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Abstract
Hazy images suffer from low visibility and contrast. Researchers have devoted great efforts to haze removal with
the prior assumptions on observations in the past decade. However, these priors from observations can provide
limited information for the restoration of high quality, and the assumptions are not always true for generic images
in practice. On the other hand, visual data are increasing as the popularity of imaging devices. In this paper, we
present a learning framework for haze removal based on two-layer Gaussian Process Regressions (GPR). By using
training examples, the two-layer GPRs establish direct relationships from the input image to the depth-dependent
transmission, and meanwhile learn local image priors to further improve the estimation. We also provide a method
to collect training pairs for images of natural scenes. Both qualitative and quantitative comparisons on simulated
and real-world hazy images demonstrate the effectiveness of the approach, especially when white or bright objects
and heavy haze regions appear and existing dehazing methods may fail.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation— I.3.m [Computer Graphics]: Computational Photography—Image Processing

1. Introduction

Images of outdoor scenes are typically degraded by haze,
showing low visibility and contrast. These degraded images
bring great difficulties to either human perception or auto-
matic computer vision systems. Researches have invested
significant efforts to haze removal (dehazing) in order to re-
store images with high quality and visibility [Fat08,HST12].
We address this issue from a learning perspective that trains
regressors on both imaging models and image priors from
examples for image dehazing.

In the past decade, the dehazing algorithms from a s-
ingle image have attracted great attention. Typically, these
methods employ strong image priors for the recovery.
Tan [Tan08] assumes that haze scenes are of high s-
moothness and consistence except for depth boundaries,
and restores color contrasts by maximizing the local con-
trast difference. Fattal [Fat08] divides the scene into fore-
ground objects and background shading under the assump-
tion that the transmission is independent of surface shading.
Yan [YXJ13] and Matlin [MM12] denoise the image prior
for haze removal and underwater scenes. Heet al. [HST12]
propose the dark channel prior (DCP) that the minimum of
RGB channels for a local patch is close to zero without haze.

Therefore, the local minimum can be used to estimate the
transmission. The calculation of DCP is simple yet effec-
tive, which gains great success for haze removal. There exist
many variants of DCP to improve the performance from var-
ious aspects. Lvet al. [LCfS10] refine the transmission with
bilateral filters and implement parallel processing on GPUs.
Gaoet al. [GFZL12] propose a transmission model derived
from DCP that is able to edit the amount of haze in an im-
age. However, the DCP assumption does not hold on sky
and bright white regions that are quite common in outdoor
scenes. Significant distortions inevitably appear in these sce-
narios.

These priors for either transmission or images are built
upon the field knowledge of the designers on haze observa-
tions, and are not necessarily true for generic images. Re-
searchers resort to image priors learnt from examples. In a
pioneering work [FPC00], Freemanet al. learn local image
priors from training examples with Markov random field-
s (MRFs). Recently, Gibsonet al. [GBN13] combines the
DCP based transmission model with the patch-wise MRF-
s for haze removal on synthetic images, showing promis-
ing results. Restoration algorithms are also able to take the
advantage of learning image formation models from exam-
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Figure 1: Haze removal of single image using our method: (a)Input hazy image (simulated haze). (b) Estimated transmission
map of (a). (c) Our haze removal result of (a). (d)Input hazy image (real haze). (e) Estimated transmission map of (d). (f) Our
haze removal result of (d).

ples in addition to the learnt priors for local patches. Tang
et al. [TYW14] investigate haze-relevant features in a learn-
ing framework for haze removal, where the random forrest
is applied to transmission learning. Their work relies on the
DCP based features, neglecting the structural ones that also
imply the depth-dependent transmission. The priors on local
image patches important for high quality restoration are not
included either.

In this paper, we propose an example based algorith-
m for haze removal with two-layer Gaussian process re-
gressions (GPR). One layer of GPR is to build the regres-
sion between the transmission from rich features on super
pixels [RM03] including color [TYW14], DCP [HST12],
and structural [CLZ04] information. The other layer learn-
s the priors on local structures for the predicted transmis-
sions. The physical formation as well as local image pri-
ors are learnt from examples in a unified GPR framework.
GPR implicitly encodes the smoothness as the MRF priors
in [Tan08,FPC00,GBN13], but also explicitly bridges trans-
mission and observations. These direct connects circumven-
t iterative inference like belief propagation for MRFs, and
yield efficient estimation.

Moreover, it is a challenging issue to collect training ex-
amples of haze-free/hazy images and true transmission. We
generate the training pairs on real-world images using the
natural transmission model [GFZL12], differing from the
3D simulated haze [GBN13] and patch-wise simulated haze
in [TYW14]. These natural examples is more likely to be ap-
plicable to images of outdoor scenes. Figure1 demonstrate
the estimated transmission and restored images on simulated
and real-world scenic images.

2. Haze image formation model

We employ the formation model for a hazy image widely
accepted in computer vision and computer graphics [Fat08,
HST12]:

I(x) = J(x)t(x)+A(1− t(x)), (1)

whereI is the observed hazy image,J is haze-free scene,A
is the atmospheric light, andt is medium transmission repre-
senting the portion of the light that reaches the camera with a
scalar value (0∼ 1). The relationship between transmission

t and depthd can be expressed as:

t = e−βd(x), (2)

whereβ is the scattering coefficient of the haze.

We take the modified transmission model [GFZL12] that
preserves the aerial perspective for natural haze generation.
The ratio of the input transmissionti to the desiredt j as the
transmissiont to be estimated:

t(x) = ti(x)/t j (x), (3)

The desired transmissiont j can be derived as:

t j (x) = ti(x)
Dvisi/Dvisj , (4)

whereDvisi and Dvisj are the maximum visibility of the
observation and desired image, respectively. These two pa-
rameters are tunable in order to decrease and increase the
amount of haze in an image. We employ the model to gener-
ate the training examples for learning GPR.

3. Two-layer Gaussian Process Regression

Figure 2: Learning framework with two-layer GPRs: (a)
the first layer GPR, inputs are multi-scale feature vectors
and targets are transmissions; (b) the second layer GPR, in-
puts are the transmissions of neighbors and the target is the
transmission at the super-pixel of interest.

We give the learning based haze removal using two-layer
GPRs on super-pixels. The first GPR layer takes multi-scale
feature vectors as the input and transmissions as the target,
and the second GPR uses the predicted neighboring trans-
missions as the input and the transmission at the super-pixel
of interest as the target, as shown in Fig.2.
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Figure 3: Haze removal with two-layer GPR: (a) Hazy image. (b) Rough transmission estimated by the first layer GPR. (c)
Refined transmission by the second layer GPR. (d) Final transmission improved by guided filtering [HST11] and Gaussian
filtering. (e) Ground truth transmission. (f) Haze removal result. (g) Original haze-free image.

3.1. Gaussian process regression form feature to
transmission

We define the input of the first GPR layerf1(·) as the average
feature vector within the super-pixel of interest:

Fin =
1
|γ| ∑

pi∈Si

F(pi), (5)

F(pi) =
[

H,D4,C4,S4,G3,8
]

(6)

whereSi is the super-pixel,γ is the number of pixels inSi ,
andF(pi) is the multi-scale feature extracted at the pixelpi .
The feature vector includesH, D4, C4, S4 andG3,8, repre-
senting the hue, DCP with 4 scales, contrast with 4 scales,
saturation with 4 scales and gabor features with 3 scales and
8 orientations, respectively (details can be found in Section
4.2). The recent work [TYW14] construct a 325-dimensional
feature vector at every pixel in a 5×5 patch. We take the av-
erage of the pixel feature vectors within a super-pixel where
these vectors share similar characteristics. The average sig-
nificantly decrease the regression complexity.

It is widely accepted that the estimation of the transmis-
sion map is essential to haze removal [HST12, GVN12,
GFZL12, TYW14], and transmissions of an image are lo-
cally constant. We take the transmission at a super-pixel as
the target shown in Fig.3 as transmissions for the first lay-
er of GPRs. It is nontrivial to collect the target transmission
values as it is not directly available from an observation. We
employ the natural transmission model in [GFZL12] to sim-
ulate haze with specific transmissions, which we detail in
the next section, and then feed the pairs of transmissions and
feature vectors extracted from the simulated images to train
the parameters of the GP regressor.

Given a trained GPR, we simply take the mean ofp(yp|y)
as the predicted transmission at every super-pixel by substi-
tuting the feature vectors of an observation into. The pre-
dicted transmission is able to roughly reflect the depth and
global structures of an image shown in Fig.3(b), but present
evident discrepancy on neighboring super-pixels. Therefore,
it is necessary to apply one more GPR layer in order to im-
pose the local smoothness to the predicted transmission map.

3.2. Gaussian process regression on neighboring
transmissions

We use the second GPR layer to smooth the local discrep-
ancies among predicted transmissions. These discrepancies
destroy the consistency of image structures, and may lead to
unnatural estimation in local regions. This GPR layer plays
an similar role to MRFs in [FPC00, GBN13], but needs no
iterative inference process. We can achieve the smoothing by
a one-step prediction.

We concatenate the predicted transmissionst̃ of the near-
est 8 neighborsN (Si) of a super-pixelSi as the input:

t̃i = [t̃(S1), ..., t̃(Sj), ..., t̃(S8)]Sj∈N (Si). (7)

It should be noted that we do not use the adjacent neighbors
as they may yield different input dimensions. The target is
the transmissiont(Si) at current super-pixelSi . We train the
second GP regressor by using the transmissions of simulated
hazy images and the predicted transmissions of the first GPR
layer for the training. In the prediction stage, we feedt̃i to the
trained GP regressor, and take the mean of the conditional
distribution as the smoothed transformation map.

The output of the second GPR layer shows global smooth-
ness and consistency as illustrated in Fig.3(c). For a further
refinement, the guided filtering [HST11] is applied to obtain
the final transmission (Fig.3(d)). Our final estimation has
little difference with the ground truth in Fig.3(e).

4. Training examples for Gaussian process regressions

We present the process to collect the training examples for
the two-layer GPRs including the generation of transmis-
sions, over-segmentation for super-pixels and the construc-
tion of the multi-scale feature vectors.

4.1. Training data

Our training images with known transmissions are generated
by two methods: (1) simulating hazy images by known depth
on haze-free images; and (2) estimating transmission maps
from hazy images. We apply both methods toreal-world nat-
ural images in contrast to 3D scenes in [GBN13] and patch-
wise simulated images in [TYW14]. It is more likely for our
model to apply to real world images.
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The first method is motivated by the depth learning of
depth. In [SCN08], Saxenaet al. use a 3D scanner to col-
lect images and corresponding depth maps. Following (2),
we convert depth maps into transmissions under the assump-
tion of β constant to depth. We set a small positive con-
stant (0.1) as the transmission corresponding to the max-
imum depth, and hence normalize the transmission map-
s. Subsequently, we apply the guided filtering to refine
the transmissions [HST11]. Finally, we obtain hazy images
through (1). We apply 4 transmission-based dehazing meth-
ods [Fat08, Tan08, HST12, GFZL12] to hazy outdoor im-
ages, and pick out the transmission maps that produce the
best restoration among the four algorithms. We collect these
transmission maps along with the hazy images as part of our
training examples.

4.2. Super-pixels

We employ the super-pixels in [RM03] to assemble feature
vectors. The super-pixels are obtained by using the following
features:

1.inter-region texture similarity;

2.intra-region texture similarity;

3.inter-region brightness similarity;

4.intra-region brightness similarity;

5.inter-region contour energy;

6.intra-region contour energy;

7.curvilinear continuity.

This combination of features segments super-pixels rea-
sonably. The pixels in a super-pixel present homogenous tex-
ture, brightness and color. The use of these mid-level fea-
tures other than image patches renders lower dimensional
input space that favors smaller training examples and sim-
pler regressors, and meanwhile it partially provides struc-
tural contexts.

5. Multi-scale feature vector

The ability to incorporate multiple features is one of the ad-
vantages of regression methods. We list the features for our
GPR training including the DCP based ones [TYW14]. First,
we introduce the hue, multi-scale dark channel, local maxi-
mum contrast and saturation.

Hue disparity can be used to detect haze [AAHB11].
Therefore, in our work, we apply the hue channel of the im-
age in Lch color space directly. The multi-scale dark chan-
nel, local maximum contrast and saturation can be expressed
as:

Dr(x) = min
y∈Ωs(x)

( min
c∈{r,g,b}

(I c(y))), (8)

Cs(x) =

√

1−
(maxy∈Ωs(x)(maxc∈{r,g,b}(I c(y)))2

(miny∈Ωs(x)(minc∈{r,g,b}(I c(y)))2
, (9)

Ss(x) = 1−
maxy∈Ωs(x)(maxc∈{r,g,b}(I

c(y))

miny∈Ωs(x)(minc∈{r,g,b}(I c(y))
. (10)

whereDr is the dark channel,Ic are colors of the original
imageI, andΩs is a local window centered atx with sizes×
s. In this paper, we use four scales asD4 = [D1,D4,D7,D10],
C4 = [C1,C4,C7,C10] andS4 = [S1,S4,S7,S10].

Then, we apply gabor feature [CLZ04] to extend the in-
formation content of feature vector. Gabor filter outperforms
in the field of textural orientation, which can be apparently
changed by haze. The gabor wavelet transform can be de-
fined as:

Gi, j = ∑
s1

∑
s2

I(i − s1, j − s2)ψ∗
i, j (s1,s2), (11)

wherei and j are the scale and direction of the wavelet.s1
ands2 define the filter mask size, andψ∗

i, j is the complex
conjugate, generating from dilation and rotation. More de-
tails can be found in [CLZ04].

6. Experiment results

In this section we mainly make comparisons as following:
(1) the effect of the second layer GPR, compare our ap-
proach with the implement lack of the second layer GPR;
(2) the advantage of super-pixels, compared with the usage
of patches; (3) the effect of different features, the compar-
isons amongG3,8, HD4C4S4 andHD4C4S4G3,8; and (4) the
comparisons with existing methods in [Fat08, HST12] and
the work of Photoshop, which is a widely used commercial
software of image processing. In the experiment, we use 40
images as training set.

6.1. Two-layer Gaussian Process Regression vs. Single
layer Gaussian Process Regression

We make comparisons between the processes with the two-
layer GPR and with the single first layer GPR, meanwhile,
keep other setting all the same, to show the importance of the
second layer GPR. Fig.4 shows the difference applying the
double or single layer GPR. In Fig.4(f), the color distortion
of red rectangle regions is caused by the uneven distribution
of transmission in sky regions. Besides, the obtained trans-
mission without the second layer refined can have bad con-
sistency in local details, as the left haze (the yellow rectangle
region) shown in Fig.4(f), the green leaves are restored well
but the shadow not. Though these differences can be hardly
distinguished from the transmission maps(Fig.4(d) and (e)),
it affects the result a lot. The application of the second layer
GPR can help to improve the smoothness and consistency of
transmissions, leading to good performance (Fig.4(g)).

c© The Eurographics Association 2014.

104



Xin Fan Renjie Gao Yi Wang / Example-based Haze Removal with two-layer Gaussian Process Regressions

Figure 4: Comparisons between the two and single layer GPR: (a) Hazy image. (b) Rough transmission estimated by the
first layer GPR. (c) Refined transmission by the second layer GPR. (d) Final transmission generated by the single layer GPR.
(e) Final transmission generated by the two-layer GPR. (f) Haze removal result generated by the single layer GPR. (g) Haze
removal result generated by the double layer GPR.

Figure 5: Predicted transmission vs. ground truth trans-
mission on patches and super-pixels (for Fig. 6): (a) Pre-
diction of patches, MSE=1.41e-2. (b) Prediction of super-
pixels, MSE=0.56e-2.

Figure 6: Comparison between different features: (a)Hazy
image. (b) Result of G3,8. (c) Result of HD4C4S4. (d) Result
of HD4C4S4G3,8.

6.2. Super-pixels vs. Patches

For comparisons between super-pixels and patches, we re-
place the super-pixels with 14× 14 patches, which can
generate similar numbers of sample for the testing image
(400× 533 with 1094 super-pixels). The difference main-
ly demonstrates at the general performance. Fig.5 plots the
distribution of prediction transmission vs. ground truth on
patches and super-pixels, the prediction of patches is appar-
ently lower than the truth and super-pixels’ is much better. In
addition to this, the comparison of MSE, 1.41e-2 of patches
and 0.56e-2 of super-pixels, also proves the better perfor-
mance of super-pixels.

Figure 7: Comparisons with other dehazing methods (hazy
images are estimated): (a) Haze0_8, (b) Haze1_7, (c)
Haze2_2. From left to right, hazy images, Fattal’s result-
s [Fat08], He et al.’s results [HST12], Photoshop’s results
and ours.

6.3. Comparisons between different features

In the work of [TYW14], the feature ofD4HC4S4 proves to
be the best among the combination ofD,H,C,Srespective-
ly. Dark channel is the major feature and other features are
assistant. This feature, however, contains only the local cues
and lack of the texture information. As an improvement, we
construct the similarHD4C4S4 into the input feature vector
and further add theG3,8, the gabor feature with 3 scales and
8 orientations, with high weight. For proving the effective-
ness of this combination, we mainly compare the features
amongG3,8, HD4C4S4 andHD4C4S4G3,8.

Fig. 6 describes the comparisons between different fea-
tures. As a texture feature, the gabor features are not so
closely associated with haze and the usage of singleG3,8

cannot restore well, both over-dehazing and under-dehazing
may happen, as Fig.6(b) shows. TheHD4C4S4 feature can
dehaze well on images following the assumption of dark
channel prior, like the image of cones in Fig.6(c). Nev-
ertheless, when the assumption is broken, like the white
building with sunshine in Fig.6(c), the prediction may fail,
notice the over-dehazing dark ground. The combination of
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HD4C4S4G3,8 can not only handle the images following
dark channel prior well, but also restore the scene breaking
the prior correctly due to the correction function of gabor
features on dark channel, as shown in Fig.6(d).

6.4. Comparisons with other dehazing methods

Finally, we compare our results with the existing methods
in [Fat08, HST12] and the work of Photoshop. In the com-
parisons of data based on Saxenaet al.’s work [SSN07], Fat-
tal’s [Fat08] work performs worst on visual effects (Fig.7),
either stretches contrast excessively or under-estimates the
haze, due to the restrict assumption. In Fig.7, The red-white
ground (first row), yellow-white wall (second row) and sun-
ny and white scene (third row) kill the assumption of dark
channel, so serious color distortion occurs in Heet al.’s re-
sults. Besides, the results are also too dim due to the usu-
al over-dehazing of dark channel prior. The performance of
Photoshop looks good, however, the results are obviously
under-dehazed and big amount of haze is still remained. The
original haze-free images are added with thin haze. Our work
performs best both on visual effects, the estimated transmis-
sion is rather close to the real and the results are restored
with high fidelity and visibility.

7. Conclusion and Discussion

In this paper, we demonstrate a two-layer GPR model to es-
timate the transmission and remove haze. By using training
examples, the two-layer GPRs establish direct relationships
from the input image to the depth-dependent transmission,
and meanwhile learn local image priors to further improve
the estimation. We also provide a method to collect train-
ing pairs for images of natural scenes. Experimental results
presents that the advantage of our algorithm compared with
other existing methods. Our model still has room for im-
provement and extension: (1) a faster algorithm for super-
pixels is expected to improve the efficiency of our algorithm;
(3) the addition of other features, like the line space subdi-
vision [BWW01] or view-dependent layered projective tex-
ture maps [RMD03], may improve the precision of regres-
sion further.
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