Eurographics Symposium on Parallel Graphics and Visualization (2016)

W. Bethel, E. Gobbetti (Editors)

Adaptive Collision Culling for Large-Scale Simulations by a
Parallel Sweep and Prune Algorithm

G. Capannini and T. Larsson

Milardalen University, Visteras, Sweden

Abstract

We propose a parallel Sweep and Prune algorithm that solves the dynamic box intersection problem in three di-
mensions. It scales up to very large datasets, which makes it suitable for broad phase collision detection in complex
moving body simulations. Our algorithm gracefully handles high-density scenarios, including challenging cluster-
ing behavior, by using a dual-axis sweeping approach and a cache-friendly succinct data structure. The algorithm
is realized by three parallel stages for sorting, candidate generation, and object pairing. By the use of temporal
coherence, our sorting stage runs with close to optimal load balancing. Furthermore, our approach is charac-
terized by a work-division strategy that relies on adaptive partitioning, which leads to almost ideal scalability.
Experimental results show high performance for up to millions of objects on modern multi-core CPUs.

Categories and Subject Descriptors (according to ACM CCS): F.2.2 [Analysis Of Algorithms And Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations; 1.3.6 [Computer
Graphics]: Methodology and Techniques—Graphics data structures;

1. Introduction

Many applications in computer graphics, animation, and vi-
sualization include different forms of multi-body or n-body
simulations. Such simulations are also used to study various
types of phenomena in computational branches of physics,
chemistry, and biology [SSWO1]. In large-scale scenarios, a
particularly challenging and crucial feature is the ability to
detect collisions in real-time. In this paper, a scalable solu-
tion is developed which can be used as a general building
block in simulations of millions of bodies.

The Sweep and Prune (SaP) algorithm has proven to be
particularly useful in practice as a coarse grained collision
culling method [CLMP95,Ber03,Eri04,PCM12]. By sorting
the bounding boxes of the objects along one or several axes,
and examining their overlap status by sweeping, it outputs
the set of colliding box pairs. The algorithm aims to elimi-
nate a vast majority of all the possible O(nz) combinations
of box pairs. As such, the SaP method is an example of a
top-level or broad phase collision search [Hub96].

Other competing algorithms that can be used to determine
a similar spatial ordering of the objects often rely on spa-
tial subdivision using data structures such as BSP trees, k-

(© The Eurographics Association 2016.

DOI: 10.2312/pgv.20161177

d trees, octrees, and bounding volume hierarchies [LCF05,
Ben75, VCC98, Sam05]. Bucketing approaches based on
uniform grids, non-uniform grids, and spatial hashing have
proven to be useful as well [Ove92, THM*03]. These tech-
niques aim to localize collision searches to gain perfor-
mance. Uniform subdivision is the simplest, but its effec-
tiveness is severely reduced when objects of widely vary-
ing sizes are used [MHN11]. Recently, several paralleliza-
tion strategies for broad phase collision detection on both
multi-core CPU and many-core GPU architectures have been
considered. These methods mainly focus on SaP, uniform
grid partitioning, and brute force testing [LHLK10, GTT13,
AGA12,LLCC13].

The purpose of the broad phase is to find the set of collid-
ing box pairs. Usually, since the boxes are used to approxi-
mate more complex and arbitrarily shaped objects contained
inside them, this output represents a potentially colliding set,
where each pair of objects has been found to be sufficiently
close to each other to warrant a more detailed investigation
of their overlap status. In such cases, a narrow phase follows
which produces the exact colliding set by more fine-grained
checks [Hub96]. In fact, more or less the same data struc-
tures can be used also in this case. It is the division into

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20161177

2 G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm

a two-phased approach that has proven to be very practi-
cal. Each phase can then be implemented and optimized for
more specific operational circumstances. A commonly uti-
lized combination is to use SaP for the approximate broad
phase testing, and bounding volume hierarchies for exact
narrow phase testing [CS08, PCM12]. What combination of
data structures that gives the best overall performance is an
open and challenging research question, which is compli-
cated by the fact that the best choices are often application
and scenario dependent. For a broader picture of the collision
detection problem, interested readers can consult published
surveys (e.g., [TKH*05], [KHI*07], or chap. 2 in [Wel13]).

This work extends our previous paper that presents an
efficient sequential SaP algorithm [CL16]. We show how
all the major parts can be efficiently parallelized, which
lead to an attractive scalable solution for simulating millions
of moving objects, even in dense simulation environments.
Our main contributions are: (i) A parallel index sorting al-
gorithm based on radix sort that exploits temporal coher-
ence to enable dynamic load balancing. (ii) A parallel dual-
axis sweeping approach that uses succinct tree structures
for cache friendliness and scenario-adaptive load balancing.
(iii) A heuristic method for the dynamic choice of sweeping
axes based on temporal coherence to efficiently handle clus-
tering scenarios. (iv) A detailed experimental evaluation of
the proposed solution.

2. Prior work

David Baraft introduced the original “Sort and Sweep” al-
gorithm [Bar92]. It works by projecting the bounding boxes
onto one of the main axes to obtain an array of lower and
upper interval bounds. Overlapping pairs can then be deter-
mined by sorting the array and tracking interval overlaps by
a scanning procedure. When an interval overlap is found, the
full box-box overlap status is determined by considering also
the other two axes. Insertion sort can be used to re-sort the
array for each discrete frame of the simulation. By temporal
coherence, it can be assumed that the array is kept almost
sorted throughout the simulation, and if so, the dynamic box
overlapping problem can be solved in O(n + s) time, where
s is the number of swaps used in the sorting. Thus, it can be
argued that this algorithm is very fast when s — k is small,
where k denotes the size of the output. Interestingly, there
are theoretical results in computational geometry showing
that the box intersection problem can be solved in worst-case
O(nlogn + k) time [PS85].

Another early account of sweep and prune is presented
for the I-Collide system [CLMP95]. In this realization, three
lists, one for each principal coordinate axis, are kept sorted
using insertion sort, and the swaps trigger changes in a table
of O(nz) bit flags that represents the overlap status of all pos-
sible pairs of intervals. While this may be efficient in some
cases, the storage cost prohibits large-scale simulations.

Unfortunately, these classical SaP methods suffer from

two drawbacks. First, the sorting is performed using inser-
tion sort in O(n) time under the assumption that the arrays
are almost sorted, which can be expected due to temporal
coherence. However, when the coherence is lost, the sorting
turns into a major bottleneck. Second, in large scale simula-
tions, the number of false positives along sweep axes tends
to be superlinear in n [TBW09].

In an unpublished document, Terdiman gives an overview
of different SaP methods, including some improvements
that addresses these issues, such as Multi-SaP, which com-
bines SaP with spatial subdivision [Ter07]. An improved and
more detailed analysis of SaP further motivates such hy-
brid SaP/spatial subdivision approaches [TBWO09]. Efforts
to parallelize the computations usually focus on similar hy-
brid strategies. In particular, GPU-based collision culling ap-
proaches have been proposed that rely on a combination of
space subdivision and SaP [LHLK10, MZ15]. Also, as an
attempt to reduce the number of false positives during the
sweep phase, a preferred sweep direction can be selected
based on principal component analysis (PCA).

To support continuous collision detection, event-driven
SaP methods can be designed. By utilizing known motion
trajectories of the bodies, per-frame overhead can be re-
duced [CS06], and further, by introducing a velocity-aligned
bounding volume, objects with high velocities can be han-
dled more efficiently [CSO8]. Furthermore, although SaP is
used mainly as a broad-phase collision culling method, it
is applicable also in contexts where more fine-grained in-
tersection determination is needed. The SaP method can be
called recursively level-wise during dual traversal of object
hierarchies [PML97]. Another variant targets self-collisions
within a breakable or exploding polygon mesh [LAMO6].
Recently, yet another adaptation was proposed that aims to
handle all parts of the collision detection process [MZ15].

3. Sequential Bi-dimensional SaP

This section briefly presents our sequential bi-dimensional
SaP approach [CL16]. We first explain the idea behind
the method in terms of the well-known SaP approach by
Baraff [Bar92], then we give the details of our implemen-
tation and the data structures used.

In general, SaP deals with finding overlapping pairs of
objects in a 3D world. Each simulated object is bounded by
an axis-aligned box (AABB). Let a denote the projection of
the AABB related to a given object on a coordinate axis. We
consider a as a closed interval represented by an ordered pair
of values [a", a™] with a™ < a™, also called low-endpoint
and high-endpoint, respectively. Clearly, two AABBs collide
iff the corresponding projections overlap on all the three co-
ordinate axes.

Every time a low-endpoint is picked, the original SaP al-
gorithm inserts the corresponding object in a data structure

(© The Eurographics Association 2016.

G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm 3

called activelist. Such an object remains active until the cor-
responding high-endpoint is picked, then it is removed from
the activelist. Finally, when an object is inserted, its projec-
tion overlaps with the ones of all the other objects currently
stored in the activelist.

In contrast, the bi-dimensional approach splits the compu-
tation in two phases performed on two different coordinate
axes. Given a primary coordinate axis, the first phase sweeps
the sorted list of endpoints to localize, for each object, the
ones (referred as candidates) that possibly collide with it
since their AABBs overlap on the current axis. Each candi-
date set is defined as a range of objects of which the bound-
aries are retrieved from the activelist respectively when the
low- and high-endpoint of an object are picked. In particu-
lar, the low boundary corresponds to the least recent object
stored in the activelist when low-endpoint is picked, while
the upper boundary corresponds to the last object added to
the activelist before the high-endpoint is picked.

In the second phase, since for every object the candidate
set represents a superset of its collisions, we sweep the or-
dered set of endpoints of a different coordinate axis. In par-
ticular, only the objects belonging to the intersection of the
candidate set (computed on the primary axis) and the ac-
tivelist (computed on the secondary axis) are tested.

Algorithm 1 describes in more details the bi-dimensional
SaP computation. Here, the pseudo-code slightly differs
from the description above, but they are equivalent. In par-
ticular, the pseudo-code makes use of the rank (defined for
each object i as the position of i " in the ordered set of low-
endpoints of the primary axis) to represent an object in the
activelist and to keep its position during the whole compu-
tation. Ranks are defined in the array R[], while L[] and U]
store the candidate-set boundaries for each object i € Q. The
first phase is computed in the loop on Line 6. Here, for each
object i, L[i] and U[i] are retrieved when i* and i~ are re-
spectively picked. The second phase begins on Line 16. For
each new picked object i, the related range of candidates,
i.e., [L[i],U]i]), is used to filter the activelist S by means of a
range query (Line 18). On each returned object, a full box-
to-box test is performed to find a new possible collision for
the object i.

The bi-dimensional approach needs to be supported by
an efficient implementation of the activelist during the two
phases. The operations required in Algorithm 1 are: insert-
ing and removing objects (on Lines 11, 14, 21, and 23), re-
trieving the minimum (on Line 10), and performing range
queries (on Line 18). As a consequence, we defined a suc-
cinct data structure, called SuccTree. Assuming the w-bit
word-RAM model [CR72], a SuccTree consists of a w-ary
tree with n leaves, where n equals the number of simulated
objects. Each level of a SuccTree is implemented by a bit
vector of which entries are the nodes. The value of a bit is
used as a flag of presence for the node: in this way nodes
have a fixed position (which simplifies to locate parent, chil-

(© The Eurographics Association 2016.

Algorithm 1 Sequential bi-dimensional SaP.
Input: Q={0,...,n—1}

> object ids

Input: X[2n] > 1% axis endpoints
Input: Y[2n] > 2" axis endpoints
Input: Z[2n] > 3" axis endpoints
Output: C > list of id pairs of colliding objects
1: L[n], U[n] > candidate-set boundaries
2: R[n], R [n] > object rank and inverse of rank
3: S < SuccTree(n) > init. @
4: ¢c<+0 > rank counter
5: I, < IDXSORT(X)
6: for each i € I; do
7. ifi <nthen
8: R[i] ¢ > assign rank
9: Rlct++] «i > assign inverse of rank
10: if S = & then L[i] < c else L[i] + S.min()
11: S.ins(R[i]) > activate i by means of R]i]
12: else
13: Uli—n]+c¢ > i —n is the id of the object
14: S.del(R[i —n))

15: Iy < IDXSORT(Y)
16: for each i € I, do
17: ifi <nthen

18: for each r € SN[L[{],U[i]) do > range query
19: J<Rr] > retrieve candidate id
20: if OverlapTest(i, j) then C.add(i, j)

21: S.ins(R[i])

22: else

23: S.del(R[i —n])

dren and sibling of a node) and they can be easily added and
removed by flipping the corresponding bit. Each leaf is asso-
ciated to a value in Q = {0,...,n— 1} so that the activelist is
represented by the set bits in the vector associated with the
bottom level of the tree, while the upper levels are used to
efficiently move from an active leaf to the next one. In par-
ticular, the bit corresponding to a node i (which is not a leaf)
is set iff at least one of its children is set. To this end, the
parent of the node at position i at some level d is the node at
position |i/w] at level d + 1. According to this rule, the pro-
cedure for adding (or removing) an element in a SuccTree,
sets the corresponding bit at the bottom level of the tree, then
updates the ancestors when it is required. The operation used
to iterate through the stored items is succ(i) which returns
the position of the least leaf greater than the i-th one (if it
exists) by searching the lowest common ancestor between
i and succ(i). When such a node has been found, a path is
computed to its least descendant greater than i, i.e., succ(i).
All these operations act by traversing at most two paths of
the SuccTree so that they are performed in O(log,,n) time.
This is possible since the SuccTree uses the bitwise instruc-
tion set of the CPU to exploit bit-level parallelism and per-
forms in O(1) time operations on w-bit words that otherwise

4 G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm

have O(w) complexity. Finally, since a range query is per-
formed by iterating the succ() operation between two given
boundaries, its complexity is O(¢ -log,, n) with £ equal to the
number of values returned by the query.

4. Parallel Bi-dimensional SaP

Here we describe the parallel version of the approach shown
in Section 3. In particular, we divide Algorithm 1 in three
parts which are treated independently: sorting on Lines 5
and 15, generating the candidate intervals in the loop starting
on Line 6, and pairing phase in the loop starting on Line 16.

4.1. Sorting

Our sorting approach makes use of femporal coherence to
fairly split an input set of endpoints into partitions which
can be sorted in parallel independently. To this end, through
the SaP iterations, for each axis to sort, a set B of boundaries
is used for splitting the input at the beginning of the proce-
dure, then B is updated before the procedure ends. The algo-
rithm used for sorting each partition is the sequential sorting
applied in Algorithm 1. It is a variant of the stable Least Sig-
nificant Digit Radix Sort (LSDR), which returns the indexes
of the sorted items instead of permuting the input points. The
2n endpoints of each coordinate axis are stored in separate
arrays and, for each object i € Q, the corresponding i* and
i are respectively placed at position i and i + n of each ar-
rayT. Firstly, the parallel sorting assigns each endpoint to the
proper bucket according to B, then the sequential LSDR is
applied to each partition.

Algorithm 2 Parallel sorting.

Input: X > endpoint set to sort with |X| = 2n
Input: m > number of partitions
Input: B > boundaries set
Output: [> sorted X indexes
1: for each x € X do in parallel > setup
2 i1+ INT(x > b))
33 P+ PU{x} > P; init. @
4: for each i € [1,m] do in parallel > sorting
5: I; < IDXSORT(P)
6: for eachic [1,m—1] do > update B

7: bi<—X[1[i'_2”/mJH
8. return /

Algorithm 2 shows in more details the parallel procedure
described above. Let X denote the set of endpoints to re-
order with |X| = 2n. The set X is firstly divided into m par-
titions, P _,;, by means of m — 1 values, B={by,...,b,—1}

T This means that we can easily disambiguate the type of an
endpoint-index by comparing its value with n (e.g., Lines 7 and 17
in Algorithm 1) and calculate the object id of an high-endpoint by
subtracting n (e.g., Lines 13 and 23 in Algorithm 1).

(Line 2). Let by = —oo and b, = 400, then we have that
Pi={x € X :bj—1 <x<b;}. Values in B are extracted
from the ordered list of points sorted at the previous iter-
ation. In fact, they correspond to the points stored at dis-
tance |2n/m| to each other (Line 7). Since the position of
the simulated objects does not vary drastically between two
consecutive SaP iterations, the partitions calculated in this
way are almost equally sized. On the first iteration, instead,
B is initialized by computing the span of X as span(X) =
max(X)—min(X), and setting b; = i - span(X)/m+ min(X)
foreachi € {1,...,m—1}. Once the setup of the partitions is
done, m threads sort the defined partitions in parallel (Line 4)
using the LSDR algorithm. Indexes related to each sorted
partition P; are stored in m contiguous arrays /; (Line 5) such
that |I;| = |P;| and I = (I}, ,...,In). The final part of the
algorithm updates B to be used in the next iteration.

4.2. Candidates Generation

The main problem for parallelizing this phase deals with the
management of the SuccTree S in Algorithm 1. In each it-
eration of the loop on Line 6, S is modified by adding or
removing values so that S in the current iteration depends
on the previous one. Since candidates are a function of S,
we determine S at any given point of the computation be-
fore we can compute the candidate intervals. Then we can
parallelize the sequential loop in different independent parts
so that each thread can compute the candidate boundaries
for the assigned part by using a private instance of S. Algo-
rithm 3 briefly describes such a parallel approach by skip-
ping the details that are identical in the sequential version.

In Algorithm 1, § is initially empty and, at the beginning
of each iteration of the loop on Line 6, S contains the rank
of the active objects. Such a loop consists of 2n iterations
and our preliminary goal is to identify the objects stored in
S every |2n/m| iterations starting from the first one. In Al-
gorithm 3, we firstly compute (in parallel) the object ranks
by means of the following steps: dividing the set / of sorted
indexes into m equally-sized intervals I ,, (Line 2); count-
ing the low-endpoints in each partition (Line 5); computing
a prefix sum on such values (Line 7); calculating the ob-
ject ranks of each partition (Line 10). Once the ranks are
computed, we split the sorted input array / in m partitions,
Iy ,,, made up of consecutive endpoints. Moreover, for each
partition Ip, an empty SuccTree, Sp, is instantiated. Such
partitions are then swept by activating and deactivating in
Sp the object-rank of the endpoints belonging to I, (loop at
Line 13). At the end, each S, contains the ranks of the ob-
jects having only one endpoint in the corresponding partition
I. Now, we merge the values of two consecutive SuccTrees,
Sp and Sp1, using the symmetric difference operator & de-
fined as: Sp ®Sp41 = (SpUSp+1)\ (SpNSp41). By means
of @, which is known to be associative, we compute the all-
prefix-sums on the set of SuccTrees on Line 15. Each re-
sulting S, contains the ranks of the objects i such that it be-

(© The Eurographics Association 2016.

G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm 5

Algorithm 3 SaP — Parallel candidates generation.

Input: Q={0,...,n—1} > object ids

Input: / > array of 2n indexes returned by sorting

Input: m > number of partitions
I: A< 2n/m 1 partition size, assume 2n is multiple of m
2: for each p € [1,m] do

Ip<1I[(p—1)A,...

1m0

: for each i € I, do in parallel

if i <nthencp++

: ALLPREFIXSUMS(cy,...,Cm)

: for each p € [1,m] do

chcp

, pPA—1]

> m local rank-counters

> make a copy of ¢[]

0 e kR W

10: for each i € I;, do in parallel
11: ifi <n then R[i] + cj++
12: S| 9

13: for each i € I, do in parallel
14: if i < n then Sy.ins(R[i]) else Sp.del(R]i —n])
15: ALLPREFIXSUMS(Sy,...,Sm)

16: for each i € I, do in parallel

17: if i <nthen

> m SuccTrees

18: Rcp++] +i

19: if S, = @ then L[i] < ¢ else L[i] < S,.min()
20: Sp.ins(R[i])

21: else

22: Uli—n]+c¢p

23: Sp.del(R[i —n])

longs to a partition I, , and i~ belongs to a partition I/ > ,.
In other words, S), stores the ranks of the active objects at
the point of the computation when I, begins. Note that also
the computation of the all-prefix-sums is performed in par-
allel by following the tree-based approach shown in [B1e90].
Once the all-prefix-sums operation is computed, the rest of
the procedure computes the sets of candidates on each parti-
tion in parallel similarly as done in Algorithm 1.

4.3. Pairing Phase

The pairing phase dominates the runtime, in particular, in
the most challenging scenarios with high density. As a con-
sequence, parallelizing the loop on Line 16 in Algorithm 1
is the most crucial point of our solution.

Similarly to other solutions presented in the literature and
discussed in Section 1 and 2, also ours can be regarded as a
spatial partitioning technique. In contrast with several exist-
ing approaches, however, Algorithm 1 has been parallelized
by adaptively dividing the space in non-uniform portions
made up of an equal number of objects. In particular, the
subdivision is calculated directly during the pairing phase by
splitting the candidate set of each object. In this way longer
intervals (e.g. due to clustered objects) are “spread” on more

(© The Eurographics Association 2016.

threads so as to improve the workload balance and the over-
all throughput.

Algorithm 4 SaP — Parallel pairing phase.
Input: Q={0,...,n—1}

> object ids

Input: / > array of 2n sorted indexes
Input: m > number of partitions
Output: C > list of id pairs of colliding objects

A<+n/m > partition size, assume n multiple of m
for each p € [0,m) do in parallel
o Sp—o
pp-A

1:

2:

3 > local SuccTree
4.

5. e+ B+A

6.

7

8

9

> partition begin
> partition end
for each i € I do

if i < n then

I« LJi]

u+Uli]
10: if] <e AP < uthen
11: if [[/A|=pthen/ <+ [—Pelsel/ <+ 0
12: if [u/A] =pthenu < u—Pelseu+ A
13: for each r € [[,u) NS, do
14; j R [r+p|
15: if OverlapTest(i, j) then C.add(i, j)
16: if |R[i]/A| = p then Sp.ins(R[i] — B)
17: else
18: if |[R[i —n]/A] = p then Sy.del(R[i —n] —)

All steps of the parallel pairing phase are shown in Al-
gorithm 4. The set Q of objects is divided in Py _,,—1 par-
titions that will be computed in parallel by m threads. We
firstly compute the size of a partition as A = n/m so that
objects of which rank belongs to [iA, iA+A) are assigned
to the partition P; and, for each thread, a A-sized SuccTree
Sp is instantiated. Each thread sweeps independently the set
of sorted endpoints / by discovering the collisions between
an object, when it is activated, and the corresponding can-
didates covered by the thread partition. In particular, when
the i-th thread picks an index related to the low-endpoint of
an object, if the intersection between the object candidates
and P; is not empty (Line 10), the thread shrinks the bound-
aries of such an interval to fit in the portion covered by P;
(Lines 11 and 12) and performs the usual range query by
means of such local boundaries (loop starting on Line 13).
Furthermore, for each index picked from /, the related object
rank is represented only in the SuccTree of the partition P; to
which the rank belongs (conditional steps on Lines 16 and
18). As a consequence, objects colliding with a given object
a are discovered (when a is activated) by more than one par-
titions (depending on the length of the candidate interval),
but only the thread in which a is represented can discover
the collisions of a with the objects activated between a™* and
a” . Hence, no duplicates are added to the final set of colli-
sions C by the threads and no reduction phase is needed at
the end of the procedure.

6 G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm

5. Dynamic Choice of Sweeping Axes

The key point of the approach discussed in Section 4.1 is that
the bucketing phase allows to almost fairly divide the work-
load among the threads due to temporal coherence. How-
ever, there are certain cases when this approach is not ef-
fective. For example, when endpoints get severely clustered
along a sorting axis, the position of many of them can co-
incide so that the setup phase can gather most of them in
one partition, which unbalances the workload of the threads.
Such situations can degrade both the sorting throughput and,
in particular, the performance of the entire computation. In
such scenarios, however, the third unused axis is likely to be
less clustered than the other two. In these cases, there is an
opportunity to switch the most clustered axis with the un-
used one. Intuitively, severe clustering along all three axes at
a single time instant can only happen if the objects can in-
terpenetrate. In realistic simulations, the collision response
mechanism is supposed to prevent such configurations.

To decide when it is advantageous to swap an axis, we
calculate a measure of relative data dispersion D. In particu-
lar, it measures the unbalance of the number of elements per
bucket (computed in the sorting phase) relatively to the ideal
one. To this end, D is defined as a function of the number of
objects n, the number of buckets m, and the statistical vari-
able X describing the number of elements per bucket. Let
8 denote the mean deviation® equal to the expected value
E[|X — p|] with ¢ equal to 2n/m. Since the value of § is
unrelated to the bucket size, the measure of dispersion we
adopt is D = §/u, which is computed as follows:

8 _E[X—ul] _ Xy bv—pl/m _ Xk

D—
u u 2n/m 2n

ey

During the computation, when partitions turn out to be
unbalanced on one of the two main axes (i.e., D is greater
than a given threshold) we switch that axis with the unused
one. Computing D costs O(m) while the axis switching re-
quires B to be reinitialized for the new axis which costs O(n)
(for retrieving the maximum and minimum of the new set of
endpoints and compute by _,, as explained in Section 4.1).

6. Experiments

All tests have been run on a dual 2.40 GHz Intel(R) Xeon(R)
CPU ES5-2630 v3 having 16 physical cores equipped with
64 GB of RAM and using Ubuntu 14.04 with gcc 5.3.0.

In the following we present the results of running different
simulations specifically designed to compare performances
of our parallel bi-dimensional SaP and its sequential version.
In each simulation, n boxes of varying sizes moved freely
in a 3D space delimited by a world cube. To challenge our

I The mean deviation (also called the mean absolute deviation) is
the mean of the data’s absolute deviations around the data’s mean.

approach, we let colliding boxes pass through each other
and bounce on the world boundaries. In this way, we cre-
ated highly clustered contexts with many deeply overlapping
boxes although such scenarios are unrealizable in a simula-
tion of non-penetrating objects. In the beginning, the boxes
were spread uniformly in space with density d computed as
the ratio of the sum of the boxes’ volumes to the volume
of the world. In each iteration of a simulation, SaP is firstly
used to discover the collisions, then the objects move. Each
simulation consisted of 100 iterations and we validated the
results by checking that the set of collisions discovered at
each iteration was the same for the two solutions. In the fol-
lowing, we present the results of each parallelized part: sort-
ing, candidate generation, and pairing. Finally, we show the
details of how these parts affect the overall performance.

Sequential
—=— Parallel 4.7x

seconds

Figure 1: Elapsed time and speedup of the sorting phase by
varying the input size n.

6.1. Sorting Evaluation

Results in Figure 1 show the performance of the two differ-
ent versions used for sorting. The sequential one is based on
the LSDR algorithm while the parallel method corresponds
to Algorithm 2 proposed in Section 4.1. Algorithm 2 mainly
consists of two phases: setup and sorting the partitions (time
spent in updating the set B is negligible and can be left out of
this analysis). The time complexity of the setup phase is lin-
ear in the number of objects n since the computation of the
object partitions is performed in parallel by m threads, but
computing each of them requires O(m) operations. More-
over, even if the parallel time complexity of the second phase
is O(n/m), such a phase is more time-consuming as it per-
forms several passes made up only of memory copies to re-
order the data. As a consequence of the overhead introduced
by the setup phase as well as the memory intense nature of
radix sort, the scalability reached in this phase was modest.
However, since sorting is not the bottleneck of the sequen-
tial computation, the lower scalability is compensated by the
performance of the other phases. Figure 1 shows the results
related to just one object density (i.e., d = 0.35 that is the
highest tested value), since sorting is only slightly affected
by this parameter.

Finally, we measured also the workload balance of our

(© The Eurographics Association 2016.

G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm

10° - 10° - 10° :
Sequential Sequential Sequential
B —=— Parallel K —=— Parallel o —=— Parallel
107 7 3 100 7 107 7
3 14.9x 3 14.4x 3
S 102 4 E S 107 A g
2 2 2
102 4 - 107 4
10* 10* 10*

215 216 217 218 219 220 221 215 216

n(d=0.10)

217 218 219 220 221
n (d = 0.20)

215 216 217 218 219 220 221
n (d=0.30)

Figure 2: Elapsed time and speedup for generating candidates by varying the input size n and the object density d.

10! - 10! - 10! -
Sequential Sequential Sequential
0 —=— Parallel 0 —=— Parallel 0 —=&— Parallel
10 4 3 10° 4 3
)) 16.7x
I E 3
g0 7 -3 3
107 3 3
1023 e —
215 516 517 518 519 520 521 oI5 516 517 518 519 520 521 215 516 517 518 519 520 521
n (d=0.10) n (d =0.20) n (d=0.30)

Figure 3: Elapsed time and speedup of the pairing phase by varying the input size n and the object density d.

parallel method to evaluate the effectiveness of computing
the boundary set B by exploiting temporal coherence. To
this end, we measured D, as defined in Section 35, in each
frame of the simulation. The results showed that D was al-
ways lower than 0.01, which means that the number of end-
points to sort assigned to the buckets missed the perfectly
balanced size by less than 1%.

that the computation is synchronization-free and no reduc-
tion phase is required at the end of the process. Last but not
the least, the almost perfect load balancing observed in the
experiment led to a better throughput since it minimized the
average response time of each thread. In fact, we measured
the thread workload in all simulations by collecting the per-
centages of the number of collisions detected by the various
threads. The results showed small values of standard devia-
tion, o, of the percentages, which means that workload was
almost perfectly distributed among the threads. We also re-
peated the same tests by varying the number of threads from
4 to 64 and we obtained similar results, i.e., 6 < 1.5%.

6.2. Evaluation of Candidates Generation

Figure 2 shows that generating the object candidates in par-
allel as described in Section 4.2 has overall good perfor-
mance and speedup. Given a specific input size, we observed
that, in some cases, the measured speedup slightly decreased
as the object density increased. In fact, since more object
projections overlap each other on the primary axis in such
cases, the average number of endpoints falling in between
the endpoints of an object increases. As a consequence, the
probability that both endpoints belong to the same thread
partition is lower so that the average size of the m SuccTrees
(on which the all-prefix-sum operation is computed in Algo-
rithm 3) grows, which slows down the phase.

Finally, we observed that, in high-density large-scale sim-
ulations, we obtained a super-linear scalability. This is a
side-effect of the adaptive space-subdivision which acts as
an early-exit condition in some cases. When long candidate
intervals are spread out on more than one partition, each
thread checks that the assigned part of the original interval
is overlapping with its own partition (Line 10). When such a
test fails, the current iteration ends immediately and no ac-
cess is done to the SuccTree. In the sequential case, instead,
at least one access to the SuccTree is made for every low-
endpoint picked. Furthermore, the SuccTree instances used
in the parallel case are smaller (because only a fraction of the
the entire set of objects is managed by each of them) which
reduces the complexity of the SuccTree operations.

6.3. Pairing Phase Performance

Figure 3 shows the performance of the parallel pairing phase.
Our adaptive space-subdivision approach exhibits a good
scalability, which increases as the number of simulated ob-
jects and their density grow. This is mainly due to the fact

(© The Eurographics Association 2016.

8 G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm

120 250

) 100 200
3 3

g 8 £ 150
g 60 g

& Z 100
E 40 E

20 30

0 0

0.05 0.10 0.15 0.20 0.25 0.30 0.35
d (n=2]9)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
d (n=2"%

500
400
300
200

milliseconds
9.0x
11.1x
12.2x
13.1x
13.8x
14.5x
14.8%

0.05 0.10 0.15 0.20 0.25 0.30 0.35
dn=2"")

Figure 4: Elapsed total time of the three phases of our parallel SaP: sorting (the gray layer at the bottom), candidates genera-
tion (the dark gray layer in the middle), and pairing (the light gray layer at the top) computed by varying the object density for
the tested input sizes. For each density and each input size, speedup of the overall parallel computation calculated with respect

to the sequential runtime is shown above the gray areas.

6.4. Overall Parallel Performance

Figure 4 presents how each part of the computation affected
the global performance of our parallel SaP. We show the time
spent for sorting the primary and secondary axes, generating
the candidates, and pairing. In this case, we present the re-
sults of the experiment by varying, in each chart, the object
density on the abscissa and selecting three different input
sizes: 219, 220, and 22! (roughly half, one, and two millions).
As expected, the time spent in the first two phases remained
almost constant since the object density affected the perfor-
mance of sorting and the candidate generation only slightly.
On the other hand, the pairing phase dominated the elapsed
time of the entire algorithm. Moreover, as the scenario be-
came more dense, the time spent in this phase grew due to
the increasing number of collisions.

7. Clustering Scenarios

To further challenge our algorithm, two additional experi-
ments were designed to examine the behavior under differ-
ent kinds of clustering of the objects. In the first case, the
objects were randomly positioned using a uniform distribu-
tion inside a large ball. The velocity vectors were directed
towards the center of this ball with the speeds adjusted so to
let each object reach the center simultaneously, should they
not hit anything on the way. However, a collision response
method was used to prevent objects from passing through
each other. In this way, the objects formed a dense ball-
shaped cluster before a massive number of collisions forced
them to spread out in all directions. The whole simulation
was run for 500 frames. To illustrate the motion, Figure 5
shows five screen captures of the scenario. The plots under
the images give the collision detection times of our parallel
algorithm together with the corresponding sequential run-
times for n = 2! = 524288. The parallel speed-up during
the most intense part of this scenario, i.e., frames 75-150
varied in the range 7.5-11.3 x. The average time for all 500

frames was 87.4 ms, which compared to the average sequen-
tial runtime gave a speedup of 6.5 x.

In the next experiment, n = 750% = 562500 equally sized
cubes were distributed in a large cube. To define the mid-
points of the boxes, we used a regular grid spacing for two
of the coordinates, whereas the third coordinate, call it u, was
chosen at random to place the objects uniformly distributed
above and below the plane u = 0. The motions of the objects
were then chosen so to let all the objects pass through the
plane u = 0 simultaneously in the middle of the simulation.
An illustration of this scenario is given in Figure 6. The size
of the cubes was set so that the cubes almost touched their
neighbours while moving through the plane (see the middle
image). This means that the entire scenario was free from
collisions, but note that the clustering of the objects within a
single plane can be a very difficult case causing severe bot-
tlenecks for certain algorithms.

Since our algorithm uses a dual-axis approach, it is less
sensitive to clustering in general compared to single-axis
approaches. Nevertheless, if clustering occurs along either
the primary or the secondary axis, a performance bottle-
neck occurs, given that the chosen sweeping axes remain
fixed throughout the simulation. However, if we use our axis
swapping heuristic (described in Section 5), such problems
can be avoided in most cases. The performance plots in Fig-
ure 6 show the obtained results when we ran our parallel
algorithm with and without dynamic axis swapping. In all
cases, the algorithm used the x-axis as the primary axis, and
the y-axis as the secondary axis to begin with. Without axis
swapping, we saw that run-times increased substantially dur-
ing the most intense part of the plane clustering in frames
225-275. This happened both when the clustering occurred
in the x direction (u = x) and the y direction (# = y), although
the negative effect was more pronounced for u = y. When
our heuristic for dynamic axis selection was used, however,
this problem was avoided completely. After the axis swap,
which occurred on frame 214, the whole scenario ran at more
or less a constant speed (about 40 ms per frame).

(© The Eurographics Association 2016.

G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm 9

5000 .
g o0 | R
S 3000
22000 -
‘E 1000
0 ‘ — ‘ ‘ : : : : ,
0 50 ab ¢ d 150 200 250 300 350 400 e 500

Figure 5: Ball clustering scenario (n = 524288). The visualized frames are: a =75, b =85, ¢ = 100, d = 118, and e = 450.

250
2 200 - w/o Axis Swap, Clustered X ---------
2 w/o Axis Swap, Clustered Y ——
S 150 A w/ Axis Swap, Clustered X ----------
£ 100 | wi Axis Swap, Clustered Y ———
ERRE i P—
0 T T T T T T T — T T
a 50 100 150 b c d 300 e 350 400 450 500

Figure 6: Plane clustering scenario (n = 562500). The visualized frames are: a =0, b = 200, ¢ = 250, d = 275, and e = 340.

8. Comparisons to other Algorithms

Our parallel SaP method can be compared with some other
algorithms for large-scale simulation scenarios in the litera-
ture. In particular, there are some parallel GPU approaches
that give high performance. Liu et al. used a hybrid SaP/ uni-
form grid approach that showed high performance up to one
million objects [LHLK10]. They reported a query time of
161 ms for 960K objects using a Tesla C1060. The subdivi-
sion method presented by Lo et al. was able to handle 10
boxes within one second using a Tesla C2070 [LLCC13].

These examples illustrate that very high rates of collision
culling are possible on massively parallel GPU architectures.
Our CPU-based algorithm was able to handle one million
objects within a range of 122—-167 ms depending on the ob-
ject density d of the simulated scenarios (see the middle plot
in Figure 4). If we only consider parallel solutions target-
ing multi-core CPUs, we are not aware of papers that reports
higher performance than we do. Therefore, we conclude that
our algorithm is a highly competitive choice for simulations
running on CPUs.

(© The Eurographics Association 2016.

9. Conclusions

We have presented a fully parallelized SaP algorithm for
the dynamic box intersection problem. By exploiting the ar-
chitecture of modern CPUs, we realized an efficient, cache-
oriented, multi-core solution that scaled up to large datasets.
Furthermore, our algorithm was able to handle challenging
clustering scenarios without severe performance drops. The
experimental results confirm its good qualities in practice re-
sulting in a remarkable boost in the collision culling perfor-
mance. We achieved almost the ideal speedup, 16, despite
that we did not use SIMD instructions (except for comput-
ing the axis span as described in Section 4.1). Thus, there is
a chance that performance can be improved further by using,
e.g., AVX instructions.

An interesting future line of research would be to port our
parallel algorithm onto GPUs. Such devices possess great
computational power and they are characterized by a high
level of data parallelism. A possibility might be to adapt
our SuccTree to the GPU architecture to make it possible
to run many instances of it asynchronously. Also, since sev-
eral high performance collision culling methods targeting
GPUs are already known [LHLK10, LLCC13], an interest-

10 G. Capannini & T. Larsson / Adaptive Collision Culling for Large-Scale Simulations by a Parallel Sweep and Prune Algorithm

ing next step would be to aim for a heterogeneous paral-
lelization utilizing a combination of CPUs and GPUs. In this
case, a technique to automatically tune the workload among
the available devices based on their computing power would
be needed as well.

Acknowledgments

This research was supported by the Swedish Foundation for
Strategic Research (grant IIS11-0060). We are also indebted
to the HPC Lab, which is part of ISTI CNR in Pisa, for al-
lowing us to run benchmarks on their hardware.

References

[AGA12] AVRIL Q., GOURANTON V., ARNALDI B.: Fast Colli-
sion Culling in Large-Scale Environments Using GPU Mapping
Function. In Eurographics Symposium on Parallel Graphics and
Visualization (2012), pp. 71-80. 1

[Bar92] BARAFF D.: Dynamic Simulation of Non-Penetrating
Rigid Bodies. PhD thesis, Cornell University, 1992. 2

[Ben75] BENTLEY J. L.: Multidimensional binary search trees
used for associative searching. Communications of the ACM 18,
9 (1975), 509-517. 1

[Ber03] BERGEN G. V. D. (Ed.): Collision Detection in Interac-
tive 3D Environments. The Morgan Kaufmann Series in Interac-
tive 3D Technology. Morgan Kaufmann, 2003. 1

[Ble90] BLELLOCH G. E.: Prefix sums and their applications.
In Synthesis of parallel algorithms. Morgan Kaufmann, 1990,
pp. 35—60. 5

[CL16] CAPANNINI G., LARSSON T.: Efficient collision culling
by a succinct bi-dimensional sweep and prune algorithm. In Pro-
ceedings of the 32nd Spring Conference on Computer Graphics
(2016). 2

[CLMP95] CoHENJ.D., LIN M. C., MANOCHA D., PONAMGI
M.: I-Collide: An interactive and exact collision detection system
for large-scale environments. In Proceedings of the Symposium
on Interactive 3D Graphics (1995), pp. 189-196. 1, 2

[CR72] Coo0K S. A., RECKHOW R. A.: Time-bounded random
access machines. In Proceedings of the fourth annual ACM sym-
posium on Theory of computing (1972), pp. 73-80. 3

[CS06] COMING D. S., STAADT O. G.: Kinetic sweep and prune
for multi-body continuous motion. Computers & Graphics 30, 3
(2006), 439-449. 2

[CS08] COMING D. S., STAADT O. G.: Velocity-aligned discrete
oriented polytopes for dynamic collision detection. /EEE Trans-
actions on Visualization and Computer Graphics 14, 1 (2008),
1-12. 2

[Eri04] ERICSON C.: Real-Time Collision Detection. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. 1

[GTT13] GELERI F., TOSUN O., TOPCUOGLU H.: Parallelizing
broad phase collision detection algorithms for sampling based
path planners. In Parallel, Distributed and Network-Based Pro-
cessing (PDP), 2013 21st Euromicro International Conference
on (2013), pp. 384-391. 1

[Hub96] HUBBARD P. M.: Approximating polyhedra with
spheres for time-critical collision detection. ACM Transactions
on Graphics 15,3 (1996), 179-210. 1

[KHI*07] KOCKARA S., HALIC T., IQBAL K., BAYRAK C.,
ROWE R.: Collision detection: A survey. In IEEE International
Conference on Systems, Man and Cybernetics (2007), pp. 4046—
4051. 2

[LAMO6] LARSSON T., AKENINE-MOLLER T.: A dynamic
bounding volume hierarchy for generalized collision detection.
Computers & Graphics 30, 3 (2006), 450-459. 2

[LCFO5] LUQUE R. G., CoMBA J. A. L. D., FREITAS C. M.
D. S.: Broad-phase collision detection using semi-adjusting
BSP-trees. In Proceedings of the 2005 Symposium on Interactive
3D Graphics and Games (2005), 13D 05, ACM, pp. 179-186. 1

[LHLK10] LU F., HARADA T., LEE Y., KIM Y. J.: Real-time
collision culling of a million bodies on graphics processing units.
ACM Trans. Graph. 29, 6 (2010), 154:1-154:8. 1, 2,9

[LLCC13] Lo S. H., LEE C. R., CHUNG I. H., CHUNG Y. C.:
Optimizing pairwise box intersection checking on GPUs for
large-scale simulations. ACM Transactions on Modeling and
Computer Simulation 23, 3 (2013), 19:1-19:22. 1,9

[MHN11] MAZHAR H., HEYN T., NEGRUT D.: A scalable par-
allel method for large collision detection problems. Multibody
System Dynamics 26, 1 (2011), 37-55. 1

[MZ15] MAINZER D., ZACHMANN G.: Collision detection
based on fuzzy scene subdivision. In GPU Computing and Ap-
plications. Springer, 2015, pp. 135-150. 2

[Ove92] OVERMARS M. H.: Point location in fat subdivisions.
Inf. Process. Lett. 44, 5 (1992), 261-265. 1

[PCM12] PAN J., CHITTA S., MANOCHA D.: FCL: A general
purpose library for collision and proximity queries. In IEEE
International Conference on Robotics and Automation (ICRA)
(2012), pp. 3859-3866. 1, 2

[PML97] PoONAMGI M. K., MANOCHA D., LIN M. C.: In-
cremental algorithms for collision detection between polygo-
nal models. IEEE Transactions on Visualization and Computer
Graphics 3,1 (1997), 51-64. 2

[PS85] PREPARATA F. P., SHAMOS M. 1.: Computational Geom-
etry: An Introduction. Springer-Verlag, 1985. 2

[Sam05] SAMET H.: Foundations of Multidimensional and Met-
ric Data Structures. Morgan Kaufmann, 2005. 1

[SSWO1] SIGURGEIRSSON H., STUART A., WAN W.-L.: Algo-
rithms for particle-field simulations with collisions. Journal of
Computational Physics 172, 2 (2001), 766-807. 1

[TBW09] TRACY D. J., Buss S. R., Woobs B. M.: Efficient
large-scale sweep and prune methods with AABB insertion and
removal. In Proceedings of the 2009 IEEE Virtual Reality Con-
ference (2009), IEEE Computer Society, pp. 191-198. 2

[Ter07] TERDIMAN P.: Sweep-and-prune. Online, Sept 2007. 2

[THM*03] TESCHNER M., HEIDELBERGER B., MULLER M.,
POMERANERTS D., GROSS M.: Optimized spatial hashing for
collision detection of deformable objects. In Proc. Vision, Mod-
eling, Visualization VMV 2003 (2003), pp. 47-54. 1

[TKH*05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-
P., FAURE F., MAGNENAT-THALMANN N., STRASSER W.,
VOLINO P.: Collision detection for deformable objects. Com-
puter Graphics Forum 24, 1 (2005), 61-81. 2

[VCC98] VEMURI B. C., CAO Y., CHEN L.: Fast collision de-
tection algorithms with applications to particle flow. Computer
Graphics Forum 17,2 (1998), 121-134. 1

[Well3] WELLER R.: New Geometric Data Structures for Colli-
sion Detection and Haptics. Springer, 2013. 2

(© The Eurographics Association 2016.

