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Abstract
This paper presents an analytical model for parallel volume rendering of large datasets using GPU-based clusters.
The model is focused on the parallel volume rendering and compositing stages and predicts their performance
requiring only a few input parameters. We also present vl3, a novel parallel volume rendering framework for
visualization of large datasets. Its performance is evaluated on a GPU-based cluster, weak and strong scaling are
studied, and model predictions are validated with experimental results on up to 128 GPUs.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics

1. Introduction

Increasingly over the last few years, dedicated GPU-based
computer clusters have been built to assist in visualization
and analysis tasks, oftentimes sharing filesystems and net-
work interconnections with large supercomputers. The vi-
sualization and analysis community has gathered significant
knowledge and experience from building GPU clusters, yet
a more comprehensive approach would be desirable to drive
the design of these systems.

A prevalent application of GPU-based clusters is volume
rendering of large datasets. Solutions to common problems
in large-scale volume rendering, such as parallel rendering
and compositing, are abundant in the literature. These ad-
vances are quickly assimilated by the visualization com-
munity in their open parallel visualization applications.
Nonetheless, modeling specific stages of an application in
concert with the hardware it will run on, along with their
validation on existing machines, could become a powerful
tool allowing us to make better design decisions in future
systems.

The main contributions of this paper are the description of
a model for parallel volume rendering on GPU-clusters and
its validation with data collected from vl3, our scalable par-
allel GPU-based volume rendering application, running on a
dedicated GPU cluster at the Argonne Leadership Comput-
ing Facility.

2. Related Work

Parallelizing volume rendering is a strategy used to both
speedup the rendering process and render larger data. This
introduces a compositing step to volume rendering, which
can be time consuming on large systems, so different algo-
rithms have focused on optimizing it. Compositing is usu-
ally parallelized by dividing up the data space and/or divid-
ing up the image space. Sort-first techniques divide the out-
put image among processes, while sort-last approaches di-
vide up the data space. Sort-first is more common in shared
memory systems [PTT98] than distributed memory systems
[BIPS00], because with shared memory systems, memory
and data are available to all processes. On distributed mem-
ory systems, sort-last techniques are often employed, using
object decomposition to more efficiently use available mem-
ory by giving each node a subset of the full dataset. Sort-
last is described in the original DirectSend [Hsu93] algo-
rithm, where local sub-blocks are rendered and the over op-
erator [PD84] is used to combine the resulting 2D renderings
into a final image. The BinarySwap [MPHK94] algorithm
introduced a tree-based compositing algorithm and used im-
age space decomposition. Algorithms related to BinarySwap
have been developed to improve the BinarySwap algorithm
and apply it to different systems [ISTH03], [PYRM08]. A
parallel implementation of DirectSend has been described
in [EP07], where its performance was compared to the serial
implementation and the BinarySwap algorithm. Other ad-
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(a) Micro Computed Tomography (b) Cosmology

(c) Computed Tomography (d) Astrophysics

Figure 1: Volume rendering applied in different domains. Images generated using vl3 parallel volume rendering on GPU-based
clusters at the Argonne Leadership Computing Facility.

vances in large-scale compositing algorithms are described
in [MKPH11] and implemented in the IceT library from San-
dia National Laboratories.

Parallel volume rendering provides the opportunity to
load larger datasets whenever additional hardware is avail-
able. [CDM06] explored rendering larger datasets of 30003

voxels using hundreds of cores. [PYRM08], [PYR∗09] in-
vestigated loading large datasets up to 44803 voxels, with
tens of thousands of cores. [HBC10] analyzed the benefits of
combined process and thread parallelism at 200,000 cores.

Volume rendering was first presented on commodity GPU
clusters by [MHE01] and [BPT02]. Since then, additional
algorithmic optimizations have been researched for GPUs
[SMW∗04], [WGS04]. Taking advantage of programmable
graphics pipelines, ray casting volume rendering on the GPU
was first described in [KW03]. Expanding on the subject,

an entire chapter was devoted to GPU-based ray casting in
[HKRs∗06], including an example of fragment shader code
for single-pass ray casting and a number of possible opti-
mizations. In 2005, the FlowVR framework [AR05] used
sort-first cluster volume to render a 5123 voxel dataset to a
tiled display. More recently, MapReduce was applied to dis-
tributed GPU volume rendering [SCMO10] scaling up to 32
GPUs and 10243 voxels. In [FCS∗10], extensions to Visit for
multi-gpu rendering were presented and performance was
reported on the Lens and Longhorn GPU clusters, scaling
up to 256 GPUs. Not directly involving GPUs, but relevant
to the problems of scalable parallel volume rendering and
compositing, [MRG∗08] reported on ParaView scalability
for parallel volume rendering with up to 512 processes run-
ning on a Cray XT3 supercomputer.
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3. vl3 Parallel GPU Volume Rendering Architecture

vl3, a parallel GPU-based volume rendering application de-
veloped at Argonne National Laboratory and the Compu-
tation Institute of the University of Chicago, was used to
collect experimental data in this work. Its architecture is
driven by the parallel volume rendering process, with a mod-
ular design that enables its various components to be easily
swapped out. This facilitates the development and testing of
new methods and algorithms, as well as easily configuring
vl3 based on the hardware it is run on. vl3 has been used to
generate production level visualizations of data from differ-
ent disciplines, as illustrated in Figure 1. The functions in
vl3 are broken down into the following categories:

Data Input: This module is responsible for retrieving
data from various sources, such as parallel file systems and
networks, and presenting the data to the next stage of the
pipeline via a common interface. vl3 implements loaders for
several 3D data formats, providing a plugin architecture to
allow new loaders to be written. The system supports com-
mon data formats, such as raw/binary, Dicom, and VTK,
among others.

Rendering: vl3 parallelizes the volume rendering pro-
cess by spatially decomposing the 3D volume into smaller
equal-sized chunks (including ghost cells), and distributing
them among multiple nodes of a cluster computer. Render-
ing of regular grids and Adaptive Mesh Refinement (AMR)
data are supported [LVI∗13]. Ray casting volume render-
ing is implemented using OpenGL and the OpenGL Shad-
ing Language (GLSL). The core rendering code is executed
as GLSL fragment shaders, typically casting one ray per out-
put pixel, and sampling the 3D texture along the ray to obtain
the pixel final color. Additionally, GLSL allows the system
to run code on GPU hardware or in software using the Mesa
3D library.

Compositing: When subvolumes are rendered by sepa-
rate compute nodes, the result is a number of 2D images that
need to be composited together into the final image. To do
this, the images must be blended together in front-to-back
order, with the latter determined by the camera location and
a spatial representation of the subvolumes. Since the GPUs
are typically on separate machines, both the network com-
munication and the actual blending time need to be consid-
ered to determine the system performance. The simplest al-
gorithm for compositing is the serial DirectSend algorithm,
where all the rendering nodes send their final 2D images to a
single machine, which blends them into a single final image.
There is also parallel DirectSend, where the image space is
partitioned among N processes, each responsible for blend-
ing over a subset of the full image. The modular architecture
of vl3 makes it simple to switch among these or other com-
positing algorithms.

Output: Results must be displayed once the volume ren-
dering and compositing steps are complete. vl3 supports

multiple modalities, including batch mode, interactive visu-
alization, and streaming. In batch mode, one or more im-
age snapshots are written to files, and can be used later to
generate videos. Another option is to run vl3 interactively
on a local desktop or laptop computer with a discrete GPU,
where images are viewed at interactive frame rates. More
commonly when using larger datasets, vl3 runs as a Mes-
sage Passing Interface (MPI) application on a GPU-cluster.
In this case, vl3 can stream large pixel count images to
high resolution displays such as 4K monitors or tiled dis-
plays [HIO∗11].

4. Performance Model

In the scope of this paper we are mainly interested in es-
timating the impact of rendering and compositing times on
the system performance, without considering storage access
times. This simplification assumes that datasets fit into the
combined CPU memory of all processors. Therefore, there
is no need to consider intermediate accesses to storage dur-
ing rendering and compositing. For similar considerations,
we will ignore the time it takes to load the dataset from stor-
age into CPU memory, and the time to either display or store
the final renderings. Consequently, the total time to render a
frame will be modeled solely by the individual contributions
of GPU volume rendering and compositing times as:

TTotal = TRender +TCompositing (1)

4.1. Volume Rendering

In GPU-based volume rendering using ray casting, there are
usually three steps clearly differentiated: (i) the raw data is
first loaded from the CPU memory onto the GPU memory;
(ii) data is then rendered on the GPU by casting rays into the
volume; and (iii) the rendered pixels are read back from the
GPU to the CPU. The time to render a volume is thus given
by:

TRender = TLoadGPU +TGPURender +TReadBackGPU (2)

Using a simple block division wherein the total data vol-
ume VTotal is distributed equally among N ranks, the volume
in voxels on each rank is:

Vrank =
VTotal

N

where there is one GPU per rank. The overhead added by
ghost cells is negligible in large datasets, thus they have not
been considered in this analysis.

A volume Vrank is present on the CPU memory and must
be first transferred to the GPU over the system bus with
bandwidth BWSystemBus. Thus, the time to load the entire data
volume from the CPU memory to the GPU memory on N
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ranks is given by:

TLoadGPU =
Vrank ×dvoxel
BWSystemBus

(3)

where dvoxel is the size in bytes for each voxel.

A GPU can render FragGPU pixels at a time, where
FragGPU is the number of fragment shaders. Thus, a GPU
needs to perform a number of iterations to render its sub-
volume, given by:

RenderItr =
Irank

FragGPU

where Irank is the total number of bytes in the partial image
generated by each GPU. As an example, if the output image
is 4096×4096 pixels and there are 2 rendering GPUs, Irank
is 4096×4096/2 = 8388608 bytes.

Therefore, the time to ray cast on the GPU can be approx-
imated by:

TGPURender = RenderItr ×SamplesRay ×TProcessSample (4)

where TProcessSample is the time it takes to process an indi-
vidual sample on the GPU and SamplesRay is the number of
samples to be evaluated along the trajectory of the ray.

After rendering, pixels need to be read back to CPU mem-
ory. Therefore:

TReadBackGPU =
Irank ×dpixel

BWSystemBus
(5)

where dpixel is the size in bytes for each pixel (e.g. four bytes
for RGBA values).

Taking into account the three components in Equation 2,
the total volume rendering time becomes:

TRender =
Vrank ×dvoxel
BWSystemBus

+RenderItr ×SamplesRay ×TProcessSample

+
Irank ×dpixel

BWSystemBus
(6)

Note that all parameters in this equation are either known
from operating conditions or system specifications, or can
be obtained experimentally.

4.2. Compositing

The compositing stage takes partial images from individual
rendering ranks and blends them adequately to create the fi-
nal image. The total compositing time is given by:

TCompositing = TNetworkTrans f er +TGPUCompositing (7)

In the following subsections we consider two compositing
algorithms, serial Direct-send and its parallel counterpart.

4.2.1. Serial Direct-send Compositing

In the serial algorithm, a single node is used to composite the
various rendered images. If BWNode is the maximum achiev-
able network throughput of the compositing node and s is
the one-way latency, the total transmission time for N − 1
concurrent transfers from rendering GPUs is given by:

TNetworkTrans f er = s+[(N −1)×
Irank ×dpixel

BWNode
] (8)

Once the compositing node has received all sub-images
from rendering nodes, they have to be loaded into the GPU,
blended, and read back. The image size loaded to the GPU
on the compositor is Irank, therefore

TLoadToGPU =
Irank ×dpixel

BWSystemBus
(9)

Compositing involves iterating over the sub-images sorted
in front-to-back order and blending them two at a time. Since
a GPU can blend FragGPU pixels at a time, a number of
iterations are needed, given by:

SerialCItr =
Irank

FragGPU

while the time to read back from GPU is given by:

TReadBack f romGPU =
IOut put ×dpixel

BWSystemBus
(10)

where IOut put represents the desired size of the output image
(1920×1080 pixels, for example).

With that, the total time for serial compositing is:

TSerialGPUCompositing = N ×
[
TLoadToGPU +TReadBack f romGPU

+SerialCItr ×TBlendImages

]
(11)

where TBlendImages is the time it takes to blend two pixels
on the GPU. Therefore, equation 7 will give the total serial
compositing time as

TSerialCompositing = s+[(N −1)×
Irank ×dpixel

BWNode
]

+N ×
[ (Irank + IOut put)×dpixel

BWSystemBus

+SerialCItr ×TBlendImages

]
(12)

4.2.2. Parallel Direct-send compositing

In case of parallel compositing, the amount of data compos-
ited on each rank is Irank consisting of N image buffers in the
worst case. The output image, Iout put is composited across N
ranks, with each rank producing a portion IOut put/N of the fi-
nal image. Hence, we effectively parallelize the compositing
computation at the added overhead of additional communi-
cation.
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(a) model predictions for serial compositing (b) experimental results for serial compositing

(c) model predictions for parallel compositing (d) experimental results for parallel compositing

Figure 2: Strong scaling using the serial and parallel Direct Send compositing algorithms

As there are now N compositing ranks, the network trans-
fer time becomes

TNetworkParallel = [(N −1)× s]

+ [(N −1)×
Irank ×dpixel

N
× 1

BWNode
] (13)

Since every compositing rank now has smaller size images
to composite, the times to load and read back an image to
and from the GPU become

TLoadToGPUParallel =
Irank ×dpixel

N ×BWSystemBus
(14)

TReadBack f romGPUParallel =
IOut put ×dpixel

N ×BWSystemBus
(15)

The number of blending iterations is also reduced by N

ParallelCItr =
Irank/N

FragGPU

From that, the total time for parallel compositing is

TParallelCompositing = [(N −1)× s]

+ [(N −1)×
Irank ×dpixel

N
× 1

BWNode
]

+N ×
[ (Irank + IOut put)×dpixel

N ×BWSystemBus

+ParallelCItr ×TBlendImages

]
(16)

5. Evaluation

The performance of parallel volume rendering on GPU-
based clusters is evaluated as the number of GPUs and the
total volume data rendered are increased. The model is used
to predict performance, as well as to determine the overall
influence of the volume rendering and compositing compo-
nents.

Our experimental testbed consists of Tukey, a computer
cluster at Argonne National Laboratory built with multi-core
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(a) model predictions for serial compositing (b) experimental results for serial compositing

(c) model predictions for parallel compositing (d) experimental results for parallel compositing

Figure 3: Weak scaling using the serial and parallel Direct Send compositing algorithms

X86 computers. There are 96 compute nodes based on the
AMD Dual Opteron 6128 processor, with 16 cores per node.
Every node also has 64 GB RAM and two Nvidia Tesla
M2070 GPUs, adding up to 6 terabytes of CPU RAM and
1.1 terabytes of GPU RAM for the entire system. The peak
GPU performance for the system is estimated at over 98 ter-
aflop. The nodes are connected via a QDR Infiniband inter-
connect and the MPI implementation is Mvapich2 [MVA]
from Ohio State University (OSU).

5.1. Strong scaling performance

In strong scaling we are interested in evaluating how the sys-
tem performance changes as the problem size is preserved
while more GPUs are used to obtain the solution. In this
case, we use a synthetic dataset consisting of 20483 voxels
with 8 bit per voxel and scaling to up to 128 GPUs. The res-
olution of the output image is 2048×2048 pixels and every
rendering node samples each voxel at least once during the
ray casting process.

Parameters for our models are empirically obtained from
profiling tools such as the bandwidth test included in the
Nvidia GPU Computing SDK [GPU] and the OSU mi-
crobenchmarks [MVA] for network latency and bandwidth.
Using the model for volume rendering with serial and par-
allel DirectSend composition we obtain the curves shown in
Figures 2a and 2c. In our experiments, there is one MPI rank
per GPU, for which individual profiling information is col-
lected for a thousand iterations. Execution times are shown
averaged in figures 2b and 2d for serial and parallel Direct-
Send compositing, respectively.

For serial compositing we observe good agreement for
volume rendering and compositing rendering times (blue
and green curves, respectively). Using the RMS error in ta-
ble 1 as a metric to quantify the deviations between predic-
tion and experiment, the worst match is for compositing net-
work time, which agrees with the deviations observed be-
tween both red lines in figures 2a and 2b. In addition, the
serial compositing model predicts a slight increase of total
time for a large number of GPUs. Similarly, a flattening of
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the total time is observed in experiments, but this deviation is
mainly attributed to the inherent reduction in network band-
width when packet sizes decrease as a consequence of the
increase of the number of GPUs. In case of parallel Direct-
Send compositing, there is good agreement for compositing
network and rendering times in terms of RMS error (red and
green curves in figures 2c and 2d ). The worst match is vol-
ume rendering time (blue curves), though the trend observed
in the experiments is still nicely captured by the model. As
expected, volume rendering time (blue) is comparable in ex-
perimental results for serial and parallel DirectSend cases.
More importantly, experiments confirm that the overall per-
formance and scaling for parallel DirectSend is significantly
better, by almost an order of magnitude, than the serial algo-
rithm as the number of GPUs increases.

5.2. Weak Scaling

Figures 3a and 3c depict the model prediction for weak
scaling using serial and parallel DirectSend compositing,
wherein we keep the load per GPU constant as the total num-
ber of GPUs is increased. In this case we use a volume size
of 5123 voxels per GPU. Every time we double the number
of GPUs, we also double the total number of voxels and the
total number of pixels in the resulting image. For example,
for 2 GPUs, the total volume size is 6453 voxels, which di-
vided by 2 results in 5123 voxels per GPU. Similarly, the
image size for 2 GPUs is 1024× 512 pixels, preserving the
ratio of 5122 pixels per GPU. As we scale from 2 GPUs
to 128 GPUs we reach a total volume size of 25603 vox-
els and an image size of 8192× 4096 pixels. As expected,
the predicted volume rendering time remains relatively flat,
since every GPU keeps the same rendering load. On the other
hand, for both compositing algorithms the compositing net-
work time starts to dominate for larger values of the number
of GPUs used. Experimental results for the same problem
configurations are shown in figures 3b and 3d, where once
again we see the network compositing time dominating the
overall frame time. We also observe good agreement with the
behavior predicted by the model, where the total frame time
increases for an increasing number of GPUs due to the influ-
ence of the network transfer time in the compositing stage.

In this case, the worst RMS match is observed for com-
positing render time (green) for serial and parallel Direct-
Send compositing. Also, volume rendering time (blue) is
similar in figures 3a and 3c. In general, the model captures
fairly well the trends for the three main components. As in
the strong scaling case, parallel DirectSend outperforms and
shows better weak scalability than serial compositing in both
model and experiment.

6. Conclusion and Future Work

In this paper we have proposed a simple model for the
ray casting and compositing stages of volume rendering on

Strong Scaling Weak Scaling
Serial Paral. Serial Paral.

Vol.Rend. (blue) 0.065 0.210 0.019 0.016
Comp.Net. (red) 0.108 0.014 0.266 0.078
Comp.Rend(grn) 0.028 0.001 0.075 0.011
TotalTime (purp) 0.528 0.221 0.368 0.099
Refer to figures 2a 2b 2c 2d 3a 3b 3c 3d

Table 1: RMS error between predicted and average experi-
mental values for serial and parallel DirectSend for strong
and weak scaling. Numbers in bold show worst cases. Total
Time is shown but not considered for worst case.

GPU-based clusters. Predictions are supported by experi-
mental data, proving that the model is reasonably close to
reality.

Results show that compositing network time is the domi-
nant component of the total time when the number of GPUs
increases, with mainly two possible factors for explaining
the observations: (i) network contention in case of serial
compositing; (ii) bandwidth decrease for lower packet sizes
as a consequence of an increased number of GPUs. This
could be a crucial factor in designing future network in-
terconnects, where a sustained bandwidth is desired for all
packet sizes.

We have shown scalability of vl3 for up to 128 GPUs
and 25603 voxels. vl3 scalability, in terms of volume size,
is determined by the number of GPUs used and their in-
ternal memory size. In production jobs we have scaled vl3
up to 81923 voxels with 128 GPUs and output resolutions
of 6144 × 3072 pixels. Its exceptional adaptability, where
GLSL volume renderers and compositors could be replaced
with different approaches (i.e. CUDA on GPU-based sys-
tems with no graphics drivers, OpenMP and OpenACC on
CPU-based systems), make vl3 an excellent candidate for
volume rendering in future architectures.

The model presented here could be adapted by other re-
search groups to evaluate the efficiency of different volume
rendering components, providing reasonable starting points
to optimize volume rendering performance. It could also al-
low them to analyze and predict performance of volume ren-
dering on different GPU clusters. This could be invaluably
helpful in the design of upcoming GPU clusters to avoid bot-
tlenecks and produce the most powerful systems at a given
cost.

In future work we will extend the model to account for
optimizations such as compression, asynchronous transfers
to/from GPU, and asynchronous network communication.
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