aligned boxes as bounding volumes has been es-
tablished as the state-of-the-art acceleration structure for ray
tracing applications [EG08, WBSO07, FLPE15]. Thus high
performance BVH construction is the key to reduce the time-
to-image for dynamic and massive scenes.

A variety of construction algorithms exist that can be cat-
egorized as divisive top-down and agglomerative bottom-
up types. The linear BVH (LBVH) [LGS*09] is one of the
fastest implementations regarding construction speed and
part of the agglomerative family. Its efficiency originates
from a linear time complexity and straightforward paralleliz-
ability where the primitives are sorted into an implicit octree-
like structure defined by the Morton space-filling curve, fol-
lowed by a simple merging procedure to construct the hi-
erarchy of bounding boxes. However, due to the predeter-
mined structure this method does not adapt to the scene ge-
ometry and produces BVHs of low quality, resulting in in-
flated ray tracing times. Various extensions aim at improv-
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ing LBVH quality, such as approximate agglomerative clus-
tering (AAC) [GHFB13], post-process optimization [KA13,
BHH13] or hybrid strategies [PL10, GPM11]. However, the
quality remains inferior to divisive construction based on the
surface area heuristic (SAH) [GS87,Hav01, AKL13]. Given
a set of primitives, the SAH associates a cost metric for every
partitioning proposal and thus steers the subdivision process
through cost minimization.

Augmenting the SAH-based algorithm with the option
to split primitives, if cost effective, leads to the split BVH
(SBVH) [SFD09, PGDS09] which produces the highest
quality BVHs of all known methods. The drawback of
the divisive algorithms is the increased time complexity
O(NlogN) over the agglomerative approaches based on
the LBVH and the increased difficulty for scalable paral-
lelization. In particular, efficient memory management for
primitive splits becomes an issue in the presence of multi-
ple threads. While parallelization schemes have been pro-
posed for BVH construction without splits [Wall2, Wal07,
BHH15], an optimal solution for the SBVH is still missing.
Thus the contribution of our work is a highly scalable par-
allelization framework for the SBVH that is lightweight and
easy to implement.

Furthermore we demonstrate how to apply single instruc-
tion, multiple data (SIMD) instructions in the form of ad-
vanced vector extensions (AVX) [Int16] to accelerate perfor-
mance critical parts of the algorithm, such as primitive split-
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ting. The combined result of our contributions is a SBVH
implementation significantly faster than the best available
alternative of its kind, competing with the inferior quality
agglomerative algorithms for moderate primitive counts.

2. The SBVH algorithm

This section introduces the SBVH algorithm first proposed
by [SFD09] and establishes the terminology used throughout
the paper.

The structure of the SBVH algorithm is similar to other
divisive BVH builders. Initially a single set of primitives ex-
ists (the parent set) that is partitioned into two smaller sets
(the child sets). Partitioning is repeated recursively until the
sets are small enough to form leaf sets. Along with every
new child set a node is created which is referenced by its
parent node and holds the axis-aligned bounding box enclos-
ing all the primitives in the set. Once a set is turned into a
leaf the corresponding node (now a leaf node) references
the remaining primitives directly. As the SBVH is SAH-
based, determining the partitioning with minimum cost for a
given set is required before the actual subdivision can be per-
formed. Since finding the exact partitioning with minimum
cost is not feasible, an approximate is computed by choos-
ing a small number of samples and selecting the one with the
lowest cost. The sampling is implemented in the form of bin-
ning, where the parent bounding box is subdivided into n+ 1
equally-sized bins by n equidistant axis-aligned planes. The
binning is performed for each axis separately.

The SBVH algorithm distinguishes between object bin-
ning and spatial binning. During object binning primitives
are only considered as point-like elements defined by the
center of their bounding box, while spatial binning takes the
full size of a primitive into account. Thus spatial binning
requires a primitive to be split if it overlaps one or multi-
ple of the planes. While object binning produces partition-
ings that have disjunct child sets which may have overlap-
ping bounding boxes, spatial binning leads to partitionings
with disjunct bounding boxes but possibly overlapping child
sets. Which binning strategy will result in the lowest cost
partitioning is dependent on the primitive constellation and
cannot be foreseen. Thus the approach taken by the SBVH
is to find the best object partitioning and if the correspond-
ing child bounding boxes overlap by a certain amount try
to lower the cost further by testing the spatial binning. This
is a sensible compromise because splitting is an expensive
operation and increases memory consumption, while it is
unlikely to improve SAH cost if object binning yields spa-
tially disjunct sets. The total amount of splits during hier-
archy construction is bounded by the split budget parame-
ter. Once the split budget is consumed spatial binning is dis-
abled. The SBVH algorithm is summarized in the following
pseudo code:

1: stack||
2: task < root

3: loop
4 loop
5: leafCost < CalculateLeafCost(task)
6: ob jCost < BestObj(task)
7: if task.childBoxes overlap then
8 spatialCost <— BestSpatial(task)
9: end if
10: if leafCost is best then
11: createLeaf(task)
12: break
13: else if 0b jCost is best then
14: (left,right) < PartitionObj(task)
15: else
16: (left,right) < PartitionSpatial(task)
17: end if
18: createNodes(task)
19: stack.push(right)
20: task < left

21:  end loop
22:  task < stack.pop()
23:  if task is empty then

24: break
25:  endif
26: end loop

A task contains all the information required to partition the
corresponding set of primitives. After partitioning execution
continues with one of the two resulting tasks, denoted left
and right, while the other is pushed to the task stack. Once
the task stack is popped in an empty state hierarchy construc-
tion is finished.

2.1. Primitive fragments

Instead of working directly with the primitives (triangles in
our case), proxy elements called fragments are used. A frag-
ment stores the axis-aligned bounding box and a reference to
the primitive it represents. Thus fragment data is sufficient
for the binning process and access to the full primitive struc-
ture is only required in the event of splitting. Also splitting
does not result in duplication of the primitives, just copies of
the corresponding fragments with refitted bounding boxes.

2.2. Binning

As mentioned previously, the parent bounding box is
sliced into n + 1 equally sized bins b;,i € [0,n] sepa-
rated by n equidistant axis-aligned planes p;,i € [0,n —
1]. Each bin keeps track of the number and spatial ex-
tent of the fragments it is assigned. The bin index i corre-
sponding to a particular coordinate ¢ is computed as i =
(¢ — parent,,;n) / planeDistance. In the case of object bin-
ning a fragment’s bin index is derived from its bounding
box centroid. Spatial binning requires two indices, i, and
imax, calculated from the minimum and maximum of the
fragment’s bounding box respectively. If the indices differ
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the fragment overlaps all bins b;,i € [imin,imax] and requires
splitting at every plane pj,i € [imin,imax — 1], resulting in
imax — Imin new fragments. The bounding boxes of the frag-
ments are updated to tightly fit the primitive they represent
within their respective bin. After the binning procedure the
SAH cost is evaluated for every pair of child partitions left
and right to the planes p;.

2.3. Partitioning

Performing the partitioning resulting from object binning is
straightforward. For each fragment the bin index is com-
puted again and compared to the best plane index ip,g. If
the bin index is smaller the fragment is moved to the left,
otherwise to the right set. Since the left and right counts
are known from the binning, memory offsets can be com-
puted to store the fragments of both sets in a continu-
ous array. In the case of spatial binning the procedure is
slightly different. Minimum and maximum indices are com-
puted again and compared to the best plane index ip,g. If
imin/imax 1s smaller/larger than iy, the fragment is moved to
the left/right set. Otherwise the fragment intersects the split
plane and requires insertion into both sets.

3. Parallelization

Divisive algorithms such as SBVH offer intrinsic task paral-
lelism by producing two completely independent tasks from
every subdivision. The tasks can be distributed among sev-
eral threads, and by implementing a proper load balancing
scheme the parallel efficiency is maximized. However, at the
start of hierarchy construction only a single task exists (the
root task) and with every subsequent level of subdivision the
number of independent tasks doubles. Consequently, a max-
imum of 2" tasks are available at level n. If the number of
participating threads is high, this initial bottleneck can harm
scalability considerably, especially in the case of BVH con-
struction where the amount of work is approximately con-
stant at every level. Removing this bottleneck requires the
implementation of shared task parallelism, so that multiple
threads can collaborate on the same task [Wal12, WWB* 14].
However, it is desirable to minimize the number of shared
tasks which are not able to achieve the same parallel effi-
ciency as multiple exclusive tasks due to fine-grained syn-
chronization points.

We propose a novel scheduling strategy based on dynamic
thread pools, that employs shared tasks only initially and
permanently switches to exclusive task execution as soon as
possible. For the dynamic load-balancing of exclusive tasks
we introduce a lightweight lock-free mechanism which al-
lows on-demand sharing of tasks while maintaining the task
topology. Both contributions are generally applicable to di-
vide and conquer algorithms given a task cost estimation.

In addition to load-balancing, a second critical compo-
nent for multi-threaded BVH construction is efficient mem-

(© The Eurographics Association 2016.

ory management in order to avoid synchronization and ex-
cessive over-provisioning. This is especially true for spatial
splits where the number of fragments increases recursively.

In the following we introduce a novel approach based on
dynamic pre-allocation with reinjection to implement recur-
sively growing fragment buffers. Our solution requires no
synchronization, retains a small memory footprint and as a
positive side effect keeps the split budget balanced over the
entire hierarchy.

3.1. Memory management

A SBVH implementation requires two types of dynamic
memory buffers. The temporary buffers containing the frag-
ments need to support creation and shuffling of elements,
whereas for the output buffers holding the BVH nodes and
the primitive lists referenced by leaves it is sufficient to
support only creation with the constrain that elements are
packed as tightly as possible in memory.

Space allocation for the output elements is implemented
by simple atomic counters that are shared among all threads.
This is similar to previous approaches for BVH construction
without spatial splits. In order to reduce the frequency of
atomic operations threads always allocate entire chunks of
elements and manage such a chunk with local counters. This
mechanism is fast and lock-free, resulting in tightly packed
elements where a small amount of fragmentation can only
occur in the final chunk of every thread. The size of the out-
put buffers can be conservatively estimated by considering
the number of input primitives and the size of the split bud-
get.

The presence of spatial splits complicates the manage-
ment of the temporary fragment buffers considerably in a
multi-threaded environment. The reason is that the frag-
ments need to be partitioned recursively and due to the prim-
itive splitting the combined size of the two child sets may be
larger than the parent set. Thus our memory management
needs to be significantly more flexible compared to previous
approaches.

The key idea is to bind space in the fragment buffer to a
task, and recursively distribute this space among the corre-
sponding child tasks as visualized in Figure 1. Initially the
entire fragment buffer is allocated to the root task, where the
input fragments reside in the lower part of the buffer and the
upper part provides free space for primitive splits. During
the partitioning phase the left and right child sets are cre-
ated adjacent to the lower and upper boundary respectively,
growing towards the center with the free space in between.
The remaining free space is distributed to the left and right
tasks in proportion to the size of the respective child sets.
Thus a task always includes the necessary resources and a
thread acquiring one of the tasks can directly access these
resources without any additional synchronization. As pro-
posed previously [Wall2], the implementation of the frag-
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Figure 1: Visualization of the fragment buffer management.
A and B on the left mark the two individual buffers forming
the fragment double buffer. The numbers on the right denote
the hierarchy level. At the root level buffer A is partially filled
with the initial set of fragments (shaded region), while the re-
maining free space can be consumed by splits. After the first
subdivision the child sets are aligned to the left and right
borders of buffer B and the free space in the middle is di-
vided proportionally to the set size. This process is repeated
recursively on the child sets while alternating buffers A and
B.

ment buffer features a double buffering technique, where the
parent set resides in one buffer and the child sets are written
to the other buffer. After a subdivision source and destination
pointers are simply swapped. This way read/write dependen-
cies that would exist in an in-place approach are eliminated,
allowing all fragments to be partitioned in parallel.

As a side effect of our unique memory management the
split budget is distributed evenly among the scene geome-
try, avoiding the situation where excessive splitting during
the early part of the build process can drain the split bud-
get for the later part. However, if a scene demands highly
non-uniform split densities, the balanced distribution can be
harmful. In this case the split budgets in low density regions
go unused while in high density regions insufficient split
budgets prevent optimal subdivisions.

To remedy this situation, we propose a mechanism to rein-
ject unneeded split budgets back into the build process. Upon
completion of a leaf task the remaining number of splits are
added to the reserve counter. The reserve counter is a global
state that is managed with atomic operations to allow sharing
of the reserve splits among all the threads. However, to re-
duce frequency of the expensive atomics, each thread caches
its reserve budget with a local counter and updates the global
state only occasionally. If spatial binning produces a parti-
tioning that exceeds the split budget provided by the corre-
sponding task, a thread acquires the difference from the re-
serve counters, where the local counter has priority over the
global counter. If the reserve budget is insufficient, the algo-
rithm falls back to the best object partitioning. Once the split
budget has been secured, the fragment buffer region bound to
the current task is not large enough to hold the fragments for
both child partitions, so that a new partition needs to be allo-

cated for the smaller of the two child partitions. At the initial
allocation of the fragment double buffer, a part of the space
is set aside for this purpose, referred to as the reserve buffer.
Allocations from the reserve buffer are performed with an
atomic counter, and once all the reserve space has been used
up the remaining tasks can no longer use the reserve mecha-
nism. It would be possible to allocate additional space from
system memory as the new buffer does not have to be contin-
uous with respect to the initial buffer, though this would be
rarely necessary. Since the per-fragment memory consump-
tion related to the double buffer is marginal (less than 1%,
see below), the reserve buffer can be large (e.g. twice the
split budget).

Split budget balancing with reinjection combines the ad-
vantages of the purely balanced and first-come-first-served
principle. Each part of a scene is guaranteed a relative
amount of splits, while the unneeded budget can be shifted
to high split density regions.

Finally, in order to reduce memory bandwidth demands
and overall memory consumption, we replace the fragment
double buffer with a fragment reference double buffer and
keep the actual fragment data in a separate memory region
managed by atomic counters in the same way as the output
buffers. This is distinct from previous publications [SFD09,
Wall2]. Since the fragment data structure is 32 bytes in size
while a reference occupies only 4 bytes, a total of 232 —
(2%4+32) = 24 bytes is saved per fragment. The bandwidth
balance is also positive since each task reads its fragments
2 —3x and writes once. With references this amounts up
to 3% (4 +32) +4 = 112 bytes per fragment while using the
fragments directly would result in 3 %32+ 32 = 128 bytes. In
addition, significantly reducing the size of writes from 32 to
4 bytes has the advantage of reducing DRAM access because
while reads are potentially serviced from the cache, writes
need to be flushed to DRAM eventually. The drawback of
this approach is increased access latency due to the reference
indirection and inhibition of fragment hardware prefetching.
However, we have measured experimentally that for working
sets fitting into the L3 cache performance is equal for both
buffering schemes, while for working sets larger than L3 a
total run time reduction of up to 35% with references has
been observed.

Interestingly, a very similar technique for recursively
growing memory during spatial split partitioning has been
developed in parallel by Ganestam et al. [GD16]. In contrast
to our proposition they do not support reinjection and the
layout of the memory buffer does not keep the free space
centered, resulting in unnecessary memory movement. As
future work they suggest to improve parallelization of the
initial phase of partitioning which is addressed in the next
section.
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Figure 2: Visualization of the thread management. The num-
bers represent thread identifiers. The root task is processed
by all threads, and after the subdivision the thread pool is
split into two in proportion to the left and right set size.
The next subdivision performed by threads 0 and 1 yields
one very small and one very large set on the left and on
the right respectively, so the left task is inserted into the
global task queue (implemented as a ring buffer) and both
threads continue with the right task. Once a thread owns a
task exclusively it switches to single-threaded execution. Dy-
namic load balancing is performed by exchanging tasks on
the global task queue as indicated by the dashed arrows.

3.2. Shared tasks

As mentioned previously, the goal of shared tasks is to allow
fully multi-threaded execution from the start of hierarchy
construction. At the same time it is desirable to minimize the
number of threads processing the same task simultaneously
and quickly reach the threshold where every thread can work
on a single task exclusively. While the concept of shared
tasks is not new itself [Wal07], we propose a novel schedul-
ing mechanism optimizing the above constrain, permanently
switching to exclusive tasks as soon as a proper load bal-
ancing is established with the help of dynamic thread pools.
Dynamic thread pools prevent the inherent risk of a perma-
nent switch once the number of independent task is equal to
the number of threads, that the complexity of the individual
tasks may vary widely, to the point where one thread has fin-
ished the entire child hierarchy belonging to its task, while
another thread is still working on the first subdivision, thus
stalling the fast thread due to the lack of more tasks.

The idea of dynamic thread pools is illustrated in Figure
2. For the root task all threads belong to a single pool. After
the first subdivision the thread pool of size T is split into two,
with the number of threads in each pool proportional to the
number of fragments in the respective child tasks, according
to the following equation:

N;
T = T4+05|, T,=T-T,,
! {N[+Nr J 4 b

where N; and N, are the number of fragments of the left and
right child task respectively, and 7; and 7, the number of
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threads of the corresponding thread pools. Both pools can
now operate independently. This procedure is repeated re-
cursively, and once a thread finds itself to be the only one in
the pool it permanently switches to exclusive task execution.
If the subdivision of a shared task yields one child task with
too few fragments to be assigned even a single thread the
task is inserted into the global queue for exclusive tasks and
the entire thread pool continues with the larger child task.
As a result all threads will have tasks with roughly the same
number of fragments upon switching from shared to exclu-
sive task execution, and the demand for dynamic load bal-
ancing of exclusive tasks will be kept to a minimum.

3.3. Exclusive tasks

Exclusive tasks are processed by a single thread only, thus
avoiding any kind of synchronization thanks to our mem-
ory management. However, dynamic load balancing requires
that tasks produced by one thread can be consumed by an-
other. In addition, the task topology should be maintained
across thread boundaries so that post-order procedures can
be applied to the BVH hierarchy, such as leaf pruning.

In contrast to previous approaches our algorithm does not
classify tasks by the number of primitives to push them ei-
ther to a strictly local stack or to a shared task pool. Instead
tasks are always placed on the local stack and exchange of
tasks is achieved with a global task queue storing fask point-
ers, which is implemented as a lock-free atomic ring buffer.
The target size defines the number of tasks that should be
available from the task queue at any time, for which we have
determined the base 2 logarithm of the thread count to be a
good value. After subdivision of a task into two child tasks
the thread continues with the child task containing the larger
number of fragments and pushes the remaining child task
onto the local stack. The thread checks the number of tasks
in the global queue against the target size and inserts a task
if necessary. Since the check is not atomic, it may happen
that the number of tasks in the queue increases above the
target size occasionally. Task insertion is always performed
with a pointer to the bottom-most task on the local stack.
Upon insertion the task is marked as non-local. As soon as
post order traversal of the local stack pops a non-local task
the traversal is terminated and a new task pointer is fetched
from the global queue. A place holder containing the task
pointer is pushed to the local stack. Once post-order traver-
sal returns to the place holder, the corresponding pointer is
used to write a completion notification to the original task.
If a fetch operation is not successful because the queue is
empty, the operation will block until a new task pointer is
inserted by another thread. Once all threads have entered the
blocking state hierarchy construction is almost finished and
the threads are released with a null pointer. In the final step
the remaining non-local and place holder tasks on the local
stacks are processed until the post-order traversal reaches the
root node.
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The advantage of our approach compared to others
[WWB*14] is that on the one hand task sharing happens
only on demand increasing data locality, and on the other
hand adapts the task size dynamically for optimal load bal-
ancing, with large task at the beginning and small tasks at
the end of hierarchy construction.

4. SIMD

Single instruction multiple data (SIMD) allows an instruc-
tion to operate on multiple data elements gathered in a sin-
gle vector register in parallel. On contemporary mainstream
CPUs SIMD is available in the form of advanced vector ex-
tensions (AVX) with 256 bit registers accommodating 8 sin-
gle precision floating point values (floats). Since arbitrary
gather/scatter operations are not available or very slow, the
layout of data structures should map naturally to the vector
registers. Otherwise multiple loads and shuffle operations
will diminish the performance potential of SIMDfication.
Ideally the data has a structure of arrays (SoA) format so
that operating on vectors is the same as operating on scalars,
only multiple at a time. For various reasons this approach
is seldom feasible in practice, so arrays of structures (AoS)
are often used. Sometimes a combination of the two can be
a good layout as well (e.g. AoSoA). For fragments AoS is a
good fit as the bounding box requires 6 floats and one primi-
tive index. By adding one padding element the fragment fits
an AVX register exactly:

(xmin Ymin Zmin idx Xmax Ymax Zmax Pad)

This is similar to the layout proposed by [GBDAMI15]. One
of the most common operations during binning is the union
of two bounding boxes. With the previous data structure this
would require unpacking and a minimum/maximum instruc-
tion on the lower/upper part. In order to calculate the union
of two fragments with a single instruction, we propose to use
the convention to store the negatives of the minimum values:

(*xmin —Ymin —Zmin idx Xmax Ymax Zmax Pad)

Thus a single maximum instruction is sufficient, operating
directly on the data structure.

Our SBVH implementation utilizes AVX instructions for
all compute intensive parts of the algorithm, specifically for
object/spatial binning/partitioning, primitive splitting and
SAH calculation. In the following we discuss the high level
SIMD design of the binning/partitioning kernels and sepa-
rately primitive splitting, which has not been discussed in
literature before. The implementation details are revealed by
the source code provided as supplemental material.

4.1. Binning and partitioning

Both binning and partitioning require the calculation of bin
indices as described in sections 2.2 and 2.3. Depending on
the bin index of a fragment, the binning kernel updates the

count and bounding box of the appropriate bin while the par-
titioning kernel appends the fragment index either to the left
or right child partition. Thus operating on multiple fragments
in parallel demands partly serialized scattered memory ac-
cesses. Since no hardware support is available for this kind
of scattering mechanism, it is not obvious how to implement
it efficiently in software. In fact, our first attempts barely im-
proved performance upon the scalar code at all. Also previ-
ous work has struggled with this problem [Wall2], opting
to utilize SIMD instructions inefficiently to parallelize over
bins instead of fragments. Through experimentation we have
established an efficient design pattern that works well for
both binning and partitioning multiple fragments in parallel.

The basic idea is to divide the body of the loop over all
fragments into a vectorized part for the bin index and a scalar
part for the bin update. By interleaving the vectorized part
for iteration i + 1 and the scalar part for iteration i, both parts
can be executed in parallel as they utilize different hardware
resources of the CPU. Moving the first iteration of the vec-
torized part and the last iteration of the scalar part out of
the loop yields an elegant implementation illustrated in the
following snippet:
1: vector part start
2: for i = start to end do
3 vector part i + 1
4:  scalar part i
5: end for

6: scalar part end

For both object and spatial binning two fragments are pro-
cessed along all 3 axes simultaneously, utilizing 6 out of the
8 vector elements. In this case this is faster than working
with 8 fragments, because the higher utilization would not
compensate for the additional shuffle overhead. For the ob-
ject partitioning only a single axis is of interest, so here the
best approach is to process 8 fragments in parallel. Spatial
partitioning only operates on one fragment at a time because
the more complex control flow diminishes the advantage of
multiple elements.

4.2. Primitive splitting

The primitives considered here are triangles, so primitive
splitting requires a triangle-plane intersection test. Given an
axis-aligned plane, the triangle-plane intersection is com-
puted by choosing the two edges of the triangle overlap-
ping the plane and calculating the corresponding line-plane
intersection points. Processing the edges can be performed
in parallel utilizing two vector elements of an AVX regis-
ter. In order to profit from the remaining elements, multiple
triangle-plane intersections are necessary.

The first option is to intersect one triangle with one plane
in each dimension, filling only 6 of the 8 vector elements.
Further elements are wasted because a triangle is not very
likely to overlap binning planes in all three dimensions si-
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Figure 3: Visualization of the triangle splitting. Numbers de-
note planes, colors denote triangle edges. The squares rep-
resent elements of a vector register and are colored and nu-
merated according to the edge-plane combination they pro-
cess. The dashed lines indicate the tight bounding boxes of
the triangle within the respective bin.

multaneously. The second option is to test 4 different tri-
angles with 4 different planes. While this approach guaran-
tees high utilization, the overhead of gathering the data from
many scattered locations would be quite significant.

We propose a middle ground by performing intersection
of one triangle with 4 consecutive planes along the same
axis, as illustrated in Figure 3. This has the advantage of
keeping data access coherent and allowing all vector ele-
ments to be utilized. Obviously, if the number of planes a
triangle overlaps is not a multiple of 4 the AVX register is
not fully occupied.

5. Results

The evaluation of our SBVH implementation focuses on
three aspects: Overall performance, parallel efficiency and
the SIMD advantage. We measure the overall performance
by constructing BVHs for several test scenes and compare
the timings to the parallel SBVH implementation of Embree
[WWB*14] (version 2.7.1), a high-performance ray tracing
library developed by Intel. Both implementations are con-
figured to perform binning along all axes with 32 object bins
and 16 spatial bins with the split budget set to 100% of the
number of input triangles. Included in the timings are all
computations required to obtain a ray tracing ready BVH,
in particular the root bounding box calculation and trian-
gle processing for accelerated ray-triangle intersection. Also
both implementations output a 4-ary BVH because this is the
preferred branching factor for ray tracing [FLPE15, Gut14].
This does not alter the SBVH algorithm except for the node
layout. We determine the parallel efficiency of our algo-
rithm by analyzing build times for varying thread counts
and for varying scene sizes. Finally, we measure the per-
formance advantage achieved through SIMDfication of our
binning/partitioning kernels and triangle-plane intersection
implementations. For all experiments the hardware platform
is a dual socket Intel Xeon E5-2680v3 Haswell (24 cores /
48 threads total at 2.5GHz).

(© The Eurographics Association 2016.

5.1. Overall performance

We test the build performance for 6 scenes commonly used
in ray tracing benchmarks. The results are presented in Ta-
ble 1. Our SBVH implementation demonstrates a significant
speed-up over Embree for all scenes, ranging from 66k to
300M triangles in size. Especially for the smaller scenes be-
low 1M triangles our algorithm is between 5 — 7 x faster. As
we will show in the next section this is influenced to a large
extent by the scalability of the two implementations.

Also for extremely large scenes such as the BOEING per-
formance is high with respect to Embree. We attribute this
observation in one part to the reduced parallel efficiency of
Embree measured for large scenes (Figure 5) and in one
part to our bandwidth conserving reference scheme, as we
have observed the highest relative speed-up of about 35%
for the BOEING compared to double buffering the fragments
directly.

Compared to the performance achieved by LBVH based
builders on a Nvidia Titan GPU for a moderately sized scene
such as FAIRY, our high-quality SBVH implementation lies
within the reported range of 2 — 9ms [KA13].

5.2. Parallel efficiency

32 q i
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28 Fairy
irball —
24 - Hairba
5 PowerPlant
4 Boeing
g 20 Ideal
8
o 16 +
£
S 12
8
4 4

0 4 8 12 16 20 24 28 32
# of cores

Figure 4: Scaling factor as a function of core count with
respect to the performance of a single thread. Results for
all the test scenes from Figure 1 are provided. If hyper-
threading is enabled (two threads per core), the core count
is multiplied by 1.3.

We analyze the parallel efficiency of our SBVH imple-
mentation in two ways, once by keeping the primitive count
fixed and scaling the number of threads, and once by scal-
ing the primitive count with all of the 48 threads active.
Since our test platform has only 24 cores but 48 threads
we multiply the core count by 1.3 if hyperthreading (HT)
is enabled. This multiplier has been determined experimen-
tally by comparing performance for one thread and for two
threads pinned to a single core.

Figure 4 depicts the scaling factor as a function of thread
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Table 1: Overall performance with 48 threads for several scenes, comparing our SBVH implementation and Embree. The splits
row indicates the increase in triangle count due to splitting for our implementation.

D&

SPONZA FAIRY HAIRBALL POWERPLANT BOEING
# triangles 66k 174k 2.9M 12.8M 300M
Splits 30% 17% 89% 16% 10%
Our 3.6 ms 7.7 ms 362 ms 608 ms 135s
Embree 26.0 ms 41.9 ms 1266 ms 2785 ms 1312 s
Speed-up 7.2% 5.4x 3.5x% 4.6 % 9.7x

count for all the test scenes together with the ideal curve. Up
to about 10 threads (or 8 cores + HT) all scenes exhibit ideal
scaling.After this point parallel efficiency diverges from the
ideal curve and the graphs separate into two bundles. The
smaller scenes including HAIRBALL scale up to 26 x, while
POWERPLANT and BOEING achieve around 20x for all
threads active. This behavior indicates that our SBVH imple-
mentation is memory bandwidth limited since all the small
scenes fit (almost) entirely into the large L3 cache.

The situation becomes clearer by analyzing Figure 5. Here
we scale the number of triangles and keep the thread count at
48. At 10k triangles the problem size is too small for our al-
gorithm to scale above 15 x (total run-time is about 0.7ms).
The plateau of highest parallel efficiency (around 26Xx) is
reached with slightly less than 100k triangles and extends
until about 2M. After that scalability rapidly decreases to-
wards a steady state of 20 . This cliff is where the L3 cache
looses its effectiveness and fits perfectly with the data from
Figure 4.

Ours
32 +Embree

T T
104 10° 106 107 108 10°
# of triangles

Figure 5: Scaling factor (1 vs. 48 threads) as a function of
triangle count based on the BOEING scene. Results for both
Embree and our implementation are provided.

The scalability of Embree exhibits a different behavior.
For small triangle counts parallel efficiency is significantly
worse compared to our implementation, but improves for

larger triangle counts until catching up at about 750k trian-
gles. From there however scaling continues up to the ideal
of 32x. Contrary to our algorithm there is no cliff once the
scene size exceeds the L3 cache. This indicates that Embree
is not limited by memory bandwidth constrains, but rather
by computation and/or memory and thread management.

mms |nsert
1000 | === Remove

Figure 6: Exchange events on the global task queue (loga-
rithmic scale) as a function of progress bins for the construc-
tion of the POWERPLANT scene with 48 threads. Progress is
measured as the number of finished nodes at the occurrence
of a particular event. The last bin accounts for 72% of all
events.

100

Events

=)
I

Progress

In order to illustrate the load balancing characteristic of
our parallelization framework (Sections 3.2 and 3.3) Figure
6 shows the exchange events on the global task queue for the
construction of the POWERPLANT scene. For the largest part
insert and remove events are very sparse, with only about
10% ( 300 total / 6 per thread) exchanges until 90% of the
BVH is completed. For the last 10% of BVH construction
the event rate increases exponentially due to the continued
decrease in average number of fragments per task. Hence
the load balancing works as expected: The dynamic thread
pool mechanism leaves each thread with a similar initial task
size upon switching from shared to exclusive task execution,
reducing the demand for task exchange. Only when the tasks

(© The Eurographics Association 2016.
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become small at the end of BVH construction fine grained
load balancing takes over to keep all threads busy.

5.3. SIMD advantage

Table 2: Speed-up due to our AVX implementation (Sec-
tion 4) with respect to scalar code. The results for the bin-
ning/partitioning kernels and the triangle-plane intersection
test are reported separately. For the intersection test the av-
erage utilization of the vector registers is indicated (4 would

be 100%).

Kernels Intersection

Speed-up | Speed-up | Utilization
SPONZA 1.3x 2.6x 2.3
FAIRY 1.4x 1.8x 1.6
R8 1.6x 1.2x 1.2
HAIRBALL 1.2x 3.6% 2.8
POWERPLANT 1.4x 1.4x 2.7
BOEING 1.5x 1.1x 1.6

For the evaluation of our AVX implementations described
in Section 4 we divide the results in triangle intersection test
and binning/partitioning kernels for both spatial and object
variants. The speed-ups reported in Table 2 are relative to a
scalar implementation for either the intersection test or the
kernels respectively and include the full build process. For
the kernels the AVX version improves between 20% to 60%
upon the scalar variant. The spread depends on the ratio of
object to spatial binning, since for spatial binning most of
the time is usually spent in triangle intersection and not in
the binning itself. For triangle intersection the results vary
considerably from scene to scene, from a significant 3.6x
for HAIRBALL to a mediocre 1.1x for BOEING. This is in
line with our expectations since the HAIRBALL geometry
is predestined for excessive splitting while the BOEING and
also the R8 have high object/spatial ratios.

Noting that an AVX register has 8 elements that theoret-
ically allow an 8 x speed-up, the question is if a more effi-
cient vectorization compared to ours is possible. Since the
binning kernels are very compact, this would most likely re-
quire hardware assistance for the gather/scatter operations.
However the triangle intersection leaves some room for fur-
ther improvement since we have not explored all the strate-
gies to efficiently saturate the vector registers.

6. Conclusion

We have introduced an efficient parallelization framework
for the SBVH algorithm. This includes thread and memory
management, AVX accelerated binning kernels and triangle
splitting, and small but important details like fast bounding
box calculations and memory bandwidth savings. Adding up
all the optimizations, our SBVH implementation substan-
tially outperforms the best available alternative and rivals the

(© The Eurographics Association 2016.

speed of fast low-quality BVH algorithms. Our contribution
enables full quality interactive BVH construction for scenes
up to 1M triangles and considerably improves the workflow
for large CAD models. Future work should focus on further
lowering the bandwidth demand of our SBVH implemen-
tation and on exploring a NUMA-aware design for multi-
socket platforms.
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