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Abstract
Due to the computational expense of high-fidelity graphics, parallel and distributed systems have frequently been
employed to achieve faster rendering times. The form of distributed computing used, with a few exceptions such as
the use of GRID computing, is limited to dedicated clusters available to medium to large organisations. Recently, a
number of applications have made use of shared resources in order to alleviate costs of computation. Peer-to-peer
computing has arisen as one of the major models for off-loading costs from a centralised computational entity to
benefit a number of peers participating in a common activity. This work introduces a peer-to-peer collaborative
environment for improving rendering performance for a number of peers where the program state, that is the result
of some computation among the participants, is shared. A peer that computes part of this state shares it with the
others via a propagation mechanism based on epidemiology. In order to demonstrate this approach, the traditional
Irradiance Cache algorithm is extended to account for sharing over a network within the presented collaborative
framework introduced. Results, which show an overall speedup with little overheads, are presented for scenes in
which a number of peers navigate shared virtual environments.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Hardware Architecture—
Parallel processing; Computer Graphics [I.3.2]: Graphics Systems—Distributed/network graphics; Computer
Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Animation and Raytracing; Computer Graphics
[I.3.8]: Applications—; Systems and Software [H.3.4]: Distributed systems—

1. Introduction

Interactive high-fidelity rendering is increasingly being used
in fields such as engineering, architecture, archaeology and
defence. The physically-based approach behind such visuali-
sation fidelity is computationally expensive due to the Monte
Carlo methods typically used in such rendering solutions.
The algorithms employed in high-fidelity rendering benefit
greatly from added computational resources when exploit-
ing parallelism, usually in the form of parallel shared mem-
ory architectures, distributed systems, vector processors or
some hybridisation thereof. Many parallel rendering algo-
rithms have been targeted at dedicated resources which are
available to medium to large organisations. In contrast to tra-
ditional client-server architectures, peer-to-peer (P2P) com-
puting has arisen as one of the major models for off-loading
costs from a centralised computational entity to benefit a
number of peers participating in a common activity. While
removing the need for a central authority, the P2P model pro-
vides advantages in terms of scalability, burden-sharing and

fault-tolerance. In the context of interactive rendering and vi-
sualisation, peers interacting within some environment will
invariably compute and visualise similar portions of that en-
vironment. If the result of such computations is marshalled
in a global state shared across participating peers, then the
peers may be provided with results to computations they
haven’t yet carried out but may need to in the future. Reduc-
ing redundant computation by means of a global shared state
introduces a number of challenges. Specifically, it must be
ensured that (i) any changes to global shared state originat-
ing at a peer will eventually propagate through the network
and, (ii) cumulative operations on global shared state are cor-
rectly sequenced in order to provide some agreed level of
consistency.

In this paper we introduce the concept of collaborative
high-fidelity rendering over P2P networks with the aim of
furthering the quality of the rendering by reducing redundant
computation. The irradiance cache (IC) algorithm [WRC88]
is used in a collaborative environment as a case study to test
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the viability and validity of the proposed system. Thus, our
main contributions are:

• an event-based encapsulation of changes to global state
• an epidemiologic method for event propagation
• novel collaboration algorithm for high-fidelity rendering
• collaboration case study using the IC algorithm

2. Related Work

A detailed evaluation of parallel rendering techniques for
high-fidelity rendering is given by Chalmers et al. [CDR02].
There have been many attempts at parallelising high-fidelity
rendering; Muuss et al. [Muu95] presented an architec-
ture for interactive ray tracing on 96 processors. Parker et
al. [PMS∗99] presented an interactive ray tracer that used
frameless rendering on a dedicated 64-core shared mem-
ory multiprocessor; it was then adapted by DeMarle et
al. [DPH∗03] for cluster systems. In particular, the system
was enhanced to provide an object-based shared memory
implementation over distributed memory via demand pag-
ing. While these approaches used expensive supercomput-
ers, Wald et al. [WSBW01, WBS02] introduced a parallel
ray tracer running on a distributed system which achieved
interactivity through careful use of instruction level paral-
lelism via SIMD instructions. This work was later extended
to provide a full global illumination solution in [WKB∗02],
achieving quasi-linear speed up on 48 processors.

2.1. Large Scale Distributed Rendering

Distributed approaches to high-fidelity rendering include the
use of GRID computing, with algorithms adapted to shared
resources. Aggarwal et al. [ACD08] presented a two-stage
rendering system for computational grids based on the ir-
radiance cache and, in follow up work [ADD∗09], intro-
duced rendering on desktop grids wherein single images
were computed within user-based time constraints. This
work was finally extended to interactive high-fidelity ren-
dering [ADBR∗12]. Other distributed approaches include
BURP (Berkeley Ugly Rendering Project) [PGAB∗09],
which is based on the Boinc framework [And04] and makes
use of volunteer computing to perform large-scale render-
ing. Mateos et al. [RGMFLL09] introduced Yafrid-NG, a
physically-based renderer which makes use of a P2P archi-
tecture to speed up rendering by distributing computation
over the internet to a set of heterogeneous machines. These
solutions are nonetheless tailored towards offline rendering,
as opposed to interactivity that this system aims to achieve
in the future. Crucially, all rendering approaches mentioned
make use of a master-slave paradigm to distribute computa-
tion to worker nodes, notwithstanding the degree of decen-
tralisation employed.

2.2. Peer-to-peer Systems

P2P architectures have been used in data sharing, collabo-
ration and for information dissemination. The decentralised
nature of these systems addresses scalability problems in
distributed applications that exist when the number of clients
starts to grow. P2P approaches aimed at sharing resources
and information require efficient search mechanisms to lo-
cate required information in a timely manner. In local-
area solutions, unstructured systems use multicasting fa-
cilities provided by the underlying hardware to broadcast
queries for specific data. In large scale networks, implement-
ing reliable multicasting is notoriously difficult [JvS02]. An
approach adopted by unstructured P2P systems was that
of query flooding, whereby all reachable nodes are con-
tacted to determine the availability of a resource on the net-
work. Structured P2P systems such as Chord [SMK∗01] and
Tapestry [ZKJ∗01] avoid the traffic caused by query flooding
by adopting key-based routing and searching. Specifically,
a distributed hash table system is used to provide a lookup
service similar to an associative array; the search space is
partitioned and the search criteria are associated with hosts
holding the required resources.

A series of randomised algorithms for replicated database
maintenance based on epidemic principles was introduced
by Demers et al. [DGH∗87]. This addressed problems of
high traffic and database inconsistency, and was later ex-
ploited in Bayou [DPS∗94], a system providing support
for data sharing and collaboration among weakly connected
users, which used peer-to-peer anti-entropy for the propaga-
tion of updates. Jelasity et al. [JvS02] conceived the news-
cast model of computation, providing effective and reli-
able probabilistic multicasting, large-scale distributed file-
sharing, and resource discovery and allocation, with the
distinguishing feature being the membership protocol em-
ployed. A peer may contact any arbitrarily chosen member
and simply copy that member’s list of neighbours in order
to join a group. Leaving a group is achieved by that peer
merely ceasing its communication as opposed to notifying
other members in the group about its decision.

Collaborative peer-to-peer high-fidelity rendering has
never been suggested before, despite its potential in provid-
ing a scalable, fault-tolerant platform for sharing rendering
computation. This work builds upon the membership and up-
date propagation principles above [JvS02, DGH∗87] to pro-
vide a framework for collaborative high-fidelity rendering
via the use of event propagation for the maintenance of a
global shared state across peers.

3. Method

This section provides an overview of our method. The as-
sumption here is that during image synthesis, each individ-
ual peer may need to carry out some computation that has al-
ready been effected by another peer, thus laying the ground-
work for potential collaboration. Such computations usually
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entail populating data structures for caching, interpolating
or generally speeding up the computation of indirect light-
ing. In a collaborative context, these data structures, along
with others which may hold important state information de-
scribing the active scene, become part of a larger state that is
shared across all the participants, P. Let Si = Li ∪ Gi be the
state of participant Pi ∈ P, where Li is Pi’s internal state and
Gi is the shared state.

S

eint
j [Q]/{local update, produce eobs

k , G′ = G ∪ eobs
k }

eint
j [R]/local update

/initialise

Figure 1: Internal event loop and observable event genera-
tion.

3.1. Observable Events

An internal event eint is the result of a write that modifies
internal state Li and potentially influences shared state. An
observable event eobs is the result of any significant change
in internal state and is responsible of exposing a series of
events eint

n ,eint
n+1, . . . ,e

int
m−1,e

int
m as part of the shared state Gi.

In practice, an observable event is abstracted to delineate and
encapsulate a number of smaller, logically-related changes.
For example, in an algorithm such as the irradiance cache,
where irradiance samples are computed and inserted into an
octree, a significant change would be represented by the in-
sertion of an agglomeration of generated samples into the
acceleration structure, as opposed to that of a single sam-
ple. An enumeration of P gives an index set I ⊂ N, where
f : I → P is the particular enumeration of the set of partic-
ipants P. A useful abstraction we adopt is the grouping of
all observable events into the global state G as represented
by the shared state at each peer Pi, such that G =

⋃
i∈I Gi. In

line with our definition of an observable event as a signifi-
cant change in state, we also define a mechanism by which
we can determine what qualifies as a significant change in
state. Specifically, for an event eint

j , if the state Si satisfies a
predicate Q, then an observable event eobs

k is produced and
merged with the global state Gi (Fig. 1). The sequence of ob-
servable events eobs ∈Gi generated by Pi is guaranteed to be
ordered in time, i.e., eobs

m → eobs
m+1, where a→ b means event

a precedes event b insofar as events are generated by the
same peer. It would be desirable to extend this guarantee to
events generated by other peers, establishing some form of
event ordering across all collaborating peers, since observ-
able events may represent cumulative or dependent updates
to shared data structures. For example, in the case of events

that invalidate the contents of a data structure, one should
be able to establish whether a specific event has happened
before, after or was concurrent to the invalidation.

3.2. Logical Order of Events

In distributed systems, especially in decentralised applica-
tions, time-of-day clocks may be skewed or suffer from drift,
and thus, global (or absolute) time ordering of events could
lead to unexpected results [Krz]. Instead, we choose to cap-
ture the causal order of events by employing logical clocks
instead of physical ones [Lam78]. A logical clock is an n-
tuple n≤ |P|; a participant Pi is responsible of incrementing
the ith element of its logical clock whenever an observable
event occurs [Fid88]. With the help of a logical timestamp
function V(eobs), we attempt to determine the system-wide
ordering for an event eobs; consider two events eobs

i and eobs
j

with vector timestamps V = V(eobs
i ) and V′ = V(eobs

j ) re-
spectively:

Rule 1: eobs
i happens before eobs

j (eobs
i → eobs

j ) when each
element of V is less or equal to the respective element
in V′, i.e., eobs

i → eobs
j ⇐⇒ V[n] ≤ V′[n] for n ∈ I (see

§3.1).
Rule 2: V and V′ are said to be equal if their respective ele-

ments are equal, i.e. V = V′ ⇐⇒ V[n] = V′[n] for n ∈ I.
Rule 3: Events eobs

i and eobs
j , with timestamps V and V′

where ∃ n,m ∈ I : (V[n] > V′[n])∧ (V[m] < V′[m]), are
not causally related but rather denote concurrent events.

A peer generates observable events and tags them with a
logical timestamp. The logical clock of the peer is also up-
dated to reflect the generated event (Alg. 2). Events are
then communicated to other peers via a propagation mech-
anism (see §3.3). The three rules above are used to deter-
mine the order of the propagated events before they are
committed at the receiving peer. In case of conflict due to
difficulty ordering concurrent events, a tie breaking func-
tion T (eobs

i , eobs
j ) is used to deterministically resolve the tie

in favour of one event or the other. Each observable event
generated may increase the cardinality of the global state G
(since G=

⋃
i∈I Gi), and in scenarios where event generation

occurs at high frequencies, this can result in uncontrolled
growth. We mitigate this growth via the use of special ob-
servable events called grouping events (egrp), and use them
to group a set of observable events into a single event, retir-
ing the members of the set in the process.

3.3. Event Propagation

The propagation of observable events between peers em-
ploys strategies common to epidemic processes [B∗75].
Specifically, an anti-entropy strategy is used whereby each
peer regularly chooses another peer at random (see §3.4)
with which to exchange observable events (Alg. 1). The aim
of this exchange is that of harmonising the global state of
each peer such that for peers Pi and Pj, Gi = G j. A peer that
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has not yet seen an observable event is susceptible to it, while
a peer that has generated or can provide the event is called
infective. A peer that assimilates an observable event into a
grouping event is known as retired with respect to that event.
This terminology is loosly based on Kermack et al. [KM32].
The dynamics of event propagation are based on the push

Algorithm 1 Anti-entropy Propagation Algorithm
Require: |P| ≥ 1∧∃ p ∈ P : active(p)

1: while active(Ps) do
2: Pd ⇐ ChoosePeer(P)
3: ExchangePeers(Ps,Pd) . see §3.4
4: ExchangeEvents(Ps,Pd)
5: Sleep(∆t) . delay ∆t before next exchange
6: end while

dynamics employed in epidemic models [DGH∗87]. Thus,
propagation may be modelled using established determin-
istic techniques from epidemiology literature. When an ob-
servable event is generated at a peer, propagation through
the network is achieved in expected time proportional to the
log of the number of peers, n = |P|. Specifically, for large
n, the exact formula is log2 (n)+ ln(n)+O(1) [Pit87]. The
exchange of events is a two-step process, whereby the global
state of each peer is merged with the other’s, if found diverg-
ing (see Alg. 3). In particular, consider two peers Ps and Pd ,
where Ps is the originator of the exchange and Pd the recip-
ient. If their respective shared state, Gs and Gd , are found
differing, Gs is merged with Gd at the recipient, while Gd is
merged with Gs at the originator, in that order. During each
merge process, the events from both states are first combined
and ordered. The newly acquired events are then commit-
ted in their perceived order of occurrence. During event ex-
change, the logical clocks of the respective peers are updated
and made consistent (Alg. 2). An example of event propaga-

Algorithm 2 Updating of logical clocks
1: function UPDATECLOCK(Ps, Pd)
2: Tick(Ps)
3: V′Pd

⇐ sup(VPs ,VPd )
4: Tick(Pd)
5: end function
6:
7: function TICK(Pi)
8: Increment VPi [i] by 1
9: end function

tion, ordering and merging is shown in Figure 2. In this ex-
ample, four peers (P1 through P4) participate in the network.
Three observable events (a, b, c) are generated by P1, P2 and
P4 respectively. The resulting timestamps can be observed
below the events for the respective peers. Subsequently, an
exchange ensues between P1 and P2, and another between P3
and P4. In the first case we see that events a and b are concur-
rent (Rule 3) and thus resort to a tie-breaking function which

Algorithm 3 Global state synchronisation algorithm
1: function EXCHANGEEVENTS(P1, P2)
2: if G1 6= G2 then
3: UpdateClock(P1,P2)
4: MergeEvents(G1,G2)
5: UpdateClock(P2,P1)
6: MergeEvents(G2,G1)
7: end if
8: end function
9:

10: function MERGEEVENTS(Gs, Gd)
11: C⇐ Gs∩ (Gs \Gd)
12: Commit(C,R) where R = {x,y ∈C : Pre(x,y)}
13: end function
14:
15: function PRE(e1,e2)
16: if e1 = e2 then
17: return f alse
18: end if
19: if V(e1) = V(e2) then
20: return T (e1,e2)
21: else if V(e1)≤ V(e2) then
22: return true
23: else if V(e2)≤ V(e1) then
24: return true
25: else
26: return T (e1,e2)
27: end if
28: end function

orders events by process id, before merging and resulting in
G1 = G2 = {ab}. In the second exchange, between P3 and
P4, P3 simply acquires the event, such that G3 = G4 = {c}.
Next, P1 leaves the network, P2 and P3 start an exchange,
while P4 produces an invalidation event d. The exchange be-
tween P2 and P3 results in G2 =G3 = {abc}, while the inval-
idation event d at P4 results in c being removed. In the next
stage, P2 leaves the network and a final exchange ensues be-
tween P3 and P4. The ordering process promotes d as the
most recent event by virtue of it being an invalidation event;
the tie-breaking function between an invalidation event and
a standard event will always break the tie in favour of the
standard event (i.e., we assume the standard event happened
before the invalidation event). Concretely, a standard event
may, for example, be thought of as the agglomeration of a
number of irradiance samples computed and inserted into an
irradiance cache. The invalidation event could be any event
that invalidates these samples, such as the flicking of a light
switch, triggering a light source on and off which was used
in generating these samples (see §4).

3.4. Peer Discovery and Membership

Unstructured P2P systems aim at exploiting random-
ness to disseminate information across a large set of
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Figure 2: Example of event propagation, ordering and merg-
ing of global states.

nodes [VGVS05]. Thus, membership, or the way a collab-
orating peer learns about other peers, is fundamental be-
cause it controls the performance of subsequent dissemina-
tions. Connections between nodes in gossiping networks are
highly dynamic and often need to obtain random samples
from the entire network in order to periodically exchange
information with random peers. Membership is handled in
a number of different ways; a straight forward approach is
that of furnishing the peers with a fixed directory provider,
which lists all collaborating peers in the network. This ap-
proach requires maintaining global information which may
prove to be problematic, especially in the case of major net-
work disasters [VGVS05]. The approach we take is similar
to the newscast method [JvS02], where we opt to keep a fi-
nite cache of peers instead of all the members of the network.
Each peer is tagged with a logical timestamp representing
the last communication event associated with it. The cache
needs to be cold started by populating it with at least one peer
which is already a member of the network. Subsequently, at
each exchange caused by the anti-entropy algorithm (Alg. 1),
the caches of the two peers taking part in the exchange are
merged, possibly resulting in a number of peers twice the
size of each individual cache. The eviction policy used is
conceptually similar to a least recently used strategy, where
the list of peers is sorted by their logical timestamp and the

top k entries are retained, where k is the size of an individual
cache.

4. Case Study: Irradiance Caching over P2P

The irradiance cache is an object-space algorithm; it com-
putes and caches diffuse interreflection values which are in-
dependent of any observer (view-independent). Therefore,
for multiple observers, irradiance values computed by one
may be reused by another without any need for recomputa-
tion, making the technique a good case study for our system.
Multiple peers interacting within the same scene may con-
tribute to the generation and sharing of samples in the irra-
diance cache, making the data structure a shared one among
collaborators. When objects in the scene move or the pa-
rameters of light sources change, the affected samples in
the cache become stale. In such cases, we take a straight-
forward approach and invalidate the whole irradiance cache.
To capture this behaviour, we define two kinds of observ-
able events, one for adding samples to the irradiance cache,
Eins, and another for invalidating them, Eclr, fundamentally
clearing the structure. These events are captured by the pred-
icates:

Qic = sizecurr− sizeprev ≥ sizeepoch (1)

Qchg = ∃ x ∈ ob jects : hasMoved(x) ∨
∃ y ∈ lights : hasChanged(y) (2)

where sizecurr is the number of generated irradiance sam-
ples in the cache, sizeprev is the number of generated irradi-
ance samples at time t−∆t, and sizeepoch is the number of
generated samples required to trigger an observable event.
With respect to the changes captured by hasMoved and
hasChanged, we keep track of orientation and position
changes in objects and intensity of light sources. For every
observable event, a Universally Unique Identifier (UUID)
is generated to differentiate it from every other observable
event in the system. The event is also timestamped using a
vector clock to help establishing a system-wide ordering.

4.1. Event Merging

During an exchange between two peers, observable events
are ordered and merged (see Alg. 1, 3). The merging mech-
anism for two events eobs

n and eobs
m of type Eins is straight-

forward; the insertion of samples into the irradiance cache
is order independent, unless another event of type Eclr oc-
curred between eobs

n and eobs
m . During ordering, when inval-

idation events are concurrent to insertion events, the latter
are always assumed to have happened before: T (Eins,Eclr)
always returns true, while T (Eclr,Eins) always returns false
if the events are concurrent. When the event list has been
ordered, it is traversed from most to least recent, with each
observable event of type Eins resulting in an insertion of a
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Figure 3: Scenes used for experiments : Halflife community map (left) and Quake 3 Team Arena map (right).

batch of samples into the irradiance cache. Each batch inser-
tion is assigned an epoch number, which, on a given peer,
uniquely identifies samples inserted as a result of a specific
observable event. If an invalidation event is encountered dur-
ing traversal, the irradiance cache is cleared from samples
belonging to earlier epochs, and the traversal terminates be-
fore all events have been processed.

4.2. Event Grouping

The more dissemination cycles pass from the generation of
an event, the less likely it is to find a peer that has yet
to learn about the event. Therefore, during peer exchanges,
longer lived events are less likely to contribute to the ex-
change, making their broadcasting, as time goes by, redun-
dant. Event grouping is meant to aggregate such events to
make exchanges more efficient. The premise of event group-
ing is based on rumour spreading, which is also founded
in epidemic theory. In particular, when two peers try to ex-
change an event both have, the event has a probability 1

k of
being merged into a group. This reflects the idea of a per-
son (infective) who tries to spread a rumour within a group
of n other persons (susceptible) by randomly calling people
in the group, one at a time. When a call results in the other
person already knowing the rumour, the caller starts losing
interest in actively spreading the rumour [DGH∗87]. Event
grouping is aimed at reducing the amount of information ex-
changed by peers. When the intersection of two event groups
is not the empty set, then the groups are merged together and
a new group is created. Both peers share the same newly cre-
ated group, retiring the two subsets.

5. Results

The method introduced in §3 has been evaluated using the
case study presented in §4, implemented on top of Illu-
mina [Bug14], an open-source physically-based rendering
solution. Tests were run on a local network formed by
connecting eight heterogeneous machines, each equipped
with 8GB of memory and at quad-core chip multiprocess-
ing capabilities. The datasets used for testing were purpose-
fully borrowed from multi-player first-person videogames
(Fig. 3). The use of such datasets coupled with a heteroge-
neous mixture of machines aim to improve the ecological

validity of the study. For each of the two datasets consid-
ered, interest points were drawn up and from these a number
of paths of variable length were randomly generated. A path
does not necessarily span all the points of interest. Each ma-
chine was deterministically seeded with a path, which was
subsequently used across all experiments carried out. Exper-
iments were conducted for both individual and overall net-
work speed up, under best, average and worst-case condi-
tions. For the irradiance cache, an error value (α) of 0.15 was
used and a total of 1.5k rays were traced for each computed
sample. Each machine in the network runs a single peer, with
four threads devoted to rendering. These peers are config-
ured to attempt an exchange not earlier than 2.5s subsequent
to the completion of a previous exchange. For a given peer,
this means that the time elapsed between an exchange and
the next is at least 2.5s. A peer will query an incoming ex-
change request buffer every 250ms. These settings were used
for both scenes.

Figure 4: IC sample distribution : red samples are computed
locally, while blue samples are acquired over the network.

5.1. Timing and Speed-up

In order to contextualise any possible gains due to collabo-
ration, the rendering times for each peer and its selected path
were recorded under worst and optimal conditions. Specif-
ically, in the first instance, each peer was forced to per-
form a walkthrough of its path without any collaboration
but with any overheads thereof. Following this, a second
set of runs recorded the walkthrough rendering times for
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Figure 5: Timings for Halflife community map (left) and Quake 3 Team Arena map (right) for (i) simultaneous startup, (ii-a)
60s staggered startup and (ii-b) 120s staggered startup. The grey bars show timings under best and worst cases.

each peer when connected to a network that can provide
an already fully computed irradiance cache. This reflects the
best-case performance. Figure 5 illustrate this; light and dark
grey bars show the worst and best-case performance respec-
tively. Peers joining a network with a saturated irradiance
cache demonstrate speed-ups between 2× and 5× with re-
spect to those computing the irradiance cache themselves,
for the same path. Multiple peers may concurrently generate
samples covering the same areas; when an exchange ensues
between these peers, samples added to the cache may cluster,
slowing down irradiance interpolation. In order to avoid this,
a minimum distance criterion is applied to samples acquired
over the network, whereby a sample is rejected if another ex-
ists in the destination cache within some specified distance.

5.2. Simultaneous and Staggered Start

Figure 5 also illustrates the effect of the system on rendering
times when (i) the network peers boot up simultaneously and
(ii) peers join at intervals of 60s (ii-a) and 120s (ii-b). In (i),
peers find an empty global IC on joining. The overall speed-
up of the network is around 1.17× for both scenes; when the
peers are considered individually, it can be observed that not
all of them benefit from this speed-up. Newly generated sam-
ples may take time to propagate across the network, and in
the meantime peers which could have benefitted from these
samples would have computed their own (Fig. 4). Also, a
peer may only take advantage of topical samples; even if it
were to receive a substantial number of irradiance samples
from another peer early on its walkthrough, these samples
could only be used if the paths of the two peers intersect
each other at some point. In (ii-a), although faster than the
worst case (by 1.17× and 1.24× respectively), it did not dif-
fer much from (i), especially for scene a. In (ii-b), the aver-

age speed-up on the network showed improvement over (i)
and the worst case (by 1.37× and 1.4× respectively).

6. Conclusion and Future Work

This paper presents a novel algorithm for high-fidelity col-
laborative rendering over P2P networks. The reference im-
plementation and respective case study demonstrate that it is
possible to take advantage of collaboration in P2P systems
to speed up high-fidelity rendering. The novelty of this work
lies in laying the foundation for P2P systems for high-fidelity
rendering that provide an alternative to the status quo of cen-
tralised systems. However, a number of limitations remain
that require further investigation and work to improve the po-
tential of P2P rendering systems. A limitation of the system
is that for propagation purposes, newly generated events are
not given priority over older events. Subsequently, a recently
generated event will not propagate until an anti-entropy op-
eration is initiated (§3.3). This shortcoming has the effect of
introducing some initial delay between the generation and
the propagation of an event, which, in a frequently chang-
ing system, might be considered undesirable. Full advantage
of event grouping could be taken (§3.2, §4.2), to prioritise
propagation of recent events; this could be coupled with the
use of resource mongering to push these events to neigh-
bouring peers as soon as they are generated. Furthermore, no
discrimination is made with respect to how specific events
affect specific peers. To use the irradiance cache as an ex-
ample, a given peer might be more interested in receiving
events which pertain to samples in its vicinity, rather than
events related to samples which are far away and may never
be required. Thus, an investigation could be carried out to
determine the feasibility of prioritising the delivery of events
according to the needs of respective peers. This study was
limited to 8 peers; it was observed that among the partici-
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pants, weaker machines seemed to benefit the most, although
this was not properly evaluated. Future work should investi-
gate the scalability of the system and quantify any benefits
participants reap depending on their specifications. Future
work should also look into providing interactive rendering
to the system. The rendering techniques currently employed
are not based on ray packets and rendered using CPUs; this
is computationally expensive and can be partially offloaded
to GPUs with minimal effort via techniques such as splatting
[GKBP05]. Minimising the rendering component when irra-
diance values can be trivially interpolated would highlight
even more the benefits of collaboration.
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