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Abstract

This paper compares the performance of three different methodologies for a multi-threaded micropolygon-based
renderer. We extend the REYES [AG99] algorithm for multi-threaded rendering, which we call CASCADE.
CASCADE processes one bucket per thread, forwarding primitives and micropolygons to other buckets/threads
through split and dice operations. ROUND_ROBIN runs N single-threaded versions of CASCADE and a
compositor, where primitives are distributed to each thread in a semi-random manner. NO_FORWARD executes
split and dice operations, but a primitive that spans multiple buckets is processed independently by different
threads and the primitives generated through split and dice operations that project outside the current bucket
are discarded. In addition, bucket scheduling is used in this case to ensure that no thread is starved for work.
Extensive analysis demonstrates that none of these methodologies are clearly superior to the others under all
combinations of primitive size, count, transparency, and parallelism, so, a hybrid algorithm is proposed whose
performance characteristics make it the best choice under all but the most pathological cases.

1. Introduction

Rendering is the process of taking a three-dimensional de-
scription of geometry, its material properties, and the envi-
ronment, and projecting them through a camera onto a two-
dimensional plane. The focus of this paper is not on the
shading system, but on the handling of models or scenes
with large geometric complexity. Techniques for rendering
large scenes typically fall into one of three categories: reduc-
tion in complexity, data reorganization, and brute force tech-
niques. At their heart, all methods for handling large scenes
are about reducing the number of primitives that are pushed
through the renderer. Additionally, most of these methods
are designed for improving the performance of interactive
rendering, where the models are typically written once, but
viewed/rendered multiple times. In these situations, allocat-
ing additional effort up front to reduce complexity or reorga-
nize the data for more efficient access will be beneficial. For
this paper we are targeting off-line renders with a typical us-
age pattern of write-once, render-once. For these scenarios,
the extra cost to reorganize the data is typically not an effi-
cient use of resources. Therefore, we will focus on the brute
force methodology, of which parallel rendering is one tech-
nique.

Micropolygon rendering is the process of tessellating input
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geometric primitives into polygons typically of less than one
pixel in size. Micropolygon rendering was first described
by Cook et. al. [CCC87] and has been used to render com-
plex scenes for motion pictures for 25 years. Over that pe-
riod this algorithm has been shown to be stable and robust
when rendering large, geometrically complex scenes. In this
paper we investigate parallel extensions of a micropolygon
renderer and show that none of the common work distribu-
tion methodologies are appropriate for all scene composi-
tions. While the results in this paper are strictly applied to a
micropolygon renderer, the results are applicable to any ren-
dering algorithm that processes the scene in small, limited
parts, such as a ray caster using a Hilbert curve for screen
traversal.

2. Previous work

The original REYES algorithm by Cook et. al. [CCC87] pro-
cessed each primitive in the geometric database one at a time
independent of all other primitives. Each primitive that sur-
vived the culling phase is split into finer pieces and eventu-
ally diced into grids of sub-pixel sized quadrilaterals called
micropolygons. The grids are then shaded, busted into in-
dividual micropolygons, and then sampled. Because primi-
tives are processed one at a time, all of the samples from the
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Figure 1: The REYES Rendering pipeline

micropolygons are retained until the final primitive is pro-
cessed, otherwise, the visibility could not be properly deter-
mined. As a result, the memory consumption of the original
REYES algorithm was linear in the number of micropoly-
gons that survived to the final stage of the process, and the
number of micropolygons generated were several orders of
magnitude larger than the original geometric database. An
improved REYES algorithm [AG99] was designed that re-
moved the requirement for the retention of the visible point
lists. The main change was that rather than process each
primitive separately, the entire geometric database is read,
bound, and sorted into buckets. Then, each of the buckets
is processed as described in the original algorithm. When a
primitive is split, it falls into one of three conditions: inside,
outside, or straddles the current bucket. If the split primitive
falls outside of the current bucket, the primitive is forwarded
to the first bucket that overlaps its bounds and further pro-
cessing of the primitive is delayed until its new bucket is
processed. The primitives remaining in the current bucket
then complete the entire dice-shade-bust-hide algorithm de-
scribed above. When the entire bucket is processed, all of the
memory used by the overlapping primitives, the visible point
lists, and the micropolygons can be reclaimed, and utilized
by the next bucket. The trade-off made to achieve the lower
memory footprint is the assumption that the entire geomet-
ric database can be resident in memory. Several extensions to
the RenderMan Interface Bytestream (RIB) alleviated some
of that assumption by delaying the reading of a primitive

until the renderer began the processing of a bucket that over-
lapped its bounds.

While the REYES algorithm has been parallelized before
(NetRenderMan) [AG99], its primary function is to speed
up rendering through the distributed processing of the indi-
vidual buckets by using a replicated database.

In recent years work has focused on enabling the REYES al-
gorithm for real-time applications using the GPU [FLB*09,
FFB*09, PO08, WGER05, ZHR*09]. While exciting results
are coming out of this line of research, in most part it is
not applicable to us as we are investigating scenes sizes that
far exceed the capabilities of modern GPUs except through
streaming extensions. Relevant parts of the research have
been investigated and where pertinent, implemented, e.g.,
DiagSplit by Fisher et. al [FFB*09].

2.1. Parallel Rendering

Two methods for rendering large models, parallel rendering
and multi-resolution methods, attempt to improve rendering
performance by reducing the number of primitives processed
by an instance of the renderer. Multi-resolution methods try
to reduce the number of primitives rendered through the use
of a hierarchy of simplified representations that are visu-
ally indistinguishable from the full resolution model when
viewed from a particular distance. The parallel rendering ap-
proach typically uses a brute force algorithm that tries to ren-
der the full resolution of the model by breaking the data into
smaller chunks that can be processed efficiently on a large
number of processors, thereby reducing the total workload of
a single processor. More recent advances have seen the com-
bination of parallel rendering methods with multi-resolution
techniques.

Through the 1980’s and 1990’s, a large number of re-
searchers began tackling the problem of parallel rendering.
While many different topics were covered during this time,
the topics can be sorted into three broad categories: hardware
systems [Ul183, EAF*88, FPE*89, PH89, MEP92], render-
ing, [Wei81,DS84,FK90, Cox95] including parallelizing the
ray-tracing algorithm [Lef93, Pit93, BBP94, Neu94, Fun96],
and scheduling and load-balancing [Whi93, Whi94,RCJ99].
Dippé [DS84] described a prototype parallel ray-tracing sys-
tem that redistributed primitives whenever the load imbal-
ance between neighbors exceeded a threshold. Although
not explicitly stated, their redistribution algorithm was per-
formed on frame boundaries, they could still have inter-
frame imbalances depending on the initial distribution of
primitives.

To comprehend the differences between parallel rendering
techniques, one has to understand that all parallel rendering
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algorithms require that the primitives are sorted somewhere
in the rendering pipeline. Parallel algorithms can be classi-
fied into one of three categories, sort-first, sort-middle, or
sort-last, depending on where in the rendering pipeline the
sorting occurs [MCEF94].

Sort-first algorithms partition the screen-space into a set of
non-overlapping tiles, each of which is rendered indepen-
dently. In a sort-middle approach, the graphics primitives are
sorted after vertex processing, but before fragment process-
ing. Currently, this approach is not efficient for a software-
based system due to the high bandwidth requirements nec-
essary for transmission of the data between the stages, and
the redistribution of the data between frames. And, sort-
last algorithms function by distributing the primitives evenly
amongst the processors. For each class of algorithms, there
are many possible techniques to distribute the primitives to
the rendering processes, including random allocation and
round-robin. After each processes has completed its render-
ing, a list of tiles or samples are sent/gathered to/from an-
other process for compositing.

Eldridge [EldO1] further refined this taxonomy by splitting
the definition of sort-last into two components, sort-last
fragment and sort-last image composition. The distinction
occurs as to whether sorting occurs before or after fragment
shading. For the rest of this paper, when we refer to sort-last
we are using Eldridge’s definition of sort-last image compo-
sition.

In 2000, Samanta et al. [SFLS00] proposed an algorithm that
uses a combination of sort-first to decompose the tiles into
N distinct groups, then uses sort-last to resolve the depth on
the overlap at the edges of the tiles. Their objectives were
to balance the load across the processors and minimize the
screen space overlaps. The data had to be replicated across
all the nodes of the cluster, thereby limiting the size of the
model to the machine with the smallest memory.

In the following year, Samanta et al. [SFLO1] described a
method to achieve nearly the performance of full database
replication with only partial replication. It used the hybrid
sort-first, sort-last architecture from their previous paper
with partial replication of the model data. Even with these
improvements, the size of the model was still limited to the
size of the smallest memory in the cluster.

A pure software renderer provides a finer grain of control in
how the memory of a system is used for rendering. Green
and Paddon [GP94] described a set of methodologies to in-
crease the performance of a multi-processor ray-tracing sys-
tem by mimicking a virtual memory model. They showed
the effect on performance of varying memory allocation be-
tween the resident set and the cache, and between the voxel
hierarchy (octree) and the objects. By rendering a low reso-
lution image they could acquire a lower bound on the objects
and the memory required for the resident set.
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3. Algorithms

In this paper we describe four different methodologies for
parallelizing the REYES algorithm. In all of these parallel
variants we are only looking at algorithms that are suitable
for running on a shared memory architecture. This allows
us to look at the efficiency of the algorithms independent
of any communication costs that would be associated with
a message passing approach. We started by implementing
the CASCADE algorithm. During testing and analysis, the
performance was measured with several tools looking for
bottlenecks in the code. The results from the analysis led
to each of the following algorithms as a method to overcome
one/several bottlenecks. The fourth algorithm was conceived
by using the best aspects of the others. In the following sec-
tions we describe each of the algorithms in detail.

3.1. CASCADE

One of the most straightforward approaches to parallelizing
the REYES algorithm is for each bucket to be rendered by
one thread. Since we will nearly always have less threads
than buckets, threads are reused on multiple buckets. In Mol-
nar’s parallel taxonomy this approach is a modified version
of the sort-first algorithm. The modifications are two-fold:
first, threads process multiple tiles, and second, there is no
replication of data amongst the tiles. The split/dice loop pro-
ceeds as in the improved REYES algorithm [AG99] with the
exception that the fragments output from the loop are for-
warded as in the original method, albeit to a potentially dif-
ferent thread. To reduce the amount of synchronization in-
volved with the forwarding of primitives, a per-thread queue
is added to each bucket. Each thread writes to only a single
queue per bucket thereby eliminating any write conflicts be-
tween threads. When the split/dice loop is ready to process
the next primitive, the thread queues are scanned for any for-
warded primitives which are then sorted into the main queue.
The primary point of synchronization is due to the unpre-
dictable arrival of forwarded primitives. Since these primi-
tives can arrive at any point during the rendering of a bucket,
no bucket can complete until all buckets previous to it have
completed. Buckets are statically assigned to threads modulo
the thread count. A queue of buckets was originally used,

3.2. ROUND_ROBIN

Using a sort-last methodology, we implemented the initial
distribution of primitives through round robin allocation.
Once the primitives have been allocated, each thread pro-
ceeds with a single-threaded variant of the CASCADE al-
gorithm with the exception that the visible point lists for a
completed bucket are placed in a thread specific queue of
the master process for compositing. The master is responsi-
ble for freeing the visible point lists once it has received the
lists from all active threads and compositing has completed.
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3.3. NO_FORWARDING

The third algorithm is also based on a sort-first methodol-
ogy. In the REYES algorithm, as primitives are bound they
are placed into the first bucket that overlaps the lower left
corner. NO_FORWARD follows a traditional sort-first dis-
tribution by placing a reference to each primitive into all
buckets overlapped by the primitive projected bounds. Dur-
ing splitting and dicing, all primitives and micropolygons
that project outside the current bucket are discarded. Oth-
erwise, the algorithm proceeds similar to CASCADE. The
other difference from CASCADE is that rather than having
threads stride through the buckets based on the number of
threads, buckets are scheduled to the first available thread.

3.4. MODIFIED_NO_FORWARDING

After analyzing the previous methods, this algorithm was
derived by combining CASCADE and NO_FORWARDING
such that we minimize the bottlenecks from either algorithm
(discussed in the next section). From NO_FORWARDING
we retain the bucket/thread allocation and the primitive dis-
tribution to the buckets. One issue in NO_FORWARDING
is that primitives can be split and diced multiple times,
one for each bucket the primitive overlaps. Since the prim-
itive is split and diced in the first bucket it overlaps,
CASCADE does not suffer from this issue. We modify
NO_FORWARDING such that the primitive is split by the
first thread to access the primitive. Once split or diced, the
new items are added back as children of the original node.
If another thread is unable to lock the primitive, it moves
that primitive to a deferred list and then it moves to the next
primitive. On each iteration through the primitive loop, it
checks if the deferred primitive is available and closer than
the next one. If the deferred primitive has been split we add
the children to the primitive queue. If it was diced, we shade
and bust as normal. Figure 2 shows the changes made to the
original REYES algorithm.

4. Results

The results in this section were obtained on a single Linux
system with two 2.67 GHz Intel “Nehalem” quad-core pro-
cessors and 24 GB of RAM with hyper-threading disabled.
The renderer is run with N threads for rendering and a mas-
ter that handles the parsing of the scene description, con-
verting the visible point lists into final pixel color, and for
ROUND_ROBIN, compositing the point lists.

We used synthetic and procedurally generated scenes con-
sisting of polygons (triangles and quadrilaterals) to enable
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Figure 2: Modified REYES algorithm

easy comparison of results across the different algorithms.
One of our procedural datasets is cityscapes generated us-
ing the Houdini modeling and animation software. We vary
a large number of parameters for each building including
width, depth, the number of floors, windows, and window
and floor inset and thickness. Buildings are randomly placed
on a grid, one per cell, with the grid ranging in size from
10x10 cells to 160x160 cells, resulting in polygon counts be-
tween 147,000 and 50 million. Two different camera views
(see Figure 3) were used for testing the effect of minimal
and heavy occlusion culling. The synthetic scenes consist of
the Stanford bunny randomly replicated 10 to 1600 times in
two sets, one opaque, the other with an alpha value of 0.02
(see Figure 4). In addition, the number of rendering threads
used was varied between one and eight (two to nine actual
threads including the master). For all tests, parsing the input
data was a single threaded process and the timing for pars-
ing was consistent across primitive counts and algorithms,
and so was excluded from the timing results.

Figure 5 shows the results for different thread counts
versus problem size for the city scene for each of
the two views. In the heavily occluded street canyon
view, MODIFIED_NO_FORWARDING outperforms all
the other algorithms for any combination of threads
and scene size. Depending on the problem size, MODI-
FIED_NO_FORWARDING is between 16-40% faster for 1
thread, and between 8-90% faster for 8 threads. In the sec-
ond test scene, the view is modified to be looking at the en-
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Figure 4: Image result for 50, 400, and 1600 transparent Stanford Bunny tests

tire city. Occlusion plays a role in this scene, but the view-
point was chosen to minimize its impact. As a consequence,
MODIFIED_NO_FORWARDING is the fastest algorithm in
nearly all combinations of thread count and problem size, ex-
cept for the largest scene with the two highest thread counts.
Two items to note in these results: First, the algorithm that
is second fastest changes depending on the scene size and
thread count, and second, the differences between these al-
gorithms (excluding ROUND_ROBIN) is typically small, on
the order of 3-10% for the larger scenes.

In both scenes, ROUND_ROBIN consistently performs the
worst except for the single threaded cases. In the three other
algorithms, the master thread’s only function post-parsing is
to write the final image pixels to file. In ROUND_ROBIN,
compositing of the pixels from the rendering threads is per-
formed on the master thread, which gives it a slight advan-
tage over some of the other algorithms. However, in all of the
other cases, the performance gain due to occlusion culling is
lost as the primitives are assigned to the buckets in random
order.

For the second set of test cases involving the Stand-
ford bunny, the results are significantly more varied
(see Figure 6). In most of the cases, the original
REYES algorithm, CASCADE, is the fastest with MODI-
FIED_NO_FORWARDING surpassing it only in the large
scenes with low thread counts. But, like the low occlusion
city scene, the differences between the algorithms is minimal
(excluding ROUND_ROBIN in most of the cases). For the
transparent cases, again the results are significantly differ-
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ent in that ROUND_ROBIN is the fastest in nearly all cases.
The reason is that with the very low alpha value, occlusion
never comes into play except in the largest scene. The of-
floading of the compositing of the pixels to the main thread
allows the worker threads to return rendering faster than the
other algorithms. Varying the opacity value produces results
in between these two extremes, depending on how quickly
occlusion culling comes back into play (e.g., for an opacity
value or 0.1, it takes approximately 45 samples before we
reach fullly opaque).

5. Discussion

In this paper we have shown that there is no one best method
for parallelizing a micropolygon renderer under a variety
of conditions. Future work will explore two extensions to
these algorithms. First, we propose a scene heuristic that
would analyze the scene during parsing and estimate which
algorithm would be the most efficient for the given condi-
tions e.g., high transparency and thread count, then MOD-
IFIED_NO_FORWARD. We would like to investigate the
use of a two-pass heuristic that first stochastically samples
the input scene and then chooses the algorithm for the full
data pass. Second, we propose to investigate the scaling of
the algorithms under a distributed memory model with mes-
sage passing. This will allow for testing of data sizes much
larger than can be processed on a single node.

While not reported in the results, a bottleneck in the render-
ing process is in the parsing of the input files. There was
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only a small variance between the different methods with re-
gards to scene processing and setup, but for the large data
sets could be as much as 40% of the total render time. Fu-
ture work will look into efficient methods for parallelizing
scene setup.
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# Polygons | # Rendering | Round Robin | Cascade | No Forwarding | No Forwarding
Threads Original

1 49.65 41.73 34.67 62.08
2 49.81 28.13 19.73 31.96

147428 4 52.82 17.10 10.98 16.65
7 58.15 12.51 7.15 10.20

8 81.65 11.26 6.50 9.07

1 46.951 39.10 32.053 59.71
2 53.79 29.10 17.96 30.84
701374 4 5291 17.99 9.93 15.86
7 60.33 12.91 6.38 9.78

8 87.69 11.76 5.80 8.70
1 48.89 41.50 34.28 61.10
2 51.00 27.14 19.81 31.20

1568796 4 53.88 16.35 11.17 16.25
7 61.28 11.92 7.57 9.99

8 89.87 10.87 7.06 8.89

1 47.83 40.77 33.23 60.79

2 53.48 30.25 18.89 31.57

2836538 4 55.85 18.62 10.72 16.44
7 62.22 13.57 7.50 10.14

8 93.48 12.38 7.02 9.05

1 54.20 48.16 39.78 69.12

2 54.54 32.81 22.99 35.77

6374458 4 58.05 20.52 13.00 18.75
7 67.27 14.58 8.63 11.61

8 101.03 13.27 8.02 10.38

1 60.60 57.42 46.78 76.43

2 61.72 38.19 27.46 40.23

17600502 4 64.59 24.46 16.26 21.87
7 73.63 17.81 11.68 14.44

8 102.52 16.71 11.00 13.21

1 80.08 82.83 66.22 99.57

2 73.78 56.25 42.43 55.87

46481006 4 73.69 35.06 27.13 32.47
7 88.50 26.84 21.22 23.13

8 103.94 25.51 20.36 22.10

Table 1: Timing values for the Building scene. This table show the time in seconds for the four techniques versus the number of
polygons for the street canyon scene Figure3. Note, that in most of the cases, there is very little improvement between 7 and 8
threads. The 8 thread case results in oversubscription of the system as the master thread increase the thread count to a total of
9 (on an 8-core system).
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Figure 5: Timing results for the two different city views. Note that the two plots have different maximums for the Y-axis.
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Figure 6: Timing results for the two different Stanford bunny test scenes
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