
Eurographics Symposium on Parallel Graphics and Visualization (2014)
M. Amor and M. Hadwiger (Editors)

Clustered Pre-convolved Radiance Caching

Hauke Rehfeld, Tobias Zirr and Carsten Dachsbacher

Karlsruhe Institute of Technology

Figure 1: A scene rendered with our method (left). We render indirect illumination (center) using pre-convolved radiance
caching (RC); Our contribution is an efficient and robust computation of the RC based on a voxelization (right) and view-
adaptive cache placement.

Abstract
We present a scalable method for rendering indirect illumination in diffuse and glossy scenes. Our method builds
on pre-convolved radiance caching (RC), which enables reusing the incident radiance computed at a surface point
for its neighborhood. Our contributions include efficient and robust generation of these RCs based on a pre-filtered
voxel representation that stores scene-geometry and surface illumination. In addition, we describe a distribution
strategy that places the RCs according to screen-space clusters to ensure all pixels have valid radiance data when
evaluating indirect illumination. The results demonstrate the scalability of our method and analyze the relation
between render quality, surface glossiness and computation time, which depends on the number of caches and
their resolution.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Photorealistic appearance of virtual objects in computer gen-
erated imagery has always been one of the challenging goals
of computer graphics. This is not pure self-purpose, as can
be seen from the many applications, ranging from video
games and movie productions, to simulators, marketing and
rapid-prototyping scenarios where photorealism plays an
important role. However, in a number of cases, interactive
performance is more important than absolute physical cor-
rectness or completeness, so visually plausible results have
to be, and are, sufficient [YCK∗09]. In this paper, we focus
on plausibility, while providing efficient means to compute
the reflection on the surfaces directly visible to the camera.
The reflected light is gathered from a voxel representation

of the scene using a variant of voxel cone tracing [CNS∗11]
and stored in radiance caches akin to pre-convolved radi-
ance caching [SNRS12]. If the voxelization stores only di-
rect illumination, the resulting image contains “one-bounce
indirect illumination”; if the voxelization already stores a
(coarse) global illumination signal then the result is akin to
final gathering (a common strategy in interactive global illu-
mination renderers [REG∗09, RDGK12]).

Our contributions address the two challenges that re-
main open in the original pre-convolved radiance caching
work [SNRS12]: efficient and robust computation as well as
view- and scene-adaptive placement of the radiance caches.

Radiance caches (RCs) are typically low-resolution, de-
pending on the glossiness of the surface. Using a hierar-

c© The Eurographics Association 2014.

DOI: 10.2312/pgv.20141081

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20141081

H. Rehfeld, T. Zirr & C. Dachsbacher / Clustered Pre-convolved Radiance Caching

chical voxelization to collect incident radiance enables us
to adaptively pre-filter the radiance signal which is crucial
to avoid aliasing or costly supersampling. Throughout this
paper we store direct illumination and assume diffuse sur-
faces in the voxelization (and thus simply speak of direct
and indirect illumination); we refer to orthogonal work con-
cerned with computing and storing voxel-based global illu-
mination [MGP10, Rau13].

2. Previous Work

Computer graphics literature exhibits a huge body of previ-
ous work on (interactive) global illumination which would
be impossible to cover in this section. Instead we refer the
reader to a recent survey [RDGK12] and focus on the most
related work here.

Many-Light Methods One class of methods that re-
cently gained a lot of attention is the many-lights
method [DKH∗13] originating from Instant Radios-
ity [Kel97]. The core idea is to represent all lighting in a
scene with an appropriate set of virtual point lights (VPLs).
The challenge for interactive rendering is to quickly com-
pute lighting from a sufficiently large set of VPLs. Re-
flective Shadow Maps (RSMs) [DS05] render the scene
from the light to capture directly lit surfaces. From these
surfaces, VPLs for one-bounce indirect illumination can
be sampled when rendering the scene from the camera.
The same authors introduce splatting to distribute the il-
lumination from the RSM into the frame buffer [DS06].
Ritschel et al. [RGS09] use the G-buffer to approximate
GI in screen-space (compared to light space in RSMs) by
extending screen-space ambient occlusion. Kaplanyan and
Dachsbacher [KD10] use a method inspired by the discrete
ordinate method to approximate light transport, and use a
RSM to initialize the simulation with direct illumination.
Multi-resolution Splatting [NW09,NW10,NSW09] splats il-
lumination from point lights accelerated using a min-max
depth-map into a multi-resolution framebuffer to reduce fill-
rate requirements. Tiled Deferred Shading [OA11] is even
more efficient. This method creates rectangular tiles over a
G-buffer and culls lights per tile to save on lighting calcula-
tions. The authors extended their work to Clustered Deferred
Shading [OBA12], where they cluster the pixels of each tile
separately by world-space position and normal.

Shading can also be sped up by interleaved sam-
pling [KH01]. In the context of VPLs, interleaved
sampling can be used to evaluate only a subset of
VPLs per pixel [SIMP06, RGK∗08]. Imperfect Shadow
Maps [RGK∗08,REH∗11] can be used to solve the visibility
problem for VPL lighting by computing shadow maps from
a point-based representation of the scene. Also using point
primitives, micro-rendering [REG∗09] rasterizes a lit point-
hierarchy for each pixel of the G-buffer for one-bounce
global illumination, while Holländer et al. [HREB11] sub-

stantially optimize the traversal of such a hierarchy for
GPUs.

Voxel-based Methods Thiedemann et al. [THGM11] use
an atlas to voxelize the scene and then use hierarchi-
cal ray/voxel tests to compute global illumination. Giga-
Voxels [Cra11, CNS∗11] introduce an elaborate scheme to
voxelize the scene into a pre-filtered, sparse voxel octree in
real-time. Radiance from the leaf nodes of the tree is prop-
agated upwards and accumulated in the inner nodes. They
then use this octree to trace cones that collect incident ra-
diance. While cone tracing sacrifices some accuracy for an
approximate result, it is very fast, as with growing cone di-
ameters it can access higher levels of the hierarchy and col-
lect the pre-filtered radiance without missing high-frequency
details of the scene. Rauwendaal [Rau13] uses Voxel Cone
Tracing combined with a hierarchical scene voxelization to
compute global illumination, and examine how isotropic and
anisotropic functions can be stored in the hierarchy using
low order spherical harmonics.

(Ir)radiance Caching Instead of computing the irradiance
per pixel, Irradiance Caching [WRC88] interpolates be-
tween the results of nearby pixels. As this does not allow
to compute glossy reflections, Radiance Caching [KGPB05]
uses spherical harmonics to define a directional func-
tion that stores incident radiance. Pre-convolved radiance
caching (PCRC) [SNRS12] proposes to store incident ra-
diance in a texture with one texel per direction and pre-
convolve it—in essence creating a mip-map-pyramid of the
radiance texture with accumulated radiance in the higher
levels. Additionally, a low-resolution mip-map level is co-
sine folded to store irradiance. Using these two textures,
evaluating the RCs requires only two texture lookups in-
stead of re-evaluating the reflection functions. Irradiance
can also be gathered into screen-space caches from a pho-
ton map [WWZ∗09] to integrate caustics. To enable low
to moderately glossy BRDFs, radiance can be represented
with spherical harmonics instead. The caches are placed in
screen-space using k-means, where the initial caches are dis-
tributed according to a modified version of Ward’s illumina-
tion change term over the pixels of each node of a quad-tree
over the depth-buffer. While this leads to a good distribution
of caches, it is quite expensive to calculate even on the GPU.

3. Clustered Pre-convolved Radiance Caching

When using PCRC for indirect illumination, algorithms to
create, distribute and evaluate the RCs are required. As we
focus on interactive applications, we provide efficient, fully
dynamic and fully parallel variants.

Creation To allow for efficient parallel creation of the
pre-convolved RCs, we employ a hierarchical scene vox-
elization. It is relit and its levels are rebuilt every frame, us-
ing an approach similar to mip-mapping to create individual

c© The Eurographics Association 2014.

26

H. Rehfeld, T. Zirr & C. Dachsbacher / Clustered Pre-convolved Radiance Caching

levels of the hierarchy. The hierarchy enables us to use cone-
marching [CNS∗11] to fill the pixels of the RCs.

Distribution We employ a clustering scheme based
on [OBA12] to distribute RCs in screen-space using a de-
ferred shading G-buffer. Our approach adapts to scene ge-
ometry to ensure that valid data is available when evaluating
the RCs, while keeping the number of clusters (and therefore
caches) low and predictable.

Evaluation As we found the splatting approach advo-
cated in PCRC to be relatively slow, we tailored our cache
distribution to allow for a gathering approach when collect-
ing the incident radiance from RCs.

3.1. Cone-marching a Pre-filtered Hierarchical
Voxelization for efficient Cache Creation

To fill the RCs, we need to collect the incident radiance
around the cache hemispherically into the base layer of the
RC texture. While RCs are relatively low-resolution (162–
322) and can use approximated results [YCK∗09], they must
not omit bright parts of the scene. Using traditional render-
ing algorithms like rasterization or raytracing would require
taking several samples per pixel of the RC texture to avoid
this.

Cone-marching in a pre-filtered voxel hierarchy starts
traversal in a high-resolution voxel level and uses lower res-
olution levels when the cone diameter gets larger, see Fig-
ure 2. It allows for fast, approximate traversal, and the pre-
filtered low-resolution levels of the hierarchy ensure impor-
tant parts of the scene are represented in the result even when
using larger cones.

Because this meets our requirements so well, we simply
cone-march one cone per pixel of the RC to collect the in-
cident radiance. While the result is approximate, this gives
us a sampling of the whole hemisphere of the RC without
missing important details of the scene.

The voxel-hierarchy can store direct or indirect illumina-
tion, each layer holding pre-filtered illumination from the
layer below. Thus our pre-convolved RCs generated with this
voxel-hierarchy allow for one-bounce indirect illumination
in the case of direct light, or multi-bounce indirect illumina-
tion if the hierarchy stores global illumination.

Voxelization As the voxelization algorithm is strictly or-
thogonal to our algorithm, we rely on a pre-process that stat-
ically voxelizes input meshes. It samples all surfaces uni-
formly, writes each sample to its cell in the voxelization and
averages the surface normals of all samples in the cell.

The resulting voxelization saves only one normal and one
albedo value per cell, and a list of all non-empty voxels. It
could be extended to save information dependent on the di-
rection or BRDF of the surface, see [Rau13]. Note that while
we currently support only rigid transformations, we could

easily voxelize every frame [CG12] [CLY∗14]—all other
steps are already fully dynamic and not scene-dependent.

Voxel Illumination After normals and albedo are col-
lected, we compute direct illumination for each non-empty
voxel using its average surface normal. Shadow cones are
cast to each light source and the opacity of voxels hit by the
cone is accumulated to attenuate the light’s contribution.

Pre-filtered Hierarchy To allow for fast accumulation of
indirect illumination using cone-marching, we need a pre-
filtered hierarchy of down-sampled versions of the gener-
ated voxel shading information. We base our approach upon
mip-mapping and average the voxel level contents in cubes
of eight voxels each, where a voxel accumulates the illumi-
nation of all voxels that occupy the same space in the parent
level. However surfaces may intersect only half of the vox-
els in a 23 cube; when naively averaging (volume coverage),
the resulting voxel will have an alpha of 1/2 despite contain-
ing a full blocker. To alleviate this problem we compute the
alpha of lower-resolution voxels as 1/4 of the sum of their
source voxels’ alpha. This surface coverage keeps surfaces
opaque in lower-resolution versions. We then pre-multiply
the albedo with the clamped alpha.

Multiple Voxel Hierarchies While we currently have not
implemented real-time voxelization, we support rigid trans-
formation of meshes with arbitrary transformation matrices.
Several mesh-voxelizations can be instanced multiple times
with different transformations that may be updated at run
time. For each instance, we allocate a separate voxel hierar-
chy, as illumination will differ depending on instance orien-
tation and surrounding shadow casters.

While the order of rendering steps stays the same
with multiple meshes, we need to account for intersec-
tions in multiple hierarchies when cone-marching to retain
the smooth results obtained with pre-filtered voxel cone-
marching. We repeat casting of the same ray for all hierar-
chies in the scene, and when we find a second (or n-th) hit,
we order the current and the new hit according to their depth
and blend between their results in the correct back-to-front

Pre-�ltered Voxel HierarchyCone-marching steps

0

1

2

3

Figure 2: Cone-marching starts in a high-resolution level
(0) of the voxel hierarchy and accesses coarser levels (1-3)
with growing cone diameters.

c© The Eurographics Association 2014.

27

H. Rehfeld, T. Zirr & C. Dachsbacher / Clustered Pre-convolved Radiance Caching

Figure 3: RCs rendered with cone-marching at 642.

order. This yields correct results for shadowing, as shadows
from different hierarchies can be multiplied commutatively,
and semi-correct results for radiance accumulation, depend-
ing on the order in which the hierarchies are traversed and
what hits are found. Naturally this approach cannot blend all
cone-marching hits that accumulate along individual rays,
but in practice this is not a problem.

As an example, consider two hits in different hierarchies:
We can correctly blend the respective radiances by reorder-
ing the hits according to the last stored hit depth and the new
computed hit depth. If there is a third hit in yet another hi-
erarchy, blending might introduce a small error: we save hit
information only for the closest hit, so we cannot blend cor-
rectly if new hits lie between the previous hits. Instead these
hits are simply blended behind. It would be possible to store
all hits and then use correct blending between them at low
additional cost, but as we collect only indirect illumination,
the error is typically neglectable.

3.2. Clustered Cache Distribution

The RCs need to be distributed so that they collect incident
radiance that can be shared by as many G-buffer pixels in the
vicinity of the cache as possible, while taking special care to
ensure all pixels find valid data in at least one of the caches.

RCs have a world space influence radius, so their in-
fluence over the screen diminishes with depth while their
number increases. However we do not want to spend too
much computation time on parts of the screen that are far
away [OBA12]. Rather, we want to keep the number of
RCs relatively constant over the screen. Also, their normal
is quite important for optimal results, as they only save inci-
dent radiance for the upper hemisphere.

Clustering We aim to create clusters of G-buffer pixels
that can share the same RC, so we can place exactly one
RC into each cluster. The clusters created by Clustered De-
ferred Shading are a good starting point, as they subdivide
space adaptively inside the boundaries of screen-space tiles,
so clusters are small/local and they are roughly evenly dis-
tributed in screen-space.

Clustered Deferred Shading also clusters by normal, sub-
dividing each main direction (cube face) 3× 3 times. This
potentially creates many clusters per tile. Because our clus-
ters decide where RCs are placed, we need to ensure that all

relevant normal directions are represented with as few clus-
ters as possible.

Adapting to Normals Our adaptive clustering approach
adapts to the actual normals and reduces the number of clus-
ters, especially where surfaces smoothly bend over cluster
borders. This is important, as filling RCs is expensive, and
smooth surfaces are most efficiently represented by a single
RC.

Before pixels are assigned to clusters, we build a small
2D histogram of surface normals for each tile. Then we ap-
ply a Gaussian kernel to the histogram to average the nor-
mal directions and get a good estimate for the directions that
are most important to represent with RCs. Using the convo-
luted histogram, we extract a three-axis frame per tile, start-
ing with the highest-rated direction.

After we select an axis, we decrease the rating of similar
(co-linear) directions:

wn = (wn +1)(1−|~n ·~nbest|8)

where ~n is a normal direction in the normal histogram, wn
is the current weight assigned to this normal and~nbest is the
normal that was last selected as the best normal.

We then continue until we have selected three axes. These
represent the most important normal directions in the tile
and are roughly orthogonal if the normals in the tile require
all axes to be represented. We then create clusters based on
each pixel’s alignment with these axes by encoding it into
the global cluster sort key.

After this we sort pixels by cluster key, and extract result-
ing clusters using neighbor comparisons, parallel prefix sum
scans and reductions, just as in Clustered Deferred Shading.

Placing Caches After we have defined the clusters, we
need to choose a representative pixel in each cluster to place
a cache on. It is important that the cache:

• aligns well with the average normal in the cluster,
• minimizes the distance to the cluster’s surface points,
• lies as far out from the actual surfaces as possible, so ray-

casting through the voxel hierarchy can use small biases
and surface offsets.

Therefore we place the cache on a pixel that maximizes:

~np ·~nc +(~p−~c) ·~nc

1+d~c

where ~p is the pixel’s position, ~np the pixel’s normal, ~c the
center of the cluster’s bounding box, ~nc the average normal
in the cluster’s pixels, d~c the distance of ~p to the line extend-
ing from ~c in direction of ~nc. Here, ~np ·~nc ensures aligment
of the surface normal, (~p−~c) ·~nc tries to choose the pixel
that extends most from the surface and dividing by d~c gives
more weight to RCs that represent the center of the cluster.

c© The Eurographics Association 2014.

28

H. Rehfeld, T. Zirr & C. Dachsbacher / Clustered Pre-convolved Radiance Caching

Voxel ShadeG-Buf Cache Distribution Cache Creation Cache Evaluation Direct Illumination
27 ms11 ms 31 ms 39 ms 33.5 ms 88 ms

Figure 4: Performance breakdown of our method at 2M pixels with 10 primary lights. Dark stages are orthogonal to our work.

3.3. Evaluating Radiance Caches with Gathering

Evaluating a RC for a pixel of the G-buffer requires the fol-
lowing steps: For diffuse illumination we use the surface
normal of the pixel to retrieve the value of the corresponding
cosine-weighted integral in the pre-generated diffuse lookup
table [SNRS12]. For glossy illumination, we use the reflec-
tion vector and choose a mip-level in the RC’s pre-convolved
mip-map that corresponds to the surface’s glossiness. For
this, we calculate the solid angle of the Phong-lobe (at 1%)
and interpolate between corresponding mip-levels.

Typically, there are multiple RCs influencing each pixel.
To prefer more accurate RCs over those that are farther away
their contribution has to be weighted. PCRC uses a weight
based on spatial distance and a maximum angle.

PCRC also suggests to use splatting to evaluate the RCs.
To splat a RC, its conservative sphere of influence is pro-
jected onto the screen. Then, for every G-buffer pixel in-
side the sphere’s radius, the RC is evaluated, the result accu-
mulated and its weight calculated. After all RCs have been
splatted into the radiance buffer, the contribution of a pixel’s
splats has to be normalized by the sum of weights of the
corresponding RCs. While the splatting approach works, it
induces large amounts of overdraw, is cumbersome to im-
plement in CUDA if maximum performance is required (no
idle threads, etc.) and requires an extra normalization pass.

Since our clustered cache distribution is tile-based, we
can rely on a maximum screen-space influence of the RCs,
which makes it feasible to switch to a gathering approach.
We collect the contribution for a single pixel by looping over
all RCs in the surrounding tiles that lie inside a specified
screen-space cache radius—typically two tiles.

Radiance Cache Weights If splatting is used to evaluate
the RCs, a simple world-space weight can be used to attenu-
ate their contribution [SNRS12]:

ww =

(
1−

(
~pw−~cw

rw

)2
)+

where ~pw is the pixel’s position, ~cw is the cache’s position
and rw is the radius of the cache, all of them in world-space.
However, care has to be taken to ensure that each splat is
sufficiently large to cover all pixels inside the cache’s world-
space radius.

As large splats severely impact performance and gather-
ing is most efficient when using a fixed maximum screen-
space radius, we introduce a second, screen-space weight:

ws =

(
1−

(
~ps−~cs

rs

)2
)+

where ~ps is the pixel’s position, ~cs is the cache’s position
and rs is the gathering radius, all of them in screen-space.
We then calculate the weight of a cache as the minimum of
the two, which ensures that there are never hard edges where
the screen-space radius is not large enough.

4. Implementation Details

We work from a deferred shading G-buffer; all subsequent
steps of our algorithm are implemented in CUDA and run
fully in parallel on the GPU. Furthermore, all steps are easy
to parallelize over multiple GPUs.

Voxel Hierarchy We use relatively low voxel resolu-
tions (~1283). Increasing the resolution does not improve the
quality of our results noticeably, depending upon the glossi-
ness of the scene, but requires more voxels to be illuminated,
resulting in decreased performance.

Cone-marching When cone-marching, we march along
the direction of the cone, choosing step size and mip-level
based on the distance to the apex of the cone and a given
cone opening angle.

Sampling a prefiltered volume texture with quadrilinear
filtering yields smooth "anti-aliased" edges (quadrilinear =
trilinear filtering in two volume texture mip levels + linear
blending between mip levels). For each step the mip level
is computed using the current cone opening diameter as tar-
get voxel edge length. The step length is chosen proportional
to the current cone opening diameter. We achieved best re-
sults using half the current cone opening diameter as next
step length. This ensures that we do not fully miss extrema
that cancel out in-between voxels due to linear interpolation.
Using larger steps, e.g. one edge length respective diame-
ter, sampling in-between alternating opaque and transparent
voxels with linear filtering could always yield the average
opacity. In contrast, using half the step size, the oscillation
is clearly visible in the samples.

We always start cone-marching with an opening diameter
of 3/4 of the cell edge length. This is a compromise between
starting with pure ray marching—until a cone diameter of
one cell edge length is reached—and immediately starting
to use higher mip-levels. For small opening angles, starting
with ray marching would destroy the speed-up achieved with
cone-marching without inreasing precision substantially. For
large opening angles, the resulting cone apex offset is small
anyway. To avoid self-occlusion of rays spawned near sur-
faces, we also take half a cone step along the ray direction
away from the ray origin before taking the first sample.

As the opening radius and thus the cone steps grow lin-
early with distance to the cone’s apex, the next cone step

c© The Eurographics Association 2014.

29

H. Rehfeld, T. Zirr & C. Dachsbacher / Clustered Pre-convolved Radiance Caching
N

um
be

r o
f C

ac
he

s
Ca

ch
e

Re
so

lu
tio

n

8x8 16x16 32x32 64x64

256 1024 4096 16384

Figure 5: RC resolution and number compared, with a Phong-exponent of 150. If not variable, 4096 RCs at a resolution of 162

are used. With low numbers of RCs, details in the reflection are lost, while lowering their resolution makes reflections blocky.

2155 caches4096 caches

cl
us

te
re

d
di

st
rib

ut
io

n

cl
us

te
re

d
lo

ca
tio

ns

eq
ui

-d
is

ta
nt

 d
is

tr
ib

ut
io

n

Figure 6: Left: Comparison between clustered and equi-distant RC distribution. Right: RC locations when using our clustered
distribution. Each green dot corresponds to the location of one RC.

can be computed from the previous cone step just by adding
tan(α) ·∆, where α is the cone opening angle and ∆ is the last
cone step. This corresponds to exponential growth, which
nicely eliminates the logarithms required to compute the mip
level in each step: Applying logarithm rules, we can incre-
mentally update the mip-level using one addition per step.

5. Results

Unless otherwise mentioned, all results show only indirect
illumination. The voxel hierarchy is illuminated by 10 di-
rectional lights that are sampled from a hemispherical en-
vironment map. If direct light is enabled, shadows are cast
with cone-marching to all lights. RC resolution is 16× 16,
and 4096 RCs are distributed over the image plane. The cars
scene has about 1.9M triangles. All surfaces use a Phong-
BRDF with a constant Phong exponent of 50. Timings were
measured on a NVIDIA GTX 670, with a resolution of
2M pixels (1742×1145).

Figure 1 shows our method with full direct and indirect
lighting. Our method implements indirect illumination on
complex, high-frequency geometry with only minor artifacts
at interactive framerates. See Figure 4 for a performance
breakdown. Note that direct illumination is orthogonal to our

contribution; artifacts are visible in the direct illumination
shadows because we simply use the same voxel hierarchy to
trace shadow rays.

Figure 3 shows a cropped RC-texture. Note how the saved
radiance is smooth, as our pre-filtered voxel-hierarchy accu-
mulates the radiance in higher levels.

RC resolution is an important factor, but not as important
as the number of RCs. Figure 5 shows how detail in the re-
flection in front of the cars is lost when using a low number
of RCs with a Phong-exponent of 150. Lowering the resolu-
tion of the RCs does not influence results severely, but makes
for blockier reflections.

Figure 6 compares our clustered RC distribution to a
screen-space uniform, equi-distant distribution of RCs. The
equi-distant distribution leaves some fragments without
valid RCs, especially on high-frequency detail. As our clus-
tered distribution adapts to the surface geometry, it does
not show this problem and handles even the grill (green
boxes) or fine details on the body (white boxes) of the
car without perceivable artifacts. While our clustering pre-
serves a roughly uniform distribution—but adapts to depth
changes—if surfaces are flat, it strongly improves upon the
results of the equi-distant distribution, which exhibits a dis-

c© The Eurographics Association 2014.

30

H. Rehfeld, T. Zirr & C. Dachsbacher / Clustered Pre-convolved Radiance Caching
in

di
re

ct
di

re
ct

 +
 in

di
re

ct

e=50 e=150

direct only

glossy indirect only

e=150e=50

e=50

e=50

Figure 7: Indirect illumination with different Phong-exponents e. Even with high Phong-exponents our method provides visually
plausible results.

G
at

he
rin

g
si

ze
in

 f
· t

ile
si

ze

1.0 1.5 3.02.0 (default)
16 ms 27 ms 71 ms39 ms

Figure 8: Gathering size. A value of f will gather in a radius of f · tilesize around the current pixel. Larger values gather
farther, but require to evaluate more RCs. Also given is the time required to gather and evaluate all RCs.

tinct muddiness (orange boxes). On the right side we show
another example how our clustered distribution adapts well
to high-frequency and bend geometry.

Figure 7 shows how our method behaves with different
Phong-exponents. Our algorithm copes quite well rendering
glossy materials with a Phong-exponent of 150.

The gathering-radius is a parameter to the evaluation of
the RCs, visualized in Figure 8. Our default value is a trade-
off between muddiness and performance. If even higher-
quality results are desired, the time spent evaluating RCs in-
creases.

Temporal stability of RC locations is not fully solved in
our implementation. When moving the camera, RCs follow
surfaces, but jump if a surface leaves the cluster (tile) com-
pletely. See Section 6 for ideas how to alleviate this problem.

6. Conclusions and Future Work

We present an interactive, fully dynamic and fully parallel
approach to global illumination which is suitable for applica-
tions where plausible approximations of global illumination
are sufficient. It performs quite well in glossy scenes, even

when dealing with small details and high-frequency geom-
etry. Flat or smoothly bend surfaces are also handled with
high quality.

We plan to improve on the temporal coherence by reusing
RC positions in the next frame akin to the ideas of incre-
mental instant radiosity [LLK07] where VPLs are reused,
and Wang et al. [WWZ∗09], where caches from the last
frame are classified into the current clusters. For this pur-
pose, RC positions could be stored in a BVH, and then
checked if a RC from the last frame is still valid when dis-
tributing them. The BVH could also be used to find relevant
RCs during evaluation.

The quality of the direct light is not perfect, as vox-
elization artifacts are easily spotted in direct shadows. Us-
ing shadow maps or fast GPU-raytracing instead of cone-
marching could improve the quality of the direct illumina-
tion tremendously, but is not the focus of this work. Olsson
et al. [OSK∗14] discuss the fast generation of shadow maps.

As our voxelization is not sparse, currently scene-size
and voxelization detail is limited. While switching to sparse
voxel octrees would sacrifice cone-marching performance, it
would easily allow for much larger scenes [CNS∗11].

c© The Eurographics Association 2014.

31

H. Rehfeld, T. Zirr & C. Dachsbacher / Clustered Pre-convolved Radiance Caching

References

[CG12] CRASSIN C., GREEN S.: Octree-based sparse voxeliza-
tion using the gpu hardware rasterizer. In OpenGL Insights,
Cozzi P., Riccio C., (Eds.). CRC Press, July 2012, pp. 303–319.
3

[CLY∗14] CHANG H.-H., LAI Y.-C., YAO C.-Y., HUA K.-L.,
NIU Y., LIU F.: Geometry-shader-based real-time voxelization
and applications. The Visual Computer 30, 3 (2014), 327–340. 3

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,
EISEMANN E.: Interactive indirect illumination using voxel cone
tracing. Computer Graphics Forum (Proc. of Pacific Graphics)
30, 7 (2011). 1, 2, 3, 7

[Cra11] CRASSIN C.: GigaVoxels: A Voxel-Based Rendering
Pipeline For Efficient Exploration Of Large And Detailed Scenes.
PhD thesis, Université de Grenoble, 2011. 2

[DKH∗13] DACHSBACHER C., KRIVÁNEK J., HASAN M., AR-
BREE A., WALTER B., NOVÁK J.: Scalable realistic rendering
with many-light methods. Computer Graphics Forum (2013). 2

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective
shadow maps. In Proc. of ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games (2005), pp. 203–208. 2

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indi-
rect illumination. In Proc. of ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (2006), pp. 93–100. 2

[HREB11] HOLLÄNDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-detail
selection for real-time global illumination. Computer Graphics
Forum (Proc. of Eurographics Symposium on Rendering) 30, 4
(2011). 2

[KD10] KAPLANYAN A., DACHSBACHER C.: Cascaded light
propagation volumes for real-time indirect illumination. In Proc.
of ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (2010), pp. 99–109. 2

[Kel97] KELLER A.: Instant radiosity. In SIGGRAPH ’97 (1997),
pp. 49–56. 2

[KGPB05] KRIVÁNEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. IEEE transactions on visualization and computer
graphics 11, 5 (2005), 550–61. 2

[KH01] KELLER A., HEIDRICH W.: Interleaved sampling. In
Proc. of Eurographics Workshop on Rendering (2001), pp. 269–
276. 2

[LLK07] LAINE S., LEHTINEN J., KONTKANEN J.: Incremental
instant radiosity for real-time indirect illumination. In Proc. of
Eurographics Symposium on Rendering (2007), pp. 4–8. 7

[MGP10] MAVRIDIS P., GAITATZES A., PAPAIOANNOU G.:
Volume-based Diffuse Glonal Illumination. Proc. of Computer
Graphics, Visualization, Computer Vision and Image Processing
(2010). 2

[NSW09] NICHOLS G., SHOPF J., WYMAN C.: Hierarchical
image-space radiosity for interactive global illumination. Com-
puter Graphics Forum (Proc. of Eurographics Symposium on
Rendering) 28, 4 (2009), 1141–1149. 2

[NW09] NICHOLS G., WYMAN C.: Multiresolution splatting for
indirect illumination. In Proc. of ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (2009), pp. 83–90. 2

[NW10] NICHOLS G., WYMAN C.: Interactive indirect illumina-
tion using adaptive multiresolution splatting. IEEE Transactions
on Visualization and Computer Graphics 16, 5 (2010), 729–741.
2

[OA11] OLSSON O., ASSARSSON U.: Tiled shading. Journal of
Graphics Tools 15, 4 (2011), 235–251. 2

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clus-
tered deferred and forward shading. In Proc. of High Perfor-
mance Graphics (2012), pp. 87–96. 2, 3, 4

[OSK∗14] OLSSON O., SINTORN E., KÃĎMPE V., BILLETER
M., ASSARSSON U.: Efficient virtual shadow maps for many
lights. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (2014), ACM. 7

[Rau13] RAUWENDAAL R.: Voxel based indirect illumination us-
ing Spherical Harmonics. PhD thesis, Oregon State University,
2013. 2, 3

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T.,
KAUTZ J.: The state of the art in interactive global illumination.
Computer Graphics Forum 31, 1 (2012), 160–188. 1, 2

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEI-
DEL H.-P., KAUTZ J., DACHSBACHER C.: Micro-rendering for
scalable, parallel final gathering. ACM Transactions on Graphics
(Proc. of SIGGRAPH Asia) 28, 5 (2009), 132:1–132:8. 1, 2

[REH∗11] RITSCHEL T., EISEMANN E., HA I., KIM J., SEIDEL
H.-P.: Making imperfect shadow maps view-adaptive: High-
quality global illumination in large dynamic scenes. Computer
Graphics Forum (Proc. of Eurographics Symposium on Render-
ing) 30, 3 (2011). 2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL
H. P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps
for efficient computation of indirect illumination. ACM Trans-
actions on Graphics (Proc. of SIGGRAPH Asia) 27, 5 (2008), 1.
2

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approxi-
mating dynamic global illumination in image space. In Proc. of
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (2009), pp. 75–82. 2

[SIMP06] SEGOVIA B., IEHL J.-C., MITANCHEY R., PÉROCHE
B.: Non-interleaved deferred shading of interleaved sample pat-
terns. In Graphics Hardware (2006). 2

[SNRS12] SCHERZER D., NGUYEN C. H., RITSCHEL T., SEI-
DEL H.-P.: Pre-convolved Radiance Caching. Computer Graph-
ics Forum (Proc. of Eurographics Symposium on Rendering) 4,
31 (2012). 1, 2, 5

[THGM11] THIEDEMANN S., HENRICH N., GROSCH T.,
MÜLLER S.: Voxel-based global illumination. In Proc. of ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2011), pp. 103–110. 2

[UNRD13] ULBRICH J., NOVAK J., REHFELD H., DACHS-
BACHER C.: Progressive visibility caching for fast indirect il-
lumination. In Proceedings of International Workshop on Vision,
Modeling, and Visualization (2013).

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A
ray tracing solution for diffuse interreflection. In SIGGRAPH
(1988), Beach R. J., (Ed.), ACM, pp. 85–92. 2

[WWZ∗09] WANG R., WANG R., ZHOU K., PAN M., BAO H.:
An efficient gpu-based approach for interactive global illumina-
tion. ACM Transactions on Graphics 28, 3 (July 2009), 91:1–
91:8. 2, 7

[YCK∗09] YU I., COX A., KIM M. H., RITSCHEL T., GROSCH
T., DACHSBACHER C., KAUTZ J.: Perceptual influence of ap-
proximate visibility in indirect illumination. ACM Transactions
on Applied Perception 6, 4 (2009), 1–14. 1, 3

c© The Eurographics Association 2014.

32

