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Abstract
The continuing evolution of Graphics Processing Units (GPU) has shown rapid performance increases over the
years. But with each new hardware generation, the constraints for programming them efficiently have changed.
Programs have to be tuned towards one specific hardware to unleash the full potential. This is time consuming and
costly as vendors tend to release a new generation every 18 months. It is therefore important to auto-tune GPU
code to achieve GPU-specific improvements. Using either static or empirical profiling to adjust parameters or
to change the kernel implementation. We introduce a new approach to automatically improve memory access on
GPUs. Our system generates an application specific library which abstracts the memory access for complex arrays
on the host and GPU side. This allows to optimize the code by exchanging the memory layout without recompiling
the application, as all necessary layouts are pre-compiled into the library. Our implementation is able to speedup
real-world applications up to an order of magnitude and even outperforms hand-tuned implementations.

Categories and Subject Descriptors (according to ACM CCS): D.3.3 [Programming Technique]: Language Con-
structs and Features—Data types and structures I.3.1 [Computer Graphics]: Hardware Architecture—Graphics
processors I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data types

1. Introduction

In recent years Graphics Processing Units (GPU) have
emerged as an alternative to classical CPUs. Their massively
parallel architecture provides a tremendous amount of com-
pute power and can significantly improve performance of an
application. Unfortunately using GPUs is much more diffi-
cult. The architectural differences compared to a CPU re-
quire often low level programming and are much harder
to optimize. Unleashing the full potential requires the pro-
grammer to have good knowledge of the actual hardware.
The vast plethora of hardware constraints for different GPU
vendors and generations interfere with the optimization of
applications. New GPU architectures are released every 18
months and require time-consuming changes in the imple-
mentations.

It is well known that memory access and in particu-
lar the memory layout of complex arrays is essential for
performance on GPUs (as described in chapter 5.3.2 in
[NVIb]) due to their lack of significant caching and hardware
prefetching. This applies not only to the memory access pat-
tern in the GPU code but also to the way data is provided
to the GPU in the first place. Therefore we propose an auto-
tuning approach which generates optimized host and device

code based on empirical memory usage observations and
machine learning techniques. We focus on the optimization
of Array of Structs (AoS) and multi-dimensional arrays. Our
approach trains a model that is capable of finding the best
suited memory layouts. Furthermore, we are able to train our
model for varying array sizes and select the best performing
implementation depending on the amount of data.

We developed a prototype of our approach called
“MATOG Auto-Tuning on GPUs” (MATOG) which is
able to optimize the usage of device memory as well as
shared memory. We further designed MATOG in a way,
that allows easy integration in existing applications without
the need to reimplement vast parts of the code. MATOG
does not rely on a specific compiler, as it generates code
for a library, which is then linked to the actual application.
This library then is used to access GPU data in the host
and device code. Experiments have shown a speedup for
existing applications of up to an order of magnitude. To
summarize our contributions are as follows:

1. An automated memory layout optimization system, that
can be easily integrated into existing applications with a
very low code footprint.

2. An approximation to limit the solution space, which
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speeds up the construction of the decision model, with-
out introducing a significant performance drop compared
to a model trained on the entire solution space.

3. An evaluation of our automatic memory layout optimiza-
tions for three complex applications (Bitonic Sort, KD-
Tree Binning and REYES rendering) with different char-
acteristics in terms of computation and memory access.

2. Related Work

Simulation tools, metrics, and models are often used to pre-
dict different execution properties (e.g., L1 cache rate, mem-
ory bandwidth, ...). Schaa [Sch09] developed a model to pre-
dict the performance of applications in a multi-GPU envi-
ronment. He determined multiple influencing performance
factors for the execution time and evaluated them with em-
pirical data. Baghsorkhi et al. [BDP∗10] profiles a GPU to
determine its characteristics and predict the performance of
code on that particular hardware. Ganestam et al. [GD12]
use an analytical GPU model to predict the performance
in a ray-tracing application, and to adjust the calculation
to improve interactive performance. Models like these are
widely used in auto-tuning compilers, which use statical
profiling to optimize the code to perform best on a given
hardware. Some compilers require another language, e.g.,
Rudy et al. [RKH∗11] developed CUDA-Chill, an abstract
language for parallel processing. This was later used by
Khan [Kha12], who developed several code transformations
and applied these to GPU code. Copperhead [CGK10], Se-
quoia [FHK∗06], and Terra [DHA∗13] hide the low level
code using a high level language. This allows to optimize the
actual code using their compiler, without any interaction of
the programmer. Other systems try to apply their optimiza-
tions using preprocessor defines (e.g., HiCUDA [HA09]),
which can apply optimizations such as special loop trans-
formations. All these compiler-bound approaches have in
common, that they optimize the code with static analysis.
This has the advantage, that it is much faster than an empir-
ical optimization. But it is unable to model effects caused
by data properties. Instead of being limited to one optimal
implementation, our approach allows use of multiple imple-
mentations adapted to specific data properties.

Another common approach are Domain Specific Lan-
guages (DSL). Halide [RKBA∗13] is embedded in C++ and
can be used to optimize image processing pipelines, Green-
Marl [HCSO12] is focused on graph analysis and Zhang et
al. [ZM13] developed a framework to optimize the execution
of 3D stencil codes on heterogeneous GPU clusters. These
approaches focus on a specific application area which nar-
rows down the space of possible domain specific optimiza-
tions. In contrast, our approach can be applied to almost any
application without restriction to a specific application do-
main.

In some auto-tuning applications, empirical data is used to
learn or build a model, which predicts the performance of a

specific GPU implementation. Guo et al. [GHC∗11, GW10]
and Choi et al. [CSV10] applied empirical tests and model-
driven partitioning to optimize sparse- and dense-matrix
multiplications on GPUs. Sorensen et al. [Sør12] uses empir-
ical tests to optimize memory access and the launch config-
uration of matrix-multiplication kernels. These approaches
have shown promising results, but are limited to their spe-
cific application. Bergstra et al. [Ber12] uses machine learn-
ing techniques and empirical tests to predict the performance
of GPU code on other hardware. This approach has some
similarities to our approach, as we also learn a decision tree
based on empirical measurements. In contrast, we do not
learn how an unknown GPU would perform but focus in-
stead on optimizing the execution for a known or related
GPU with unknown data properties.

3. Design

In the following we use NVIDIA’s CUDA [NVIa] model as
a generic GPU model. We focus our optimizations on Arrays
of Structs (AoS) and multi-dimensional arrays in global and
shared memory. Our optimizations are able to select differ-
ent implementations depending on the problem size. Further
we evaluate if using the texture memory or adjusting the size
of the L1 cache (by reducing the size of shared memory) has
a positive effect on the performance. The advantage of tex-
ture memory is, that it uses an additional read-only cache
which can lead to a higher total bandwidth.

3.1. Array of Structs

To optimize an Array of Structs we decided to implement
three different layouts. The first one is the intuitive way to
simply store the structs in an array, which we refer to as the
baseline implementation. The second layout we use is Struc-
ture of Arrays (SoA). In this approach all components are
stored in separate arrays. This can lead to coalesced mem-
ory access, if the access pattern reads adjoining elements.
Further we use a hybrid format called Array of Structure of
Arrays (AoSoA), as e.g. used by Wald et al. [Wal12]. Data
is partitioned in chunks according to the GPU’s SIMD width
(warp size). Figure 1 shows a comparison between all three
formats. For all memory layouts we support to store them in
global and shared memory. If data is read-only, we can store
each component in a separate texture array and use texture
memory to access it. Further, if a struct only needs to be par-
tially updated, it is possible to declare parts of the struct to
be read-only, so that they can be stored in texture memory
while applying the previously mentioned memory layouts to
the other components.

3.2. Multi-dimensional Arrays

Multi-dimensional arrays can be transposed which changes
coalescence of the memory access. For these arrays, we re-
fer to a non-transposed array as baseline implementation.
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Figure 1: This Figure shows the differences between AoS,
SoA and AoSoA. Each color represents a field in a struct
with four different fields. For simplification we used a SIMD
width of 2 for the AoSoA case.

Again, we support storing these in global and shared mem-
ory as well as using the texture cache (if declared as read-
only).

Additionally we support a special type of data structure
for histograms, as many applications require to create a his-
togram from a certain data set. It is common to use shared
memory and increment the necessary cells by an atomic add.
Depending on the data this could result in complete serial-
ization and many bank conflicts. Storing all results in a local
memory segment for each thread and merging these at the
end of the execution can significantly improve the perfor-
mance if the problem size is large enough to compensate for
the additional data merging step. This additional feature can
significantly improve performance in some applications.

3.3. Kernel and Data Properties

The optimal solution in terms of memory access for a ker-
nel depends (at least) on the algorithm, the size of the data
it operates on and (in some cases) even on the actual data.
Some algorithms are only influence by the access pattern.
Optimizing such an algorithm can usually be done by hand.
Another property that influences the kernel performance is
the amount of data. Executing a kernel on 1 kB of data, e.g.,
might be fast using a simple memory layout as all the data
fits into the cache, while using the same kernel with 1 GB of
data could result in severe performance problems as cache
efficiency can be very low for certain memory layouts. To
handle this, we keep track of all variables that are allocated
during the execution. With this information we are able to
reference each variable and its data to each kernel execution.
This allows us to build a decision tree, determines the opti-
mal memory layout for a given data size. The optimization
towards the data values are very difficult to handle as our
approach handles optimization for arbitrary input data and
does therefore not know anything about data properties such
as the sorting order. During the learning phase, our approach
is able to find the best possible solution for a given data set.
But it is unable to guarantee the best performance for other
input data.

4. Learning

In order to train decision trees for the automatic memory
layout selection we first need to gather the necessary train-

ing data. To obtain this data we run the application multi-
ple times using different memory layouts and measure the
runtime of each kernel execution. Since the space of pos-
sible solutions is vast, we introduce two learning modes:
complete and small. The complete mode tests all possible
combinations of memory layouts. Further we allow that each
layout is run with several different test cases provided by
the programmer. This way we can learn a separate deci-
sion tree for each kernel, which can determine the best lay-
out for several different data sets. In small mode we test
all global and all shared memory layouts separately. In the
global memory tests we use the baseline implementation for
shared memory and vice versa. This approximation drasti-
cally reduces the amount of test cases. However it is unable
to profile the relationship between global and shared mem-
ory layouts. This relationship can, however, be neglected for
many kernels, if the amount of time to copy data from global
to shared memory and vice versa is significantly smaller
than the execution time of the kernel itself (see Section 6
for a detailed evaluation on several examples). The equation
|Rc| = |G| · |S| · |P| · |T | defines the number of required runs
for the complete mode and |Rs| = ((|G|+ |S|) · |P|−1) · |T |
for the small mode, where G is the set of available global
memory layouts, S is the set of shared memory layouts and
T is the set of test cases. P decides if the kernel shall pre-
fer L1 cache or shared memory. Depending on the number
of global and shared memory layouts that have to be tested,
the difference between both modes can be huge so that the
small mode drastically reduces the time needed to optimize
the application.

4.1. Decision Tree Construction

Given the profiling data, we are now able to build a non-
binary space partitioning tree, where each tree level repre-
sents one variable. Each node in the tree has a threshold.
If the data amount is smaller than the threshold, the corre-
sponding subtree contains the solution. If the node is a leaf,
it directly contains the solution. If the data amount is big-
ger than the threshold, the next node on the same tree level
will be evaluated. As we cannot expect to cover the entire ar-
gument space of the profiled application, we apply some as-
sumptions. If we have different best implementations for two
array sizes, we subdivide the array size space in the center of
both data points. For regions of the argument space, where
we do not have any profiling data, we apply another best so-
lution determined by matching the arguments. We prioritize
variables by the order of their occurrence in the kernel argu-
ments. This might not lead to the best possible solution in
this particular region of the argument space, but gives a sta-
ble tree construction. This representation is able to provide a
definite decision for each combination of input data. Figure
2 shows the decision tree of one of our evaluation examples
for a two dimensional argument space.
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Figure 2: Decision tree for the KD-Tree binning example
(see Section 6.2). The tree determines the best global mem-
ory layout for storing the triangle bounding boxes of the 3D
scene depending on the triangle and the bin count. A figure
showing the position of the test samples is provided in the
supplemental material.

5. Implementation

Our prototype design focuses on achieving the optimiza-
tion goal while keeping the required adjustments to an ex-
isting application to an absolute minimum. To achieve this
goal the application must be written using the CUDA Driver
API. This API allows much more control over the execution
on the GPU. We use to exchange the kernel implementa-
tion during the runtime by switching the CUDA module. We
create the different CUDA modules using CMake by com-
piling the kernels in all necessary variants. Further we use
NVIDIA’s CUDA Profiling Tools Interface (CUPTI). This
profiling API allows us to register callbacks and gives us the
opportunity to track kernel parameters as well as the perfor-
mance of the kernels. Our system consists of three compo-
nents. The first one is a code generation tool which generates
a library that abstracts the optimizations from the program-
mer and provides simple transparent access to the data by
using classes with getter and setter functions. The second
component is a shared library which performs all operations
inside the application which are necessary to apply the opti-
mizations. The final component is a tool which profiles the
applications and creates decision trees for the best solutions.

5.1. Library Generation and Profiling

For library generation we require an XML description (e.g.
Listing 1) of the application that lists in particular the data
structures to be optimized and provides information about
the kernels for the automatic CMake project generation. Us-
ing this XML description, the generator decides which op-
timizations can be applied to the project and generates the
corresponding code. The generated CMake project automat-
ically compiles the library and creates platform indepen-
dent PTX files for all kernels. We pre-compile all possible
combinations of memory layouts for each kernel. This al-

1 <matog>
2 <cuda mincc=" 2 . 0 " / >
3 <cmake l i bname =" myLib ">
4 < k e r n e l s > k e r n e l s / myKernel . cu< / k e r n e l s >
5 < / cmake>
6 <code>
7 < s t r u c t name=" MySt ruc t " s h a r e d =" t r u e ">
8 < f i e l d name=" a " t y p e =" long " / >
9 < f i e l d name=" b " t y p e =" i n t " / >

10 < / s t r u c t >
11 <array name=" MyArray " t y p e =" f l o a t " / >
12 < / code>
13 < / matog>

Listing 1: MATOG XML-description

1 # i n c l u d e " MyStruc t . h "
2
3 MyStruc t& d a t a = ∗new MyStruc t ( c o u n t ) ;
4
5 f o r ( . . . ) {
6 d a t a [ i n d e x ] . a = valueA ;
7 d a t a [ i n d e x ] . b = valueB ;
8 }
9

10 d a t a . copyToDevice ( ) ;
11
12 CUmodule module ; CUfunc t ion func ;
13 l o a d F u n c t i o n ( " module " , " f u n c t i o n " , module , func ) ;
14
15 c o n s t MyStruc t : : GPUObject o b j = d a t a . getGPUObject ( ) ;
16 void∗ a r g s [ ] = {&obj , 0 } ;
17
18 cuLaunchKerne l ( func , . . . ) ;
19
20 / / . . .
21
22 d e l e t e &d a t a ;

Listing 2: A host code example showing the conceptional
usage of MATOG.

1 # i n c l u d e " MySt ruc t . cu "
2 _ _ g l o b a l _ _ myFunctionName ( MyStruc t d a t a ) {
3 __shared__ MyStruc tShared <N> s h a r e d ;
4 s h a r e d . copyToShared ( da t a , o f f s e t ) ;
5
6 f o r ( . . . )
7 s h a r e d . b [ i n d e x ] += s h a r e d . a [ i n d e x ] ;
8
9 s h a r e d . copyToGlobal ( da t a , o f f s e t ) ;

10 }

Listing 3: A kernel example showing the usage of MATOG.

lows us to optimize the application without any recompi-
lations and makes it easy to distribute it to different archi-
tectures. For development one can compile only the base-
line implementation, so that recompilation during develop-
ment can be done very quickly. Listing 2 shows an example
host implementation for an application using MATOG. The
code demonstrates the usage of a generated AoS called MyS-
truct and loading of the best suited kernel implementation
using loadFunction, which masks the Driver API calls of
cuModuleLoad and cuModuleGetFunction. Listing 3 shows
the corresponding implementation of a kernel, with shared
memory use. As previously stated, we use a separate tool
to optimize the application. Our optimization tool starts the
application with a set of previously user defined test cases.
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If the programmer has not provided any test cases, it as-
sumes a single default test case with no command line ar-
guments. Depending on the selected learning mode, the op-
timization tool executes the application several times using
different memory layouts. During these runs, we use CUPTI
to trace the performance of each kernel separately for each
of the available implementations. We further extract all ker-
nel arguments and use them to reference each variable to
each kernel that is using it. At the end of the optimization
step, all data is gathered and the per-kernel decision trees as
well as the tree for the usage of global memory are build as
described in Section 4.1.

5.2. Program Execution

During the normal operation of the application, we disable
CUPTI, so that no additional overhead is created. As we have
to decide on a global memory layout as soon as data is writ-
ten to memory or the first kernel is loaded, we implemented
a lazy allocation scheme. This way, MATOG does not de-
cide on a memory layout when the array is instantiated but
when the first data is written to it. As we do not support to
transform data, the decision on the global memory layout is
fixed for the entire execution of the application as soon as
data is written to the first array. In contrast the decision for
the shared memory access of a kernel is done every time the
kernel loading function is executed (see Listing 2). It returns
the optimized kernel, by traversing the decision tree, using
the sizes of allocated arrays. If there are no decision trees
available for the used GPU we check if another device with
the same compute capability has been profiled and use its re-
sults. This assumes that different GPUs of the same compute
capability and therefore of the same generation have similar
effects on code adjustments. If there are no decision trees for
a GPU of the same generation available we use our baseline
implementation.

5.3. Usage

As already mentioned using MATOG is quite easy. The
first step is to create the XML description of the required
data structures. With this document, the library generator
is able to generate the necessary code and CMake project.
MATOG’s compile process automatically detects changes to
the XML description, so that adding new structures during
the development is easy and does not require to rerun the
generator by hand. There are no additional steps required to
develop the application. It also can be run without any re-
strictions directly after compilation but will always use the
baseline implementation, as long as it was not optimized us-
ing the MATOG optimizer. A complete code example is pro-
vided in the supplemental material.

6. Evaluation

In the following sections we evaluate MATOG using three
existing applications of various complexity. We performed

our tests on a NVIDIA Geforce GTX570 and GTX680 (both
run in headless configuration). All timings for learning are
given for the GTX680.

6.1. Bitonic Sort

Bitonic Sort is a parallel sorting algorithm which was intro-
duced by Batcher [Bat68] and is widely used in GPU pro-
gramming. Our implementation consists of two kernels, that
are chosen according to the step size in the sorting proce-
dure. For small step sizes, we use a kernel which uses shared
memory. As big step sizes do not allow to use shared mem-
ory efficiently, we have a second kernel, which directly oper-
ates on global memory. As MATOG does not optimize sim-
ple arrays, we decided to sort an AoS with four columns. For
these columns we use unsigned integers with 64 bit, 32 bit,
16 bit and 8 bit as variable sizes. The data is sorted column
wise. For the evaluation we use a data set with 4.1 M ele-
ments. The numbers are generated randomly in the range of
0 through 1023. In the case of the 8 bit field we truncate the
upper bits, so it contains values between 0 and 255. We limit
the number range to increase the likelihood of conflicts, so
that our algorithm has to compare not only the first column
for sorting the array.

For training we use a limited data set with 1 M random
elements. The small learning mode requires 2.2 s for 9 runs,
while the complete mode requires 4.6 s for 18 runs to learn.
Both methods come to the conclusion that using SoA is al-
ways the best access pattern for global and shared memory
access. Each thread inside a warp has to check the first col-
umn inside the struct at the same time. By using SoA all
these values are stored at adjoined positions. Assuming a
128 B cache line, using SoA the GPU would be able to read
up to 16 items from our first column in the struct. With AoS
the GPU would only be able to load a maximum of 8 items
per cache line. This results in twice the amount of load op-
erations than using SoA. Figure 3 shows the total time re-
quired for all memory access layouts with the 4.1 M random
data set on the GTX680. We omit the results using the option
to use 48 kB instead of 16 kB L1 cache as they are signifi-
cantly slower than using 48 kB shared memory. The reason
for this is the kernel implementation as it does not make ex-
cessive usage of local memory so that reducing the shared
memory results in lower occupancy. Further we do not show
the results of the GTX570 as they are similar.

For this case it is easy to see, that using SoA for global
and shared memory is the best solution, as both of our learn-
ing methods have predicted. On the GTX680 it is 2.14 times
faster than the baseline implementation (AoS). Further we
can see, that the execution time of both kernels is approxi-
mately halfed.
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AA AS AH SA SS SH HA HS HH

Shared Kernel 27.8 14.5 19.8 27.1 14.7 19.0 27.1 15.5 19.1

Global Kernel 287.3 286.6 286.1 132.5 132.5 132.5 157.3 157.6 157.4

0.0

100.0

200.0

300.0

Figure 3: Time (ms) required to sort 4.1 M random ele-
ments for each kernel and all memory access patterns us-
ing GTX680. A = AoS, S = SoA, H = hybrid (AoSoA). First
character specifies the global layout, the second the shared
layout.

6.2. KD-Tree Binning

Our second example is the binning step of binned KD-Tree
construction [PGSS06]. These trees are usually used as ac-
celeration structures for ray tracing but can also be used as
search trees for other applications. We do not perform the
entire construction of the tree, but only the root node bin-
ning of a 3D scene. For this step, a histogram of the trian-
gle distribution in the 3D scene with equidistant bins is cre-
ated. Each dimension is processed independently, yielding
three separate binning results. Our kernel uses 128 threads
per block and iterates over all triangles in parallel. For each
triangle we determine the bin where it starts and the bin
where it ends. We implemented these as arrays with our pre-
viously introduced histogram implementation. After all tri-
angles have been binned, we have to calculate a prefix sum
on the first array and a postfix sum on the second one. To
simulate higher load on the GPU, we perform 256 parallel
binning operations resulting in a total of 768 blocks.

For this example, MATOG applies AoS, SoA, AoSoA as
layout or uses texture memory to access the triangle bound-
ing boxes. The histogram arrays are stored either directly
in shared memory or are buffered in local memory. We use
twelve 3D scenes from a variety of sources, e.g., architec-
ture, cars, 3D scans and artificial structures, ranging from
69 k to 28 M triangles. For training our decision trees we use
two 3D scan and two architectural scenes with 69 k, 282 k,
1 M and 10 M triangles. For the bin count we use 32, 64, 128,
256 and 512 as values. This results in a total of twenty learn-
ing cases. Our small mode takes 26 min for 15 runs, while
complete mode takes 68 min for 32 runs per test case. Un-
fortunately, our 3D scene loader requires over 90 % of the
total execution time (which does, however, not impact the
learning).

For the evaluation we run all possible layout combinations
with all remaining 40 evaluation sets (consisting of 8 scenes
and 5 different bin counts) and the optimal solution by hand
(see Table 1). The results show a maximal speed up of nearly
10 times for the GTX680, while the average speed up is al-
ways higher than a factor of 2 and is close to the optimal av-

GTX 680 GTX 570
Complete Small Complete Small

Min 0.70 0.76 0.90 0.92
Max 9.83 9.83 4.78 4.78
Avg. 2.47 2.39 2.12 2.28
|< 1| 6 1 9 10
|opt| 7 12 11 16
Opt. Avg. 2.99 2.51

Table 1: Results for the binning evaluation showing the used
GPU, learning mode, the minimal, maximal and average
speedup, as well the counts of cases with a speed up below
100% (| < 1|) and the count of cases where MATOG chose
the best possible implementation (|opt|). The last row shows
the average speed up, if we had selected the optimal solution
in all cases.

Kernel Hand-Tuned Complete Small
Dice & Shade 3834.31 3642.73 3673.72
Paint 630.90 601.69 602.90
Compact 374.01 351.90 351.50
Bound & Split 67.81 64.75 64.90
Total 4903.97 4661.07 4693.02

Table 2: Accumulated kernel execution time (ms) on the
GTX680 required to render 100 frames. It is easy to see, that
the Dice&Shade kernel requires 80% of the total execution
time.

erage for both GPUs. Unfortunately MATOG chose in 25%
of the GTX570 test runs a solution which was slower than
the baseline implementation (which however did not have
a serious drop of the average speed up). The fact that the
small learning chose more often an optimal solution shows
that brute force learning does not guarantee best results if
the input data has different data properties than the learning
data. As stated before, our approach is able to learn optimal
layouts for given data properties but is unable to distinguish
between them (except data amount). Please refer to the sup-
plemental material for more detailed charts of the results.

6.3. REYES

This application is based on the REYES system [CCC87]
which is widely used in feature films. It renders higher or-
der surface patches by adaptively dividing them into micro-
polygons of subpixel size. Note that this is a large and com-
plex system — far more complex than typical test cases such
as matrix multiplication — which can demonstrate the prop-
erties of MATOG under (approximately) real-world condi-
tions. Our implementation consists of four different kernels
and follows the work of Patney and Owens [PO08] and Zhou
et al. [ZHR∗09]. The first kernel performs the bound and
split operation which subdivides the micro-polygons until
they are smaller than one pixel. This is an iterative process
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which requires multiple runs of the same kernel. After each
bound and split run, we compact our data using a second
kernel. If all micro-polygons have been processed we per-
form the dice and shade operation, which projects all micro-
polygons into the world coordinate system. In the same ker-
nel the micro-polygons are rasterized and stored into a z-
buffer. Our fourth kernel extracts image information from
the z-buffer and stores it in a 2D image. The original imple-
mentation itself was hand tuned using AoS and untransposed
matrices.

As input model we use the Utah teapot composed of
Bezier-Patches. We use a resolution of 1920×1080 and ren-
der 100 frames for each run to reduce the impact of noise.
Our small mode takes 19 min for 81 runs and our complete
mode takes 86 min for 296 runs to learn. The baseline im-
plementation achieves 20.37 FPS. The frame-rate matches
the rate of our original implementation which suggests, that
our baseline implementation performs as expected and does
not produce any additional overhead. The learned solutions
achieve 21.45 FPS for the complete mode and 21.31 FPS
for the small mode, which is a speedup of 5.3 % and 4.6 %.
Despite the fact that the input application was already hand-
tuned, we were still able to improve the performance. Table
2 shows the time required by each kernel.

7. Conclusion and Future Work

In this paper we demonstrate that improving memory lay-
outs on GPUs can have a significant impact on execution
time, also for real-world applications. Our evaluation has
demonstrated the influence of global and shared memory
layouts. Further it showed the necessity of auto-tuning as
the input data can significantly influence performance for
both global and shared memory layouts. Tuning at runtime
is required as the input data can have a significant impact
on the decision of which implementation to choose. In the
KD-Tree example we have been able to achieve twice the
speedup on the newer GTX680, than on the older GTX570.
Although we assumed, that it should be easier to unleash the
full potential on a newer card without any tuning, we showed
the exact opposite. In the REYES example we have been
able to improve the execution of a hand tuned application,
which has been optimized over several days while including
MATOG took only a couple of hours. Further we presented
two learning methods to train our decision models. While
the complete method showed the best overall speedup, our
small method performed similar but required significantly
less time to learn. Overall our results show, that auto-tuning
is necessary to reach optimal performance for GPU applica-
tions as the variety of different implementations and hard-
ware is too vast for a programmer to optimize in acceptable
time.

For future work we are considering to improve the usage
of MATOG by removing some of the necessary MATOG
calls. Further training time would be significantly reduced

by buffering the input data and rerun the kernel instead if
restarting the application several times during the profiling.
This reduces the required time for applications with long
setup time. We are also considering to take other metrics into
account to remove profiling runs, that will most likely have
no benefit. Additionally we do want to be able to change
the data formats during runtime, so that the application can
dynamically adjust itself to data changes during execution.

The MATOG source code is available at http://www.
gris.tu-darmstadt.de/projects/matog.
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