
Pacific Graphics (2014) Short Papers
J. Keyser, Y. J. Kim, and P. Wonka (Editors)

Quantitative Analysis of Voxel Raytracing Acceleration
Structures

M. G. Chajdas1 and R. Westermann1

1Technische Universität München, Germany

Abstract
In this work, we provide a comprehensive analysis of GPU acceleration structures for voxel raytracing. We com-
pare the commonly used octrees to BVH and KD trees, which are the standard in GPU triangle raytracing. Eval-
uating and analyzing of the behavior is complicated, as modern GPUs provide wide vector units with complex
cache hierarchies. Even with sophisticated SIMD simulators, it is increasingly hard to model the hardware with
sufficient detail to explain the observed performance.
Therefore, instead of relying on SIMD simulation, we use hardware counters to directly measure key metrics
like execution coherency on a modern GPU. We provide an extensive analysis comparing different acceleration
structures for different raytracing scenarios like primary, diffuse and ambient occlusion rays. For different scenes
we show that data structures commonly known for good performance, like KD-trees, are actually not suited for
very wide SIMD units. In our work we show that BVH trees are most suitable for GPU raytracing and explain
how the acceleration structure affects the execution coherency and ultimately performance, providing crucial
information for the future design of GPU acceleration structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques —Graphics data structures and data types

1. Introduction

In recent years, voxel raytracing has become increasingly
popular. Most of the time, octrees are used due to their sim-
ple traversal and easy integration with level-of-detail. In tri-
angle raytracing, BVH trees and KD trees are usually used
due to their superior spatial partitioning properties. One as-
pect which has not been well researched yet is how data
structures affect traversal coherency on architectures with
very wide vector units as GPUs. So far, coherency has been
only simulated or estimated, but not measured on a mod-
ern GPU architecture. Recent hardware provides hardware
counters, similar to CPUs, which allow for precise measure-
ment of vector unit execution coherency, cache hit rates and
bandwidth usage.

In this work, for the first time, we use the hardware coun-
ters of a modern GPU to provide comprehensive and accu-
rate measurements of the behavior of different acceleration
structures. In particular, we measure and analyze the dif-
ferences between BVH trees, KD trees and octrees in exe-
cution performance of the involved operations as measured

by the hardware counters. We do so using multiple large-
scale voxel models with different ray-traversal characteris-
tics. In our analysis, we show how coherency, performance
and data structure design is related. With the provided infor-
mation, we hope to further pave the way towards coherency-
optimized GPU data structures.

Besides its current popularity, one reason for analyzing
voxel raytracing is that the used acceleration structures, un-
like those typically used for triangle raytracing, do not have
overlaps at the leaf level. In triangle scenes, leaf nodes gen-
erally overlap, and handling these overlaps contributes sig-
nificantly to the raytracing performance.

In voxel raytracing however, most of the execution time
is spent in tree traversal. This makes it the ideal vehicle to
analyze the acceleration data structure itself.

2. Previous work

Voxel raytracing has been performed on GPUs since many
years now [CNLE09,LK11]. So far, all GPU voxel raytracers

c© The Eurographics Association 2014.

DOI: 10.2312/pgs.20141257

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgs.20141257


M. G. Chajdas & R. Westermann / Quantitative analysis of voxel raytracing acceleration structures

use an octree as the underlying acceleration structure due to
the simple integration of level-of-detail.

For triangle raytracing, KD trees and BVH trees have
been the gold standard for many years. This has carried
over to GPU triangle raytracing as well [WMS06, WIK∗06,
PGSS07, HSHH07, GPSS07]. An early work which focused
on a detailed analysis of GPU raytracing is [AL09], in which
a SIMD simulator was used to identify the best traversal pat-
tern for a single data structure, which was subsequently val-
idated on actual hardware.

However, even on CPUs, wide vector execution poses
problems for efficient raytracing. Packet traversal [BEL∗07]
was found to be beneficial for primary rays. For incoher-
ent rays, single-ray traversal [WWB∗14] may allow for bet-
ter usage of wide vector units. These coherency problems
become more pronounced on 32 & 64-wide vector units as
used by current GPUs. So for, a lof of research has focuseod
on the traversal, i.e. by re-scheduling of rays as proposed
in [AK10, BAM14], but not by investigating how the accel-
eration structure affects coherency.

Data structures have only come into attention very re-
cently, in particular, [AKL13] has investigated in detail why
BVH trees don’t perform as good as expected on GPUs.
They introduce two important concepts, the end-point over-
lap (EPO) and the leaf-count variability (LCV). The EPO
describes how many nodes any given point in the scene
overlaps. The LCV describes the standard deviation of the
number of leaf nodes intersected by a ray. The higher the
variance, the more likely it is that the intersection kernel
will become more incoherent as some rays will intersect the
leaf while the rest will be traversing the tree. In this work,
only one data structure is used (a BVH), but many different
builders are compared.

One important difference between this work and ours is
that we investigate voxel raytracing, which has an EPO of
0 for all data structures. This means that unlike a normal
triangle ray-tracer, which has to spend significant amount
of times to resolve overlapping leafs, our raytracing kernels
spent nearly all of their time in the tree traversal. The im-
pact of leaf intersections on the measurement is significantly
reduced, allowing us to focus on the acceleration structure
characteristics instead.

3. Implementation & testing methods

For our analysis we implemented an automated test frame-
work. For each data set, we build all acceleration structures
and render a fixed set of test cases. In this section, we will
describe our test methodology in detail, including our tree
building and traversal routines.

The test scenes (see also Figure 1) are constructed by
voxelizing triangle input using a standard voxelization al-
gorithm [BLD13]. We use a six-separating voxelization to

(a) David, 10243 - 163843 (b) Atlas, 10243 - 163843

(c) Conference, 10243 - 81923 (d) San Miguel, 10243 - 81923

Figure 1: We have used 4 test scenes, voxelized at different
resolutions. Data set sizes vary from 12 MiB (David, 10243)
up to 6.6 GiB (Atlas, 163843)

minimize the number of generated voxels. To simulate level-
of-detail, we have voxelized each test scene at different res-
olutions. For our target rendering resolution (1280×720), a
voxel resolution between 20483 and 40963 results in the cor-
rect level-of-detail, while 10243 is undersampled and 81923

is oversampled.

We have limited the scene size to 655353 voxels, which
allows us to use 16-bit bounding boxes for the BVH and
16-bit plane offsets for the KD tree. Voxel positions are also
stored as 16-bit integers.

The data structures are generated in an offline process on
the CPU and linearized before uploading to the GPU, that
is, all pointers are replaced by explicit 32-bit integer offsets.
Additionally, the data structure is split into two leaf and inte-
rior node buffers, which improves locality during traversal.

We have implemented all kernels using OpenCL [M∗09]
and integrated them into a common, OpenCL based raytrac-
ing framework. We performed all our testing on an AMD
FirePro W9100 graphics card with 44 compute units. Each
compute unit consists of two parts: A scalar unit and a vec-
tor unit. The scalar unit is used to perform branching, while
all compute operations are performed on the 64-wide vec-
tor unit [AMD12]. For the actual measurement, we use the
AMD GPUPerfAPI which provides access to the hardware
counters. These allow us to measure vector unit utilization,
cache hit rates as well as memory usage.

3.1. Test scenarios

Our test framework allows for four different rendering
modes (see also Figure 2): Primary rays, shadow rays, soft-
shadow rays and ambient occlusion.

For secondary effects, we use a two-pass rendering to en-
able precise measurements. First, the scene is traced and
the hit-points are recorded. Second, a new kernel is started

c© The Eurographics Association 2014.

86



M. G. Chajdas & R. Westermann / Quantitative analysis of voxel raytracing acceleration structures

(a) Shadows (b) Soft-shadows (c) AO

Figure 2: Besides primary rays, we used shadow, soft-
shadow and ambient occlusion rays to cover a wide range of
ray types. For soft-shadows and ambient occlusion rays, 36
rays per pixel where used. The ambient occlusion ray length
is 1/3 of the scene size.

which reads the hit-points and traces the shadow, soft-
shadow and ambient occlusion rays.

The hardware counters and execution time is only mea-
sured for the second pass. Soft-shadows and ambient-
occlusion are computed similarly, by constructing a basis at
the hit point and tracing rays in a hemisphere around the light
direction or the surface normal. For soft-shadows and ambi-
ent occlusion, random directions are required. For ambient-
occlusion, we scale the ray length with the scene size such
that the ray-length is 1/3 of the total scene size. We used 36
rays for both soft-shadows and ambient occlusion raytrac-
ing.

Every option is turned on/off using preprocessor defini-
tions. Loop counters like the number of soft shadow or am-
bient occlusion rays are also provided as compile-time con-
stants to allow for loop unrolling. We have also inspected the
generated ISA to ensure that no surprising inlining has been
performed for one of the traversal algorithms.

All traversal routines are based on a short-stack with
restart [HSHH07] if the stack is empty. With a short-stack,
we can provide a fair comparison between all data structures
and also make the measurements more relevant for practical
use, as BVH trees have to be traced with auxiliary storage.
In our testing, we have found a short-stack with 4-8 entries
to be most beneficial.

Our traversal algorithms differ from normal triangle ray-
tracing in an important way: Leaf nodes and voxels never
overlap. This implies that the traversal can stop once a hit has
been found as long as the tree is traversed strictly in front-to-
back order. Compared to a triangle raytracer, this reduces the
time spent in ray/leaf traversal drastically. Due to this prop-
erty, our work primarily measures the traversal performance
of the acceleration structure and is nearly independent of the
actual ray/primitive intersection speed.

The voxels themselves are stored with a per-voxel position
for all of our trees. We have also used the same leaf-size (8)
for all builders.

3.2. BVH

We use a standard BVH tree builder which subdivides at the
midpoint along the longest axis. Compared to an SAH based

builder, the middle split builder creates a more balanced tree
while providing the same raytracing performance. The BVH
tree is built top-down by identifying the longest axis first,
and then splitting in the middle. Leaf nodes are created once
less 8 or less voxels remain.

During the linearization, the tree is packed by moving
the bounding boxes up to their direct parents. Every interior
node consists of the two bounding boxes of its children and
the split axis. This enables an efficient traversal and allows
us to store the leaf nodes without bounding boxes.

The traversal routine starts by computing which of the two
children of an interior node is hit. If both are hit, the traver-
sal continues into the closer one and the further away node
is pushed onto a short traversal stack. Once a leaf node has
been reached, the traversal stack is popped; if the stack is
empty, a full restart is performed. Unlike for triangle ray-
tracing, where overlapping nodes have to be resolved using
auxiliary storage, we can perform a restart once the stack
becomes empty.

3.3. KD

The KD tree is built using an SAH builder. This turned out
to be crucial to get a high-quality KD tree which renders
efficiently. For example, a middle-split KD tree results in
roughly 10x slower raytracing performance. We use a binned
SAH builder with 32 bins [WH06]. For each bin, the cost is
estimated as the size of the sub-volume times the number of
voxels. As we treat each voxel as a small cube, the surface
area is directly proportional to the number of voxels. Leaf
nodes are created once less 8 or less voxels remain. We use
a standard KD tree which stores the split position and axis at
each interior node.

The traversal routine computes the intersection between
the ray and the current node’s splitting plane. If an intersec-
tion has been found, the traversal continues into the closer
node and the further away node, together with the current
ray maximum, is pushed onto the stack. Just like the BVH
and octree traversal, once a leaf node is reached the stack is
popped; once the stack is empty, a restart is performed.

3.4. Octree

The octree is built by sorting the voxels along their morton-
order index and recursive subdivision from top. We use a
standard 23 octree. Leaf nodes may be created at high lev-
els of the tree of the region is sparse; as we store per-voxel
positions, there is no need to build the tree down to the leaf
level. The octree does not encode any positions, as these are
stored implicitly in the tree.

The traversal computes which interior planes are inter-
sected by the current ray and traverses into the closest one.
In this case, the current node and the current ray mini-
mum/maximum is pushed onto the stack. Pushing the cur-
rent node instead of computing all intersected children and

c© The Eurographics Association 2014.

87



M. G. Chajdas & R. Westermann / Quantitative analysis of voxel raytracing acceleration structures

pushing them allows for better usage of the short stack and
simplifies the traversal routine. Similar to the BVH tree, the
traversal stack is popped once a leaf node is reached; if the
stack is empty, a restart is performed. This traversal is similar
to the one used in [LK11], which is also used by the most
recent octree rendering work [KSA13]. Unlike [KSA13],
our octree builder does not merge identical paths through the
tree. However, this only improves locality and thus mem-
ory efficiency but not traversal efficiency, as the execution
effiency is not affected by merged paths.

The octree does not use level-of-detail during traversal.
While simple level-of-detail is a major feature of octrees, we
didn’t integrate it into our traversal to allow for a fair com-
parison of the data structures. Instead, as mentioned above,
we have voxelized the scene at different levels-of-detail.

4. Results & Analysis

We have tested four different scenes: Atlas, David, Con-
ference and San Miguel. Atlas is a 3D scan with a lot
of surface detail as well as noise. Unlike the other scenes,
Atlas exhibits many tiny holes in the surface, which compli-
cates traversal. David is a very clean 3D scan without any
holes, allowing nearly all rays to traverse once to the leaf
level and terminate.

San Miguel and Conference are in-door scenes. In both
cases, the camera is placed within the boundaries of the data
set. Unlike for Atlas and David, where traversal starts from
the outside, the rays have to traverse down to a very low
tree level and continue traversing near leaf nodes, putting
increased pressure on restart and stack performance.

As we can see in Table 4, the BVH has on average the
highest coherency across all test scenes and is also the fastest
traversal algorithm 4. The coherency of the BVH tree is even
high for very large trees, unlike the KD and octree. It also
degrades less for incoherent rays, maintaining at least 30%
efficiency even for the largest data sets, or, on the 64-wide
vector unit, a usage of approximately 19 active lanes.

We can also see that primary ray coherency is up to
twice as high as for secondary rays. This result is similar
to [AL09], however, in their work, a 32-wide architecture
was used.

Besides the coherency, we also measured the actual exe-
cution time to understand how the coherency translated into
ray-tracing performance. As we can see in Table 4, the co-
herency is closely related to the performance, indicating that
all of our traversal algorithms are limited by execution speed
and not by memory bandwidth. For very low coherency val-
ues, the execution time increases non-linearly – we assume
that we can see the effects of few, very long running rays in
this case.

Coherency is also related to the tree depth. Very deep
trees are likely to exhibit lower coherency, as long execution

chains can be created. We have measured the average depth
at which leafs nodes are present. Compared to the BVH,
the KD tree is between 38% to 92% deeper. The BVH is
120% to 170% deeper than the octree. Notice that the first
six levels of the KD tree, corresponding to 13%-20% of the
total tree depth, are the global bounds of the scene and thus
highly coherent. We cannot conclude that a higher tree depth
has significant impact on the coherency, as the KD tree ex-
hibits similar coherency to the octree, despite much deeper
trees. For instance, in the Conference scene, the KD tree
(depth 35, variance 7.4) reaches 40% coherency for primary
rays, compared to 46% for the octree (depth 12, variance
0.02). For comparison, the BVH achieves 66% coherency
(tree depth 26, variance 3.4.)

We have also measured the cache usage to identify the im-
pact of large nodes in the acceleration structure. The BVH
tree has the biggest interior nodes, containing 33 byte of
data (padded to 36 byte); the KD interior nodes are 11 bytes
(padded to 12) and the octree nodes are 32 bytes (no addi-
tional padding.) As expected, the small node sizes lead to
a higher cache efficiency for the KD tree, yet it does not
translate into better performance. Due to its small nodes, the
KD tree exhibits the best cache behavior. In this context, we
also measured whether the memory subsystem was a bottle-
neck for traversal, that is, whether the execution stalled due
to memory accesses. For all tested scenes and data structure,
the execution was never blocked on memory accesses; in-
dicating that the traversal performance was limited by the
computations and not the memory.

4.1. Analysis

Our analysis shows that the data structure has a significant
impact on the traversal coherency. Interestingly, the data
structure with the most complex spatial partitioning per-
forms best from both a coherency and a performance point of
view. This can be explained by investigating how precise the
spatial partitioning is. In general, a single step in the BVH
traversal performs 12 plane intersections (6 for each child);
a single step in the octree performs 3 plane intersections and
the KD tree only plane intersection.

We can get a better intuition for this problem by consid-
ering how the selectivity of an acceleration structure affects
execution. If the selectivity is very low, the higher the chance
that the execution graph will split up. We can see this for
the KD tree. If the selectivity is very high, it is unlikely
that the execution will split up, and many paths will termi-
nate quickly, as can be seen for the BVH. The octree is in-
between – initially, it would seem that its behavior should be
equal to a KD tree, but the fact that the ray is shortened by
potentially up to three planes per step significantly reduces
the chance of an intersection. The key observation is that the
coherency does not depend on the node intersection test, as
long as the test can be formulated in a branch-free manner,
but on the selectivity of the data structure.

c© The Eurographics Association 2014.

88



M. G. Chajdas & R. Westermann / Quantitative analysis of voxel raytracing acceleration structures

Tree BVH KD Octree

Scene Res Prm Shd Soft AO Prm Shd Soft AO Prm Shd Soft AO

Atlas 1024 59.7 52.6 47.4 33.5 40.7 30.9 28.0 16.2 52.4 40.4 37.5 22.9
2048 50.5 42.9 40.5 32.2 32.2 22.5 21.3 14.5 44.5 31.3 29.9 20.5
4096 44.3 37.0 36.0 31.5 27.1 17.4 17.0 13.4 39.4 24.7 24.2 19.0
8192 41.0 33.5 33.0 30.9 24.5 14.4 14.2 12.5 35.8 20.4 20.2 17.8
16384 39.2 31.3 30.9 30.4 23.1 12.4 12.4 11.9 33.4 17.5 17.5 16.8

David 1024 57.9 58.5 58.2 35.6 41.4 39.2 39.9 18.4 53.3 49.2 49.5 25.2
2048 50.0 50.3 50.6 34.6 33.5 29.4 30.2 16.5 46.8 39.7 40.4 23.0
4096 45.0 45.1 45.6 33.8 28.7 23.2 23.9 15.0 41.9 32.6 33.4 21.1
8192 42.1 42.2 42.7 33.2 26.0 19.5 20.1 13.9 38.4 27.7 28.4 19.6
16384 40.3 40.5 40.9 32.7 24.5 17.1 17.6 13.1 35.9 24.2 24.9 18.5

Conference 1024 70.0 56.9 55.5 35.8 43.7 39.3 40.3 19.1 48.8 44.0 43.6 21.8
2048 67.8 50.3 49.9 35.9 43.6 34.3 35.4 17.9 47.3 38.6 38.4 20.9
4096 66.6 49.9 49.6 36.2 41.9 31.1 32.1 17.0 46.7 36.0 35.5 20.7
8192 66.2 49.6 49.2 36.4 40.5 28.8 29.6 16.3 46.0 33.7 33.0 20.3

San Miguel 1024 65.2 52.7 43.8 27.2 46.1 34.0 28.1 14.1 51.3 40.4 34.9 18.7
2048 56.5 43.7 37.4 26.3 36.0 24.6 21.0 12.1 42.4 31.9 27.9 16.9
4096 50.2 37.4 33.9 26.1 29.4 18.7 16.8 10.7 36.7 26.0 23.4 15.6
8192 46.8 34.9 32.7 26.5 26.4 15.6 14.5 10.0 33.3 22.0 20.5 14.8

Average 53.3 45.0 43.2 32.2 33.9 25.1 24.6 14.6 43.0 32.2 31.3 19.7

Table 1: Measured coherency accross various test scenes and ray types. Prm are primary rays, Shd shadow rays, Soft are
soft-shadows and AO are ambient occlusion rays. For soft-shadows and ambient occlusion, 36× as many rays have been casted
as for the primary and shadow rays tests.

Tree BVH KD Octree

Scene Res Prm Shd Soft AO Prm Shd Soft AO Prm Shd Soft AO

Atlas 1024 3.0 4.1 168.9 190.8 4.4 6.1 219.8 271.3 3.7 4.3 201.9 216.3
2048 4.0 5.9 233.1 244.7 5.6 10.1 336.3 378.1 5.0 6.6 300.4 291.0
4096 5.3 7.9 315.7 295.6 7.4 14.7 501.3 490.6 6.2 9.7 434.3 369.6
8192 6.5 9.9 399.2 348.3 9.0 20.8 712.0 620.9 7.8 13.6 601.4 457.0
16384 7.5 12.0 480.7 447.8 10.4 28.0 949.9 873.6 9.0 18.2 795.2 551.8

David 1024 2.3 1.1 43.7 108.6 3.1 1.7 55.0 144.8 3.4 1.4 61.4 132.0
2048 3.2 1.7 63.4 140.0 4.3 2.9 91.4 200.7 4.4 2.0 89.3 172.2
4096 4.0 2.3 88.1 172.0 5.6 4.5 143.1 268.6 5.4 3.0 128.1 218.7
8192 4.9 3.1 115.6 203.5 7.2 6.5 205.5 342.7 6.7 4.2 177.2 271.8
16384 5.7 3.9 142.3 236.7 8.2 8.8 282.8 427.0 7.8 5.8 236.0 328.4

Conference 1024 3.7 2.3 96.0 331.2 2.8 2.0 69.3 274.6 5.5 2.9 138.0 397.2
2048 4.3 2.9 125.0 364.1 3.4 2.6 90.8 322.5 6.2 4.0 185.6 489.5
4096 4.9 3.4 143.1 393.1 3.9 3.1 110.0 366.5 6.5 4.8 227.1 545.9
8192 5.5 3.8 158.3 423.3 4.4 3.9 132.9 411.4 6.9 6.0 274.5 602.0

San Miguel 1024 4.5 4.5 209.5 516.5 5.0 5.0 199.5 499.0 4.7 3.8 199.1 370.8
2048 6.1 6.4 292.6 638.6 7.1 8.3 321.9 714.4 6.7 6.1 314.1 532.4
4096 7.8 8.5 378.0 736.1 9.1 12.5 469.1 929.6 9.1 8.9 448.4 714.3
8192 9.3 10.9 443.1 866.9 11.2 17.0 621.6 1129.8 11.4 12.5 611.6 900.0

Average 5.1 5.3 216.5 369.9 6.2 8.8 306.2 481.5 6.5 6.5 301.3 420.0

Table 2: Measured execution time in milliseconds. The captions are the same as in Table 4.

c© The Eurographics Association 2014.

89



M. G. Chajdas & R. Westermann / Quantitative analysis of voxel raytracing acceleration structures

Another important observation is that even the most in-
coherent acceleration structure never dips below 12% co-
herency in the worst case – that is, 8 units of the 64-wide
vector unit can be always filled. This strongly suggests that
for CPUs, which only support 4 & 8-wide SIMD, efficient
re-packing of rays would allow to reach near perfect utiliza-
tion of this comparatively narrow vector units.

5. Conclusion & future work

We have provided an extensive, quantitative measurement
of several popular acceleration structures in different render
scenarios. Our focus has been on voxel raytracing, which is
more dependent on the actual acceleration structure than tri-
angle raytracing, where a significant amount of time is spent
in leaf nodes.

Under these conditions, we observed that BVH trees,
which are typically not used for voxel raytracing, provide
a compelling alternative to octrees. We have also identified
coherency as the core reason behind the performance differ-
ences. In the future, we hope to be able to optimize the BVH
and KD tree builders to incorporate coherency-improving
measures instead of solely focusing on SAH costs.

In this work, we used a GPU with a very wide vector unit.
As the tests are written in OpenCL, we hope to expand our
test framework on other architectures with different vector
widths.

Finally, our results show that the incorrect level-of-detail
has a significant impact on the resulting ray coherency. So
far, only level-of-detail techniques for voxel octree render-
ing have been presented. We believe that a level-of-detail
approach for BVH trees would be highly beneficial.

Acknowledgements

We would like to thank AMD for the FirePro W9100 dona-
tion.

References

[AK10] AILA T., KARRAS T.: Architecture considerations for
tracing incoherent rays. In Proc. High-Performance Graphics
2010 (2010), pp. 113–122. 2

[AKL13] AILA T., KARRAS T., LAINE S.: On quality metrics
of bounding volume hierarchies. In Proc. High-Performance
Graphics (2013). 2

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on gpus. In Proc. High-Performance Graphics 2009
(2009), pp. 145–149. 2, 4

[AMD12] Amd southern islands/sea islands acceleration pro-
gramming guide. URL: http://amd-dev.wpengine.
netdna-cdn.com/wordpress/media/2013/10/si_
programming_guide_v2.pdf. 2

[BAM14] BARRINGER R., AKENINE-MÖLLER T.: Dynamic ray
stream traversal. to appear. 2

[BEL∗07] BOULOS S., EDWARDS D., LACEWELL J. D.,

KNISS J., KAUTZ J., SHIRLEY P., WALD I.: Packet-
based whitted and distribution ray tracing. In Proceed-
ings of Graphics Interface 2007 (New York, NY, USA,
2007), GI ’07, ACM, pp. 177–184. URL: http://
doi.acm.org/10.1145/1268517.1268547, doi:10.
1145/1268517.1268547. 2

[BLD13] BAERT J., LAGAE A., DUTRÉ P.: Out-of-core con-
struction of sparse voxel octrees. In Proceedings of the
5th High-Performance Graphics Conference (New York, NY,
USA, 2013), HPG ’13, ACM, pp. 27–32. URL: http://
doi.acm.org/10.1145/2492045.2492048, doi:10.
1145/2492045.2492048. 2

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering. In ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games (I3D) (Boston, MA, Etats-Unis,
feb 2009), ACM, ACM Press. URL: http://maverick.
inria.fr/Publications/2009/CNLE09. 1

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK
P.: Realtime ray tracing on GPU with BVH-based
packet traversal. In Proceedings of the IEEE/Eurograph-
ics Symposium on Interactive Ray Tracing 2007 (Sept.
2007), pp. 113–118. http://www.mpi-inf.mpg.de/
~guenther/BVHonGPU/index.html. 2

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree gpu raytracing. In Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2007), I3D ’07, ACM, pp. 167–174. URL:
http://doi.acm.org/10.1145/1230100.1230129,
doi:10.1145/1230100.1230129. 2, 3

[KSA13] KÄMPE V., SINTORN E., ASSARSSON U.:
High resolution sparse voxel dags. ACM Trans.
Graph. 32, 4 (July 2013), 101:1–101:13. URL:
http://doi.acm.org/10.1145/2461912.2462024,
doi:10.1145/2461912.2462024. 4

[LK11] LAINE S., KARRAS T.: Efficient sparse voxel
octrees. IEEE Transactions on Visualization and Com-
puter Graphics 17 (2011), 1048–1059. doi:http:
//doi.ieeecomputersociety.org/10.1109/TVCG.
2010.240. 1, 4

[M∗09] MUNSHI A., ET AL.: The opencl specification. Khronos
OpenCL Working Group 1 (2009), l1–15. 2

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK
P.: Stackless kd-tree traversal for high performance GPU
ray tracing. Computer Graphics Forum 26, 3 (Sept. 2007),
415–424. http://www.mpi-inf.mpg.de/~guenther/
StacklessGPURT/index.html. 2

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for
ray tracing, and on doing that in o(n log n). In IN PROCEED-
INGS OF THE 2006 IEEE SYMPOSIUM ON INTERACTIVE
RAY TRACING (2006), pp. 61–70. 3

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER
S. G.: Ray tracing animated scenes using coherent grid traver-
sal. ACM Transactions on Graphics (2006), 485–493. http:
//doi.acm.org/10.1145/1141911.1141913. 2

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-KD
Trees for hardware accelerated ray tracing of dynamic scenes.
In GH ’06: Proceedings of the 21st ACM SIGGRAPH/EURO-
GRAPHICS symposium on Graphics hardware (New York, NY,
USA, 2006), ACM, pp. 67–77. http://doi.acm.org/10.
1145/1283900.1283912. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: A kernel framework for efficient cpu ray
tracing. to appear. 2

c© The Eurographics Association 2014.

90

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/10/si_programming_guide_v2.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/10/si_programming_guide_v2.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/10/si_programming_guide_v2.pdf
http://doi.acm.org/10.1145/1268517.1268547
http://doi.acm.org/10.1145/1268517.1268547
http://dx.doi.org/10.1145/1268517.1268547
http://dx.doi.org/10.1145/1268517.1268547
http://doi.acm.org/10.1145/2492045.2492048
http://doi.acm.org/10.1145/2492045.2492048
http://dx.doi.org/10.1145/2492045.2492048
http://dx.doi.org/10.1145/2492045.2492048
http://maverick.inria.fr/Publications/2009/CNLE09
http://maverick.inria.fr/Publications/2009/CNLE09
http://www.mpi-inf.mpg.de/~guenther/BVHonGPU/index.html
http://www.mpi-inf.mpg.de/~guenther/BVHonGPU/index.html
http://doi.acm.org/10.1145/1230100.1230129
http://dx.doi.org/10.1145/1230100.1230129
http://doi.acm.org/10.1145/2461912.2462024
http://dx.doi.org/10.1145/2461912.2462024
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.240
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.240
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.240
http://www.mpi-inf.mpg.de/~guenther/StacklessGPURT/index.html
http://www.mpi-inf.mpg.de/~guenther/StacklessGPURT/index.html
http://doi.acm.org/10.1145/1141911.1141913
http://doi.acm.org/10.1145/1141911.1141913
http://doi.acm.org/10.1145/1283900.1283912
http://doi.acm.org/10.1145/1283900.1283912

