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Figure 1: From initial storyboard to pre-visualisation. The lamp in these three shots is automatically posed using the storyboard
drawing. On the top row, drawings are overlaid on top of the 3D scene with the assets unposed. On the bottom row, the lamp

has been posed automatically using our method.

Abstract

Inferring the 3D pose of a character from a drawing is a non-trivial and under-constrained problem. Solving it
may help automate various parts of an animation production pipeline such as pre-visualisation. In this paper, a
novel way of inferring the 3D pose from a monocular 2D sketch is proposed. The proposed method does not make
any external assumptions about the model, allowing it to be used on different types of characters. The 3D pose
inference is formulated as an optimisation problem and a parallel variation of the Particle Swarm Optimisation
algorithm called PARAC-LOAPSO is utilised for searching the minimum. Testing in isolation as well as part of a
larger scene, the presented method is evaluated by posing a lamp and a horse character. The results show that this
method is robust and is able to be extended to various types of models.

Categories and Subject Descriptors (according to ACM CCS): 1.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods 1.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
Shape 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation 1.4.9 [Image Processing

and Computer Vision]: Applications—

1. Introduction

The field of animation has advanced rapidly, offering a
plethora of ways to bring characters to life from sketching
and joint manipulation to puppet posing and motion capture.

Since animation has its roots in hand drawings, being
able to show one’s ideas on paper is a skill most anima-
tors possess. As such, many have argued sketching is an in-
tuitive interface for artists of traditional and modern back-
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grounds, be it for posing [MQWO06], animating [DAC*03],
modelling [YW10], stylising motion [LGXS03] or simulat-
ing secondary movement [JSMH12] and crowds [MQWO7].
By providing an intuitive link between the initial sketching
process and the end result, the cognitive load and the neces-
sary training for the artist may be significantly reduced.

Initial sketching is part of most animation pipelines al-
ready, usually in the form of storyboarding during pre-
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production. These drawings are then used by animators or
pose artists to set up the initial pose layout before going into
the animation stage. Rather than introducing a new work-
flow or step, the aim of the proposed method is to automate
one of the existing steps. Specifically, the focus is on making
the initial posing stage of a production less labour intensive.

Posing 3D models from 2D sketches is a non-trivial open
problem, closely related to the computer vision problem of
inferring a 3D pose from a 2D photograph but with sev-
eral differences. Photographs are usually accurate in terms
of scale and include colour information. Sketches may have
squashing and stretching, usually lack colour and contain
noise in the form of auxiliary strokes e.g. for shading.

This paper focuses on using sketches to pose 3D charac-
ters automatically, for layout or pre-visualisation.

2. Related work

The mainstream method of posing 3D characters is by
manipulating controls of a skeletal structure, usually joints
[BW76]. Even with the invention of Inverse Kinematics
[ZB94], this remains a time consuming process which re-
quires the user to be trained in specific suites of software.

A drawing represents an internal model the artist has
about a scene and it contains no depth information. As
such, the problem of inferring the depth from a drawing is
under-constrained, creating problems such as the forward-
backward ambiguity problem (Figure 2).
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Figure 2: An example of the forward-backward ambiguity
issue in inferred 3D pose of a lamp when not using the inter-
nal lines for additional information.

Automatic 3D posing: In general, inferring a 3D pose
from a drawing can be broken down into two sub-problems.
Firstly, match the 3D model projection to the drawing. Sec-
ondly, infer the missing depth. For 3D productions, the cam-
era represents the position from which the characters in the
drawing are viewed, according to the artist’s internal model.

A comprehensive overview of progress in this computer
vision problem [Gav99] highlights two main types of ap-
proach, the explicit shape model approach and the database
approach. In this case the focus is on data from drawings
rather than photographs or video frames.

Database approach: Previous computer vision research
has used database approaches not only for tracking and pos-
ing [JSHO9] but also for positioning [XCF*13] in a scene

or simply classifying [EHA12]. In animation, Jain et al.
[JSHO9] follows a database approach in order to infer the
missing depth and pose humanoid characters. However, it
is able to handle only orthogonal camera projections, while
the method proposed in this paper can handle both orthogo-
nal and perspective projection. Building a database of poses
may be expensive, especially since motion capture cannot
be easily used for non-humanoids that are so common in 3D
animation productions. As such, an approach that does not
require a database was preferred.

Explicit shape model approach: This approach is very
effective when there are multiple camera views because the
problem is no longer under-constrained (no occlusions). It
consists of comparing the 3D render pose to the 2D image in
order to estimate how close it is to a correct pose. One of its
limitations in computer vision is that it requires a 3D model
that is a good match to the 2D image. In 3D productions this
limitation does not apply, since a 3D model exists anyway.

Favreau et al. successfully pose animals using Radial Ba-
sis Functions of 3D pose examples [FRDCO06]. Ivekovic et
al. [ITPO8] infer 3D poses of humans in video sequences
using multi-view images. Ivekovic et al. still make human-
specific assumptions limiting its use to a small subset of
characters while both Favreau et al. and Ivekovic et al., use
video data and exploit temporal relations between frames.

Posing interfaces: Interfaces to replace the mainstream
skeleton manipulation process have been the focus of pre-
vious research e.g. tangible devices [JPG*14]. Examples
of sketch-based interfaces make use of differential blend-
ing [OBP*13] or the line of action to pose 3D characters
[GCR13]. These sketch-based interfaces may offer improve-
ments, but are still operated by artists. The proposed method
is aiming to reduce the process to an automatic method a
user with no artistic background is able to perform.

This paper proposes a method for posing 3D mod-
els from 2D drawings, aiming at pose layout and pre-
visualisation. It makes no assumptions about the 3D model
in order to deal with many types of characters. Unlike Jain
et al. [JSHO9], it does not rely on a database. Instead, a par-
ticle swarm optimisation (PSO) variant called Parallel Con-
vergence Local Optima Avoidance PSO (PARAC-LOAPSO)
is used. This allows for posing of both cooperative (e.g. hu-
mans) and non-cooperative (e.g. animals) characters. It does
not require the model to have a skeleton; any type of con-
troller is suitable. Unlike Ivekovic et al. [ITPOS] the input
data are monocular, stand-alone drawings with no tempo-
ral relations between them. Minimal user input is required,
in the form of pinpointing the joints on top of the drawing.
To avoid forward-backward ambiguity, the proposed method
uses a combination of various descriptors [FAK12]. There
are currently no other methods that perform automatic pos-
ing for the layout phase of animation, that work irrespective
of the character model and that can be applied without the
need for a pre-existing database.
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3. Methodology
3.1. Overview

To propose a general posing method which can automate the
initial layout pass or pre-visualisation of a production, the
solution takes into account several requirements:

e Make no assumptions about the type of character, in order
to be versatile (e.g. humans, horses, lamps, octopuses).

e Provide results which are good enough for the initial pos-
ing and not the final animation.

e Ensure necessary user input is quick and requires little
learning from the user side.

e Do not restrict the traditional pipeline structure.

e Be feasible for both small and big budget productions.

Since the proposed method is focusing on posing and not
generating a 3D model from a 2D sketch, it is assumed that
there is already a 3D model that corresponds to the character
in the drawing. Therefore, the explicit shape model approach
is utilised for solving the problem.

The 2D data is an artistic drawing e.g. a storyboard panel.
The 2D sketch itself does not need to be of high quality, but
it does need to be accurate in terms of the shape and scale of
the object that will be posed.

To create a search space containing the wanted 3D pose,
an interface is used which allows users to overlay drawings
on top of a 3D space (Figure 1), moving the camera and
placing unposed 3D models. This reduces the search space
to consist of only local poses of a character, not translation
in 3D space (Section 3.2). To compare the 2D to the 3D data
in the search space, the system extracts information from the
sketch. That is when the only user input required - the pin-
pointing of the joints - takes place (Section 3.3). To navigate
the search space and find the wanted pose, the system iter-
atively poses and renders the 3D model of the character to
match the drawing (Section 3.2).

The process is not distruptive or encumbering on
pipelines, as it is not different to a traditional pipeline with a
3D layout pass. Additionally, drawings exist early on in pre-
production in the form of storyboards. The pinpointing of
the joints can be done in a few seconds during the clean-up
phase and does not require technical training.

3.2. PARAC-LOAPSO

The problem of inferring the 3D pose from 2D data is
treated as a minimisation problem, by navigating a formu-
lated search space using a variation of PSO called PARAC-
LOAPSO. It performs global search and a reason for choos-
ing it is that it is parallel by nature, which makes it
straight-forward to implement on a GPU [MIC10]. As meta-
heuristic, it makes no assumptions about the problem.

The problem is formulated by defining each particle as
a possible pose or solution. Specifically, each solution is a
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vector X = (jy,..., jn), where n is the number of joints to
manipulate on the model. Each element j represents a joint
and is a three dimensional vector j = (x,y,z) where x, y and
z are its Euler angle rotations in local space. Therefore, the
search space contains all the possible poses for that model.

While issues of uncertain convergence, speed and getting
stuck at local minima have been explored [BKO07], it is im-
portant to re-examine them for this particular problem.

Improved search: To deal with slower convergence, a
constriction factor K (equation 1) [BKO7] is preferred over
the inertia weight used by Ivekovic et al. [ITPO8] or Sale-
hizadeh et al. [SYMO9]. To speed up convergence and over-
all runtime, the algorithm is implemented to run in parallel
on the GPU. To deal with getting stuck at local minima, the
method proposed by Salehizadeh et al. is used to add vari-
ation in the population [SYMO09]. Additionally, the optimi-
sation process is faster and more accurate by navigating a
smaller search space. That is achieved by using joints’ rota-
tion limits from the given 3D model as constraints. Instead of
using biological data about human joint limits, only the joint
limit data from the 3D model are acquired. Any hierarchical
assumptions would decrease the method’s versatility.

2
K=— " 1
[2—a—+Va? —4a| W
a=04¢;+d 2)

The cognitive (influence by own findings) and social (influ-
ence by others’ findings) weights are defined as ¢ and 0.

Initialisation: The overall performance of the algorithm
is affected by its initialisation. Since no temporal data is
assumed, as would be in the case of a video, a previous
pose cannot be used as an initial point. Therefore, each el-
ement j, of position X; of each particle i is initialised from
a uniform random distribution: j, ~ U (Xynin, Xmax). The up-
per and lower boundaries Xyin, Xmax € [—360,360] differ for
each element of X;, since the joint rotation limits are used to
set them for each particle element.

Fitness evaluation: After the initialisation step a fitness
function f allows for the evaluation of each particle. Based
on this, the personal best position B} of each particle i and
the global best position Bfg, from all particles are stored.

f= WlDJ‘+W2Ds+W3De 3)

where D i is a distance metric for the joint positions, Dy one
for the shape silhouette and D, for the edges (both internal
and external), while wy,w; and wj are the respective weights
for each component (e.g. % for equal weighting of all parts).

Update: At the beginning of epoch ¢, the population of N
particles is split into two subgroups of size YN and (1 — )N,
where Y= r,r ~ U(0,1) if t < Tetmax, or 1 otherwise. T¢ is
denoted as the threshold of convergence, which controls how
many epochs are dedicated to exploration and how many to

exploitation. For example, for 7. = % only the last quarter
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Figure 3: Joints overlaid by a user on Figure 4: Edge map of a drawing of a Figure 5: Silhouette of a drawing of a

top of a drawing of a human.
gorithm.

of the epochs will be dedicated to exploitation. #uqx is the
maximum number of epochs for a run.

X1 = x! 4yt )

For every particle i, its position X; is updated (equation 4). If
the particle belongs to the first population subgroup, its ve-
locity component VitJrl is updated using equation 5. Other-
wise, to attempt and avoid local minima by adding variation,
it is updated using equation 6.

Vit =KV + 1Bl =X + (B, —XITH] (5)

Vit = KV —L'[n B — X" + By — X} (©
2t
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2 =ar (10)

Algorithm: The above components are combined in the
following steps to form the overall algorithm.

1. Initialise the swarm population, with global best Bi,.
2. For each particle i, with personal best B} (in parallel):

. Update particle position (equation 4).

. Update descriptors of 3D pose (Section 3.3).

. Evaluate fitness of particle (equation 3).

. If current fitness < B!, set B! to current fitness.
. If current fitness < By, set By to current fitness.

o a0 o e

3.3. Comparing drawings to renders

Three ways to compare the drawing with the 3D render were
chosen given their previous reported advantages and disad-
vantages. Joints are used by Jain et al. in order to find close
poses from a database. In order to make use of the internal
edges, edge maps are simple, fast and as effective [TR07]
as more expensive methods like Shape Context Histograms
[ATO6]. Finally, silhouettes have been used to find poses
generatively [ITPOS] or to train models [AT04].

human, extracted using the Canny al- human.

Joints: The user overlays the positions of the joints on top
of the drawing (Figure 3). The position of the overlaid joints
on the drawing is compared to that of the 3D positions of the
joints, transformed into screen space coordinates.

Edge map: To use internal lines in the drawing, the Canny
algorithm [Can86] is used to extract a binary map of the ex-
ternal and internal edges (Figure 4). Then the binary map of
the drawing is compared with that of the rendered image.

Silhouette: Finally, for the overall shape, the silhouette of
the drawing is used as a binary map (Figure 5). The silhou-
ette distance between the rendered image and the drawing is
calculated using a previously successful method [FAK12].

4. Results

The system was tested on two problems of different dimen-
sionality and difficulty: a lamp (Figure 6) and a horse (Figure
7). The reason for choosing them was to evaluate whether
the proposed method is suitable irrespective of the problem.
Both models would be difficult to be posed via methods such
as motion capture, especially the horse. Most motion cap-
ture solutions focus on humanoids and are not affordable
for smaller studios. Apart from posing models in isolation,
the proposed method is evaluated by posing a lamp within a
scene using an existing storyboard drawing (Figure 1).

For these tests, the algorithm was ran for #,q = 1000
epochs. The values ¢; and ¢, as defined in Section 3, were
set to a value of 2.05, which is the default value in the canon-
ical PSO [BKO07] and ensures convergence of the swarm. The
minimum and maximum velocity of each particle were set
to -360.0 and 360.0 respectively, since this is the space of
possible rotations. This means that in one epoch, a joint can
rotate at most by one complete rotation either clockwise or
counter-clockwise. The minimum and maximum position of
each particle was set dynamically based on the angle rotation
limits of each joint of the model, reducing the search space
of possible poses. The exploration phase (Section 3.2), was
setto T = %, s0 the first tax Te = 750 epochs were dedicated
to exploration and the last quarter of epochs was focused on
exploitation.
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Figure 6: Side by side comparison of the drawings (top) and the estimated 3D pose (bottom) for the lamp model.

1000 epochs took approximately 81 seconds on average
on a system with 8GB of RAM, an Intel HD Graphics 3000
GPU and an Intel Core i5-2520M 2.50GHz CPU.

MR
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Figure 7: Side by side comparison of the drawings (top) and
the estimated 3D pose (bottom) for the horse model.

5. Discussion

It is important to note that this method does not aim to pro-
duce final animated output. It aims at automating the ini-
tial pose layout phase or pre-visualisation, which is currently
performed manually by skilled operators.

The choice of the method of comparing the drawing to
the render may have a notable effect on the end result. For
example, by not using the internal lines of a drawing, the
forward-backward ambiguity problem can become an issue
as seen in Figure 2.

The method proposed in this paper easily fits into tradi-
tional animation pipelines. Unlike Jain et al. [JSHO09], it does
not require pre-existing data and can use perspective and or-
thographic camera models. The pinpointing of the joints user
input can take place as part of the clean up phase. The sys-
tem is flexible and applicable to a broad range of models,
from objects like lamps, to quadrupeds like horses.

(© The Eurographics Association 2014.

However, it is this flexibility which leads to the main dis-
advantage of this method. Since the approach is generative, it
requires a rendering step in every iteration, which may mean
it takes a longer time to return a result. It is important to
note that the time to return a result is computational only,
meaning that this method is still able to contribute to reduc-
ing costs. Furthermore, implementing the method on a GPU
reduces the effects of this disadvantage significantly.

Since the PARAC-LOAPSO algorithm is stochastic, result
accuracy may vary between runs. However, a system with a
powerful graphics card can normalise the results through the
use of a large population of particles, which helps both in
searching as well as in having a more varied initialisation.

6. Conclusion

This paper proposes a method to automatically pose 3D
models using information from monocular drawings. This
approach is generative and deals with inferring a 3D pose as
an optimisation problem. The results show that it is general
enough to deal with many types of characters, and a lamp
and a horse model are successfully posed in different scenar-
ios. Moreover, it does not require changes in the pipeline to
accommodate for it. The focus of the proposed method is to
pose models for the pose layout phase or pre-visualisation,
not final animated output. It may serve as a direct link be-
tween storyboarding and pose layout phases of a pipeline.

It is worth examining more general or accurate descrip-
tors and methods of comparing drawings to renders, such
as a context-based approach on joints [JSH09]. Completely
removing the need for user input may be possible by using
medial axis methods [ABCJO08] to extract the curve skele-
ton automatically from the drawing and then fit the character
skeleton to the curve skeleton.

A hybrid between the current optimisation approach and
a data-driven approach such as Jain et al. [JSHO9] is another
area where future work may expand to, to get results faster
while remaining more general than a pure database method.
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