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Abstract
In computer graphics, lighting plays an important role in the appearance of a scene. A change in the configuration
of light sources can lead to different aesthetics in the final rendered image. Lighting design becomes increasingly
complex when using sophisticated global illumination techniques. In this paper, we present a new approach to au-
tomatically design the lighting configuration according to the aesthetic goal specified by the user as a set of target
parameters. Target parameters are used to set up an objective function which is minimized using an optimization
method. The results show that our method can be used to automatically design a lighting configuration that will
give to the final image a classic photographic look.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

In computer graphics, global illumination rendering meth-
ods take into account multiple phenomena such as reflec-
tion, refraction and scattering. However, because of these nu-
merous phenomena, it is difficult to know beforehand what
the resulting image will look like. Achieving a desired im-
age style can be a time-consuming and tedious effort if per-
formed through a trial-and-error process.

To obtain a satisfying result automatically, the user has to
express his intent by providing a set of target values as prop-
erties of the final image. The goal is to change iteratively the
parameters of the 3D scene to fit the specification. A lot of
parameters of the scene can be taken into account. Among
which are: 1) position, size, flux of the light sources 2) re-
flectance of the materials 3) distribution of the objects in the
scene.

Methods used to compute lighting parameters to fit a
given set of constraints are called inverse lighting methods.
We present in this paper an inverse lighting method which
takes as input the aesthetic intent of the user. This aesthetic
intent is specified by a set of parameters. Our method mini-
mize an objective function which expresses the distance be-
tween the current image aesthetic and the desired result. This
function is minimized to find the optimal parameters of the
lighting.

In this article, we will mainly address two target aesthet-
ics used in films and photography: high-key and low-key
pictures. High-key and low-key aesthetics focus on one ob-
ject of the scene, called henceforth main object. High-key
images are bright, do not have too much contrast, nor fea-
ture dark shadows cast by the main object. Low-key images
have a darker tone, their contour lines are highlighted and the
background is usually black. They also feature high values
of contrast.

2. Related Works

Inverse lighting methods, introduced by Kawai et al.
[KPC93], are used to find a light configuration that pro-
duces an image with the desired characteristics. This is an
ill-posed problem. These methods allow us to compute an
ideal lighting configuration for the 3D scene, given a light-
ing specification. This lighting specification is considered as
a target that represents the desired result.

Inverse-lighting methods differ by the type of target they
use, the optimization process, but also by the parameters
they modify. In the rest of this section, we will distinguish
two categories of inverse-lighting methods: image-based and
global methods. For more details, the reader can refer to
the survey on inverse-lighting problems by Patow and Pueyo
[PP03].
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Image-based Methods Inverse-lighting in the context
of radiosity had been discussed by Schoeneman et al.
[SDS∗93]. The user provides a target radiosity vector, which
elements are the desired radiosity of each patch of the scene,
by painting on an image of the scene with a brush. The goal
of this method is to find the emittance of each light source in
the scene. Light source positions and orientations are fixed,
and only their emittance is automatically computed. More-
over, the user has to provide the target image using the paint-
ing interface, which can be a time-consuming task.

The SAIL model presented by Zupko and El-Nasr
[ZEN09] does not use an image of the scene as a target.
Instead, the provided target is an image of an illuminated
sphere. The target image is thus independent of the scene.
However, generating and understanding such an image can
be a difficult task for the user.

Global Methods do not use an image as a target. Instead,
they use a set of target values for descriptors that describe an
image’s aesthetics. These methods proceed by minimizing
an objective function, often a linear combination of several
terms.

Kawai et al. [KPC93] use a linear combination of three
terms that measure the mean brightness, non-uniformity and
peripheral characteristics of the lighting of the scene. The
weight assigned to each of these terms is specified by the
user so that he can construct his own constraint. The ob-
jective function is minimized iteratively using the Broyden-
Fletcher-Goldfarb-Shanno non-linear optimization method
(BFGS) [ZBLN97].

Fernandez et al. [FB14] introduce an efficient way to solve
a radiosity-based inverse lighting problem. Desired values
for the mean and variance of the radiosity values are pro-
vided, and an optimization operation is performed. Many
other existing works use radiosity-based rendering methods
to optimize the placement of light sources in architectural
settings [CSFN11, CdAS12].

The method introduced by Shacked and Lichinski [SL01]
computes the lighting configuration that is optimized for un-
derstanding the shape and fine details on the scene’s objects.
In this technique, the authors optimize by gradient descent
the direction of the point light sources (θi,φi) and their as-
sociated intensity. To achieve this optimisation, it uses an
objective function fq that is a linear combination of terms
defined as follows:

fq = ∑
s∈S

ws fs, (1)

S = [mean,var,hist,grad,edge,dir],

where the terms fs measure different distances between
the targeted parameter values and the associated luminance
mean fmean, the luminance variance fvar, the luminance his-
togram fhist , the magnitude of gradients fgrad , the appear-

ance of edges fedge and the elevation of light sources fdir
(this term is optional).

Discussion Providing a target image [SDS∗93, ZEN09] is
a time-consuming process and although the result may fea-
ture the right highlighted areas, it may not communicate the
aesthetics expected by the user.

The work presented by Shacked and Lichinski [SL01]
uses an objective function to better understand the 3D shape
of the main object. Moreover, this is done in a simple setting
(object is isolated, uniform background) and without using
physically based rendering (direct only, OpenGL rendering
with differents intensities for specular and diffuse material)

In contrary, the goal of our work is to cover a broader
range of aesthetics. The user should be able to control the
lighting design process through target values used by the
objective function. We want to take into account multiples
light reflections. The solution should also provide flexibility
in terms of nature of light sources, whereas only point lights
are considered by Shacked and Lichinski [SL01]. In particu-
lar, we are interested in studying the influence of the size of
the light sources on the final result.

As Shacked and Lichinski [SL01], we specify a main ob-
ject for the scene to evaluate the aesthetics properly. This is
analogous to photography where an isolated subject is con-
sidered. The rest of the image is considered as a background.
Contrary to Shacked et al., we do not consider objects on
a uniform background, but we consider them as part of a
complete scene, and the appearance of the background con-
tributes to the overall aesthetics.

Using our method, the user can express his aesthetic intent
by defining target parameters. Thus, our objective function
is completely configurable: it is made of several terms, each
one taking into account one target value. In this approach
we are mainly interested in light-based aesthetics, we do not
consider composition or color-appearance, and we focus on
luminance values. In the next section, we will introduce our
approach to define the objective function and to design the
optimization process. Our contributions to inverse-lighting
consist in:

• describing different lighting aesthetics
• considering both object and background appearances
• taking indirect lighting into account
• handling area light sources parameters

3. Overview of the approach

In this section we will detail the different steps of our method
(Fig. 1). Then, in the section 4.1, we will give further details
on the free variables, the evaluation of the objective function
and the optimization process.

Our goal is to allow the user to modify the aesthetics of a
scene by changing the appearance of the main object and the
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Figure 1: Our framework picture. Green boxes represent the
different process of our algorithm. Orange boxes represent
the value provided by the user. Red box is the result of our
algorithm.

background. In order to make it feasible, our method takes
as input (orange boxes in Fig. 1): the 3D scene description,
free parameters x whose values have to be determined au-
tomatically and the target values which describe the desired
aesthetics.

Before running the optimization process, we automati-
cally find some values during a pre-processing step: the ini-
tial value x0 of the free variables, the bounding values β of
these variables and the gradient evaluation step ε for each
variable.

The optimization loop (gray box in Fig. 1) is used to find
a set of parameters that minimize the objective function. At
each iteration, the scene is rendered using a global illumina-
tion technique. Then new values of the parameters to be opti-
mized are computed. The objective function fq is computed
as a linear combination of terms and the different terms that
will be described in the next subsection. Then, the opti-
mization algorithm performs a gradient descent. At the end,
the algorithm will return final values xopti of the free vari-
ables.

4. Approaching an aesthetics with function
minimization

The goal of our method is to automatically design a lighting
configuration that brings a target aesthetics to the scene in
the context of global illumination. In our context, we want
the user to have control on the aesthetics of the scene. Fur-
thermore, in the context of global illumination, the range of
attainable aesthetic is wider than when only considering di-
rect illumination. With this aim in view, as we want our ap-

proach to be as generic as possible, any rendering method
can be used, and any kind of light source can be considered.

In the next subsections, we will introduce the different
terms of the objective function used by the minimization
process (Section 4.1). Then, we will list the different free
variables that the algorithm can tune automatically (Sec-
tion 4.2) . Finally, we will describe the optimization process
and the automatic pre-computation step (Section 4.3).

4.1. Objective function

Similary to Shacked and Lichinski’s method [SL01],The
objective function is a linear combination of several terms
(Eq. 1) but with a different term set S. In this set, each term
define a distance in [0,1] between a value computed on a ren-
dered luminance image I and a target value provided by the
user. In the next subsections, we will detail how to compute
the different terms of the objective function.

4.1.1. fmeanObj,fmeanBack, fvarObj and fvarBack

These terms control the mean and the variance pixel lumi-
nance value on the object and on the background respec-
tively. In terms of aesthetics, the terms fmean control the
overall brightness of the object and of the background and
fvar control how smooth the background and the object ap-
pear. The target values tmeanOb j, tmeanBack,tvarOb j and tvarBack
range in [0,1]. The terms are computed as follows:

fmeanOb j =
|l̄(ob ject)− tmeanOb j|

max(tmeanOb j,1− tmeanOb j)
(2)

fmeanBack =
|l̄(background)− tmeanBack|
max(tmeanBack,1− tmeanBack)

(3)

fvarOb j =
|σ(ob ject)− tvarOb j|

max(tvarOb j,1− tvarOb j)
(4)

fvarBack =
|σ(background)− tvarBack|
max(tvarBack,1− tvarBack)

(5)

where l̄(x) and σ(x) are the mean luminance and the lumi-
nance standard deviation over object pixels or background
pixels.

4.1.2. fgrad

The gradient term fgrad is used to control the shading gra-
dient on the object’s surface. If the target value is high, then
the shape of the object will appear as more pronounced. A
low value will make the contours more subtle. Using a pair
of Sobel filters, we compute two gradient images Gx = A? I
and Gy = AT ? I. We obtain for each pixel pi, j the gradient
vector ∇li, j = (Gx(i, j),Gy(i, j)). The average shading gra-
dient norm is then computed as follows:

g(ob ject) =

√
1

Nob j
∑

pi, j∈ob ject
|∇li, j|2 (6)
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where ob ject is the set of pixels marked as object’s pixels in
the image mask, and Nob j the number of these pixels. The
final term fgrad which is the distance to tgrad is defined as:

fgrad =
|g(ob ject)− tgrad |

max(tgrad ,1− tgrad)
(7)

4.1.3. fhist

As explained in the work of Martin et al. [MFSG08], lu-
minance histograms must be used with other descriptors to
express an image’s aesthetics. However, by using supervised
learning on well known aesthetics (such as high key, low key,
and medium key images), a signature histogram can be ex-
tracted for each class. These signature histograms are then
used as target that will be compared with the luminance im-
age’s histogram. Signature used in this paper are given in the
additional materials.

Minimizing the objective function brings the image’s his-
togram closer to the target histogram. The fmean and fvar
terms have an influence on the value of the term fhist . How-
ever, fhist describes the complete luminance distribution and
does not provide any spatial information, whereas fmean and
fvar evaluate statistics for distinct areas of the image, so
these terms are more complementary than they are redun-
dant. This term is evaluated as the Matsusita distance be-
tween two discrete distributions [CS02] and normalized to
be between [0,1]:

fhist =

[
b−1

∑
i=0

(
√

pi−
√

qi)
2

]0.5[b−1

∑
i=0

max(qi,1−qi)

]−0.5

(8)
where b is the number of bin in the cumulated histogram,
pi and qi is the i− th cumulated value of the signatures his-
togram and the image’s histogram.

4.2. Free variables
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Figure 2: Influence of the light parameter on the rendering.
With a constant flux, the size controls the shadows strength.
With a constant size, the flux controls the light’s contribu-
tion.

The output of our algorithm is a set of lighting parameters
values that minimizes the objective function. A point light
can be defined using a 3D position and a intensity value. An
area light source has a size that also influences the lighting
of the scene. As shown in Fig. 2, the size of the area light
and the flux can change the aesthetics of the rendered image.
However, changing its size does not have the same impact
as changing the flux on the objective function’s value. This
could cause a problem in the optimization process as the gra-
dient of the size variable could be low hence provide few
information. Instead of using the flux, we use the emitted
luminance which introduces correlation between this value
and the scale of the light source.

Moreover, the scene setup itself influences the space of
achievable aestetics. For example, bright material for back-
ground makes it impossible to obtain a low-key image . To
overcome this problem, we propose to the user an option to
change the material properties for all background objects.
This is done by modulating the V channel of the HSV mate-
rial’s color.

4.3. Optimization

The optimization step uses an implementation of the L-
BFGS-B algorithm [ZBLN97] used by Kawai et al. [KPC93]
that takes into account additional constraints such as bound
parameters. During the optimization process, the objective
function is minimized by a gradient descent technique. How-
ever, our objective function does not have an analytic expres-
sion and partial derivatives are approximated numerically.

However, the free parameters have different orders of
magnitude and need to be bounded. For example, the size
of the light source needs to be strictly positive and bounded
so that the light source does not mask the main object. More-
over, for estimating the gradient by finite difference, a proper
order of magnitude of ε (variable step) needs to be chosen.
A too small value may produce no significant change in the
image. A too large value may compromise the minimization.
The parameters themselves are scaled to have similar orders
of magnitude. Thus, when testing for convergence, the gradi-
ent is comparable for each variable. The initial values x0 of
the free variables are important for the optimization: if we
start from an initial value set so that only one light source
contributes to lighting, the optimization may only modify
that light source and falls into a local minimum.

All these values (bounds, initial values, epsilons) are
found automatically during the step described as a “precom-
putation step” in Fig 1. For more implementation details,
the reader can refer to the additional material.

5. Results

The method described above as been implemented in Python
using the LBFGS-B [ZBLN97] optimization method. The
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rendering step has been performed with the Mitsuba render-
ing platform [Jak10]. To speed-up the optimization process,
all the intermediate images have a lower resolution than the
final one. Our implementation has been applied to differ-
ent scenes with different target values to obtain an optimal
lighting configuration that corresponds to a desired aesthet-
ics. This section highlights some of the results we obtained
using this method.

Table 1 presents the two sets of target values and the
weights used in the objective function. These two configu-
ration will be used for all our scenes. The High-key config-
uration “HK” will target a bright background and low vari-
ance on the object. We use a High-key histogram signature.
The Low-key configuration “LK” will target bright object
but dark background to get contrast. Moreover, the variance
on the object should be high, to reflect self-shadowing. The
signature is a Low-key histogram signature. For the weights
of the objective function, we use the same weights for the
background and the main object. We use a bigger weighting
value for the histogram term fhist as it describes the image
globally.

function term HK LK weight
tmeanOb j 0.47 0.47 0.5
tmeanBack 0.78 0.04 0.5
tvarOb j 0.24 0.63 0.4
tvarBack 0.17 0.04 0.4

tgrad 0.39 0.39 0.2
thist high low 1.0

Table 1: Configurations and weights used for the target func-
tion.

H
K

L
K

Figure 3: Girl (left column) and Creature (right column)
scenes. First row: optimization for a High-key aesthetic. Sec-
ond row: optimization for a Low-key aesthetic.

Figure 3 shows the result of our method for two differ-
ent scenes: on the left, the Girl scene, with two planar light

sources ; on the right, the Creature scene, with a planar light
source behind the camera and two spherical light sources in
the background. These two scenes have been rendered using
path tracing with the Halton sequence.

As we can see in the second and third row of Fig. 3, we
can reach two different aesthetics with the same scene. Fi-
nal values for the Girl and the Creature scenes are shown
in table 2. In the former scene with HK configuration, we
obtain a bright background with low variance, and low vari-
ance on the object. In the LK configuration, we obtain a dark
background with low variance and a high variance on the ob-
ject to bring contrast. For the Creature scene with HK con-
figuration, we still have shadows on the background as the
background is large and difficult to fill completely. In the
LK configuration, we see high contrast on the main object,
and a dark background. Timing information are shown. We
used an Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz to
generate the results.

Girl Creature
final value HK LK HK LK
vmeanOb j 0.47 0.45 0.45 0.44
vmeanBack 0.82 0.18 0.78 0.13
vvarOb j 0.21 0.33 0.23 0.25
vvarBack 0.13 0.06 0.21 0.11

vgrad 0.51 0.46 0.50 0.50
fhist 0.137 0.278 0.187 0.184
fq 0.284 0.609 0.308 0.529

timing (sec.) 569 810 718 467

Table 2: Final values, fhist and fq values for the Girl and the
Creature scenes (Fig. 3).

LK

LK Back.HK Back.

HK

Figure 4: Fruit basket scene. First row: The HK and LK
results without changing the background. Second row: The
HK and LK results without changing the background.

Figure 4 shows the results with a more complex scene and
the results are summed-up in table 3. This scene is rendered
with a bidirectional path tracing technique. Three different
light sources are optimized at once. However, the glossy and
uneven background surface makes it difficult to reach Low-
key and High-key aesthetics. In both cases, the variance of
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the background has to be low, which is difficult to reach
with glossy reflections. In the case of the Low-key image
with background albedo optimization, because the albedo
of the background is reduced, reflection from the object’s
glossy surfaces are reduced, and the background appears less
glossy. Final values are presented in table 3. Influence of the

without back. with back.
final value HK LK HK LK
vmeanOb j 0.52 0.46 0.70 0.46
vmeanBack 0.42 0.16 0.68 0.07
vvarOb j 0.27 0.25 0.23 0.27
vvarBack 0.30 0.15 0.30 0.06

vgrad 0.58 0.52 0.74 0.54
fhist 0.241 0.197 0.079 0.125
fq 0.618 0.602 0.456 0.419

Table 3: Final values for the Fruit Basket (Fig. 4, sec-
ond row), fhist and fq values with and without background
albedo optimization.

rendering process on variance has to be taken into account.
Indeed, Monte Carlo estimator provide a precise estimation
of the fmeanOb j and fmeanBack values. Other cost function
are sensitive to the variance of the estimator. In this paper,
we set-up manually the rendering technique to have minimal
noise. We plan to find an automatic solution as future work.

6. Future improvements

Our method can be further improved to provide even more
flexibility for expressing the desired image aesthetics. For
instance, in this paper, only the luminance distribution has
been considered. In the future, we want to consider color
distribution similar to color transfer applications. In general,
describing and controlling the desired aesthetics needs fur-
ther research.

The optimization procedure can be improved. Indeed, gra-
dients are computed by finite differences by recomputing the
rendering process from scratch. However, gradient compu-
tation can be automatically performed during the rendering
process. Moreover, we know that some free variables have a
specific impact to the rendering as shown in Fig. 2. A multi
objective optimization algorithm may help to be more robust
and find the optimal configuration faster.

More complex lighting configurations need to be studied.
The position of the lamps are fixed in our method. However,
wrong light positions can prevent the technique from reach-
ing a correct minimization. This issue will be addressed in
an future work.

7. Conclusion

This article introduced a new method for inverse rendering
that accounts for target parameters given by the user to spec-
ify a desired image aesthetics. These target parameters are

used to parametrize an objective function that is then mini-
mized iteratively. After each iteration, new values for the pa-
rameters of the scene (in our case, scale and luminance of the
light sources, material in the background) are set up, and we
re-evaluate the objective function. We tested our approach
with two classic photographic styles (high-key and low-key)
and we obtained good results that communicate the desired
aesthetics, as specified by the target parameters. In the ob-
jective function, we use simple luminance metrics. It could
be interesting to investigate the use of higher level metrics
such as saliency to take into account the visual perception.
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NETO A. J. S.: Multi-objective optimization as a new approach
to illumination design of interior spaces. Building and Environ-
ment 46, 2 (2011), 331–338. 2

[FB14] FERNÁNDEZ E., BESUIEVSKY G.: Efficient inverse
lighting: A statistical approach. Automation in Construction 37,
1 (2014), 48–57. 2

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 5

[KPC93] KAWAI J. K., PAINTER J. S., COHEN M. F.: Radiop-
timization: goal based rendering. In Proceedings of the 20th
annual conference on Computer graphics and interactive tech-
niques (1993), SIGGRAPH, pp. 147–154. 1, 2, 4

[MFSG08] MARTIN M., FLEMING R., SORKINE O., GUTIER-
REZ D.: Understanding exposure for reverse tone mapping. In
Congreso Espanol de Informática Gráfica (2008), pp. 189–198.
4

[PP03] PATOW G., PUEYO X.: A survey of inverse rendering
problems. Computer Graphics Forum 22, 4 (2003), 663–687. 1

[SDS∗93] SCHOENEMAN C., DORSEY J., SMITS B., ARVO J.,
GREENBERG D.: Painting with light. In Proceedings of the 20th
annual conference on Computer graphics and interactive tech-
niques (1993), SIGGRAPH, pp. 143–146. 2

[SL01] SHACKED R., LISCHINSKI D.: Automatic lighting design
using a perceptual quality metric. Computer Graphics Forum 20
(2001), 2001. 2, 3

[ZBLN97] ZHU C., BYRD R. H., LU P., NOCEDAL J.: Algo-
rithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Trans. Math. Softw. 23, 4 (Dec.
1997), 550–560. 2, 4

[ZEN09] ZUPKO J., EL-NASR M. S.: System for automated in-
teractive lighting (sail). In Proceedings of the 4th International
Conference on Foundations of Digital Games (New York, NY,
USA, 2009), FDG ’09, ACM, pp. 223–230. 2

c© The Eurographics Association 2014.

84


