Pacific Graphics (2014)
J. Keyser, Y. J. Kim, and P. Wonka (Editors)

Short Papers

Finding Feature Similarities Between Geometric Trees

Uddipan Mukherjee and M. Gopi

University of California, Irvine, USA

Abstract

Geometric trees are graphs with no cycles in which the nodes have spatial co-ordinates and the edges are geo-
metric curves. Many physical systems can be represented effectively using geometric trees, e.g. river beds, animal
neurons, respiratory tracks of mammals etc. As these systems undergo structural metamorphosis, temporally or
under the effect of some external stimulus, the underlying tree structures also change. Given two snapshots of
structurally morphed trees, an algorithm for comparing them based on geometric and topological tree features is
presented. Such comparison provides a wealth of information for interpreting the metamorphosis.

1. Introduction

A geometric tree is defined as a graph with no cycles in
which the nodes have spatial co-ordinates from the embed-
ded metric space and the edges are geometric curves, e.g.
visualization of a river bed pattern, animal neurons, and ge-
netic trees of animals or plants (Figure 6).

In many applications, a
geometric tree may struc-
turally morph by altering
the positional node co-
ordinates, the geometry of
the edges, and by adding

Figure 1: A regular neu- or deleting a few nodes and
ron (left) and a post is- edges, e.g., a neuron can be
chemic one (right) with represented as a geometric
computed matches color tree which changes struc-
coded with same colors. turally under the influence

of a chemical agent, a river

can change course over
time or the respiratory tracks of mammals can grow with
age. Given snapshots of two morphing geometric trees, an
appropriate matching between different subtrees provides
valuable insight about the process of metamorphosis or the
attributes of the external stimuli causing it (Figure 1).

The challenges in finding matches in geometric trees
mainly arise due to allowed and possible differences be-
tween trees. Many graph similarity algorithms assume that
the graphs have same number of nodes, or one graph is a
subgraph of the other. The matching algorithm presented
here allows inserting and deleting nodes and edges, and vast
changes in both topology and geometry. Further, in spite of

(© The Eurographics Association 2014.

DOI: 10.2312/pgs.20141255

such large differences between the trees, the algorithm can
take into account node adjacency and edge coherency, i.e.
two adjacent nodes in one tree is highly likely to be matched
with two adjacent nodes in the other. In order to ensure node
adjacency and edge coherency, one has to consider exponen-
tial number of sets of edge disjoint paths in each tree. Most
of the earlier works reduce the solution space by limiting
the problem to labeled, rooted, topological trees maintaining
strict ancestor descendant relationship which implicitly de-
fines the sets of edge disjoint paths. In contrast, completely
arbitrary geometric trees are considered here that may have
unequal number of nodes and edges, may be rooted or un-
rooted, labeled or unlabeled, topological or geometric. In-
stead of restrictively predefining the sets of edge disjoint
paths, these paths are built using salient geometric and topo-
logical tree features. In summary, the tree matching algo-
rithm is a novel and one of the most generic algorithms and
is capable of handling even approximate tree matches.

2. Related Work

Tree structures have been well studied in diverse fields in-
cluding computer vision, computational biology, natural lan-
guage processing among others. Most applications consider
labeled or ordered trees where the sibling nodes main-
tain a strict left-right order. The basic idea of matching
such trees is to compute a minimized sequence of edit
distances required to relabel or add/delete certain nodes.
The edit distance notion for ordered trees was introduced
by Tai [Tai79] and modified by Kosaraju [Kos89], Maki-
nen [M§9], Zhang and Shasha [ZS89], Klein [Kle98] and
Chen [CheO1]. In computer vision Liu et.al. [LG99] matches

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgs.20141255

74 Uddipan Mukherjee & M. Gopi / Finding Feature Similarities Between Geometric Trees

2D shapes through their skeletal tree representation and Can-
toni et.al. [CCG*98] uses trees to match two planar ob-
jects at multiple resolution levels. A similar approach was
used for video comparison by Wing Ng et.al. [NKLO1].
Tree matching is used in natural language processing in
searching and retrieving complex feature structures from
lexical databases as shown by Kilpelainen et.al. [KM92],
Oflazer [Ofl96] and Wang et.al. [WMCO09]. Syntactic tree
matching is used to identify similarities between computer
programs by Yang [Yan91], Hoffmann et. al. [HO82] and
Ramesh [RR92]. Tree matching is also used for compar-
ing similar web pages represented as labeled document ob-
ject tree by Kumar et.al. [KTA*11] and Jindal et.al. [JL10].
In computational biology, tree matching is used by Aoki
et.al. [AYO"03] for aligning maximally matching glycan
subtrees, Luccio [LP91] for comparing glycogen trees, Jiang
et.al. [JWZ95] for matching RNA structures, and Pisupati
et.al. [PWMZ96] for matching 3D human lung structures.

The fundamental difference between all of the above
methods and the one presented here is that, the latter consid-
ers arbitrary unordered and unlabeled geometric trees with-
out any node correspondence or ancestor-descendant rela-
tionship. Since there is no prior assumption about the type
of tree considered, the matching is more general in nature
and the matching parts may exist anywhere in both the trees.

3. Problem Definition

A geometric tree is a graph with no cycles where each node
has co-ordinate values and each edge is a geometric curve.
The number of edges incident on a node is defined as its
degree. A node is a leaf, path or internal when there are one,
two or more than two incident edges respectively (Figure 2).

Matching two geomet-
ric trees is equivalent to
matching their node sets.
However, a naive node
matching does not take
into account spatial co-
herency, potentially gen-
erating matches in drasti-
cally different tree loca-
tions. Although this prob-
lem can be avoided by
computing a match be-
tween the paths of the two trees, such an approach is com-
putationally expensive due to the exponential number of
paths (a path can be practically formed between any two tree
nodes). Also, the matched paths will most likely have an un-
desirably large number of edge overlaps. A better approach
is to decompose each tree into a set of edge-disjoint paths,
unless such a decomposition is already provided, and then
find matches between those decompositions. This process is
called a branch decomposition (Figure 2, Appendix A), and
an element or branch in this decomposition is a path from

Figure 2: Left: A geometric
tree with node co-ordinates.
Right: Branch decomposi-
tion with the root and differ-
ent levels highlighted.

a leaf node to an internal node or another leaf node. In this
process, if the tree is unrooted, one geometrically dominant
branch is computed between two leaf nodes one of which
is considered as the root. If the tree is rooted, edge-disjoint
branches that start from an internal or root node and end in
a leaf node are computed such that their union is the given
tree. Each branch thus contains exactly one leaf and one in-
ternal or root nodes.

Given the branch decompositions of the two trees, a match
is computed by finding a mapping between their decompo-
sitions such that a branch in one tree has at most one match
in the other. Tree matching in this way ensures that no edge
has more than one match in the other tree. Since the trees
may not have the same number of nodes, edges, or branches,
there may be unmatched branches in either or both the trees.

Consider two sets, A and B, of mutually disjoint branches
in the two trees. Each pair of branches (a;,b;), where a; € A
and b; € B has a branch matching cost which takes into ac-
count their geometric and topological features. Each branch
in either set also has a cost for not matching it. The prob-
lem of similarity matching is defined as one in which ev-
ery branch is matched to at most one branch, and the total
match cost is minimum, i.e. the problem is to find the set
of matching branches S, S C A x B such that if (a;,b;) € S,
(aj,b;) €8, aj,a; €A, b;,b; € B, then a; # aj and b; # b}
and the total cost C = C| 4+ C; is minimum, where C is the
sum of the cost of the matches in S and C; is the sum of the
cost of not matching the unmatched branches in either set.

4. Geometric Tree Matching

The problem of matching two geometric trees is reduced
to that of finding an optimum match between their edge-
disjoint branches. The cost, or measure of similarity between
two branches is evaluated from their geometric and topolog-
ical features. The geometric features used are branch length,
algebraic and absolute sums of the turning angles at each
intermediate branch node, difference in turning angles, and
the number of self-intersections. The considered topological
features are the ancestor-descendant relationship between
branches and the hierarchical branch position from a spec-
ified root (Figure 3). Without loss of generality, trees con-
sidered here have linear edges (piece wise linear branches)
and the branches may have self-intersections in general posi-
tions, although the intersections are not considered as nodes.

>
0

ROOT o

Figure 3: Left: The geometric properties in the feature vec-
tor of a branch. Right: Hierarchical decomposition of a
rooted tree. Branch B in level one has two children, A and
C, each in level two. Branch D, a child of C is in level 3.

(© The Eurographics Association 2014.

Uddipan Mukherjee & M. Gopi / Finding Feature Similarities Between Geometric Trees 75

The branch features form a vector space, called the fea-
ture space, in which each branch is represented by a feature
vector. The cost, C;; of matching two individual branches i
and j, in the source and target trees respectively, is a scalar
value obtained by computing the weighted distance between
their respective feature vectors, i.e. C;; = Xwy * dy (uy, vg),
where u; and v, are the k' I feature in the feature vectors u =
(uy,up,u3,....,un) and v = (vy,va,v3,....,vy) of the branches
i and j respectively, d; and wy, are the distance function eval-
uating the feature similarity and the weight associated with
the k" feature respectively. The distance function considered
is the Manhattan distance i.e. d(uy, vi) = |ugx — vi|, although
any other distance function can be used, e.g. Bhattacharya
distance [Bha43] or Kullback-Liebler divergence [KL51].

Since the two trees to be matched may not have equal
number of nodes, not all branches may have a match. Even if
there are equal number of branches, a few matches may not
be appropriate when considering node adjacency and edge
coherency, and hence such branches are left unmatched.
The cost Cjy, of not matching a branch i is calculated as
a weighted combination of its features, i.e. Gy = Zwy *

di(u,0), where uy is the K" feature in the feature vector
of branch i and wy, and dj have the same meaning as before.

4.1. Tree Matching as Minimum Weight Perfect
Matching Problem

Tree matching can be modeled as a bipartite graph matching
problem, where G is a graph, with two disjoint node sets, P
and Q, corresponding to the branch sets A and B of the source
and target trees respectively. Null sets of branches, termed as
dummy nodes are added to both P and Q to make them equal
in size. An edge E;; in G connects a node i € P to a node
J € 0, and is associated with a cost C;; which is the branch
matching cost if i and j are regular branches, is the cost of
not matching a branch if one of 7 or j is a dummy node, and
is zero otherwise. Finding an optimal match is thus reduced
to finding a minimum weight (minimized sum of edge costs)
perfect matching of G. A well known technique to find this
match is the Hungarian algorithm [Kuh55, Mun57]

Minimum weight perfect matching problem: In a com-
plete bipartite graph, G, with node sets P and Q, |P| = |Q|,
weight C;; for all the edges E;; connecting nodes i € P and
J € O, a minimum weight perfect matching M is a 1-factor
(spanning subgraph where every vertex is a degree 1 vertex)
of G where the sum of the edge weights in M is minimum.

The above described formulation naively matches tree
branches without considering spatial coherency, and being
completely dependent on individual branch features can pro-
duce matches in unlikely tree locations (Figure 4).

In most practical cases, the two trees being matched are
not completely different, rather they have patches of similar
subtrees widely scattered, which a ‘good” matching should

(© The Eurographics Association 2014.

identify. Therefore, the matching criterion should not be lim-
ited to the matching individual branches, but should also
consider matching the subtrees originating from them. One
way to identify such deeper matching is to enhance the cost
basis for matching individual branches by including their de-
scendants. The match cost between two branches a and b is
thus computed recursively in terms of their children as fol-
lows (Algorithm 1). A minimum weight perfect matching,
C is computed for the graph with node sets representing the
children branches of a and b. If C; is the cost of matching a
and b individually, the overall match cost is given by C; +C5.
The new branch cost gives an intuitive matching in Figure 4.

Algorithm 1 Calculate Matching Cost (a, b)
1: Imput: Branches a, b, Output: Cost C of matching them

: if a = NULL and b = NULL, return O

: S; < all children of a, S + all children of b

: Vi€ Sy,j €8s, C(i, j)=Calculate Matching Cost (i,j)

: C} <—the cost of minimum weight perfect matching of a
graph with node sets S; and S, and edge costs C(i, j)

6: C, < individual cost of matching a and b

7: return C; +Cy

AW N

Tree matching with the mod-

ified branch cost is also not A . N
. . . R { F
sufficient for producing intuitive Wi} . " .

matches as the matching is still ooty 2 roor}

performed over the entire branch
sets of both the trees, thereby
keeping the risk of arbitrary
matching still exposed. One way
to avoid this is to restrict the
matching between same hierar-
chical branch levels. However, there is no guarantee that
similar subtrees in the two trees will be in the same level, and
the number of levels in the trees can also be different (Fig-
ure 5). A more logical approach is to expose the branches in
clusters, over multiple iterations of matching. In each itera-
tion, only a few branches are exposed and thus the options
for finding a match is limited, and if no acceptable match is
available from that set, then in the next iteration of perfect
matching, more potentially matchable branches are exposed
to increase the chances of a good match. This approach is
termed as sliding window matching (Algorithm 2).

Figure 4: Naive
match (same letters)
differs from intuitive
BE’,DB’,CG’,ED".

Let S be the final set of matched branches, and 6| and 7,
denote the set of first level branches in the two trees. A min-
imum weight perfect matching, P is computed with the bi-
partite graph with node sets as 61 and ;. The edge weights
are computed by Algorithm 1. Among the chosen edges in
the perfect matching, if an edge cost, say between a; and
by, is less than a specified threshold 1, then (ay,by) is added
to the solution set S. Further, since the matching cost be-
tween a; and b; includes the perfect matching cost between
the their descendents, the matched descendent branches that
are responsible for this minimum match cost between a; and

76 Uddipan Mukherjee & M. Gopi / Finding Feature Similarities Between Geometric Trees

by are also included in S. Adding matches between the sub-
trees into the final set also improves spatial and topological
coherency of matches through the levels of hierarchy. Any
unmatched descendent branch is left unmatched in the sub-
sequent matching process, since their ‘non-matching’ cost
is also included and considered while matching a; and b
in the recursive Algorithm 1. Let 61/ and 71/ be the set of
branches which have remained unmatched in the two trees.
Also let 65 and T, be the set of second level branches which
are the children of those in 67/ and m;/. A new instance
of bipartite graph matching is created using 61/ U 6, and
T/ UTy, as the node sets which is solved to obtain a new set
of matches in a similar manner. The process is continued by
repeatedly adding new branches from lower hierarchical lev-
els to the unmatched ones in each successive iteration until
both the sets remain unchanged from the previous iteration.
In each iteration the sets ¢ and 7 denote the sliding win-
dow to which elements are added and removed between iter-
ations. If in a particular iteration, a branch b is not matched,
but one of its descendants, say b; gets matched, then in the
next iteration the branch b is modified by removing b and
all its descendents from its descendant list. This is especially
helpful in situations shown in the right hand side of Figure 5.

£ A N 5 1 N
o a
rooT < rooT 2

Figure 5: Left: Restrictive match with modified branch cost
produces a B-3,D-4 and E-5 match although identical sub-
trees B and 2 should be matched ideally. Right: Sliding win-
dow matching exposes branches B,C,D from source and 3,4
[from target trees, all in level two. A perfect match produces
B-3 and D-4 (and E-5), out of which D-4 has a low cost and
considered a good match, while B-3 is not. In the next step,
branch 2 is exposed and a new perfect match is computed
between sets {B,C} and {2,3} from which a desirable B-2
match with low match cost is obtained. A match between all
branches could have produced an undesirable B-5 match.

The sliding window technique allows matching of
branches (and hence subtrees) scattered throughout the trees,
minimizing the risk of producing arbitrary matches. Since
the branch match cost is calculated recursively, it allows
memoization of the solution, e.g. if two branches a; and b
and all of their descendants remain unmatched in a particular
iteration, the match cost between them need not be recalcu-
lated for the next iteration. The sliding window paradigm al-
lows for flexible expansion of window size wherein branches
from multiple levels may be exposed simultaneously, a fea-
ture which may be useful in some applications.

4.2. Choice of Weight Vector and Threshold

Typically, the more important tree features should be as-
signed higher weights, e.g. if the trees to be matched con-
sist of straight line branches only, the turning angles of the

Algorithm 2 Tree matching algorithm

1: Input: Branch sets A and B of source and target trees

2: Output: A match, S, of the form (a;,b;), where a; €
A,b; € B, and if (a;,b;),(aj,b;) €S, a; # aj,b; # b;

3: o/, 1 + First level branches of source and target trees

4: repeat

5: P < aminimum weight perfect matching of o/, /

6: for each Edge (a,b) € P do

7 if Cost of edge (a,b) <1, then

8 Q < perfect matching of descendants of a,b

9 S=SuU{(a,b)}UQ

10: 6/ + (6! —a) , W <+ (1 — D)
11: end if
12: end for

13: 0,7 < children branches of 6/ and T/ respectively
14: o/=cUoc/, "/ =ntUT/

15: untilc =o/and T =1/

16: S=SUP

branches practically play no role in matching and should
have zero weights. An automatic way of weight assignment
based on feature importance is described next.

The feature vector f for each branch is normalized to
be zero mean and unit variance. The normalized feature
vectors for each tree is represented by an n-by-n matrix,
F=(f1,/2,.,[n), where fi(i=1,2,...,n) is the feature vec-
tor of the " branch. The relative importance of the differ-
ent features can be estimated from the eigen decomposition
of the covariance matrix, C = %F FT, which can be repre-

n
sented as C = QAQT = _Zl ciq,-qiT, where O = (q1,92, ...,qn)

i=
is an orthogonal matrix of eigenvectors ¢; of C, and A is a

diagonal matrix of corresponding eigenvalues c;. The ele-
ments of the eigenvectors or principal components reflects
the loading of each feature, e.g. if a feature heavily loads
the first principal component (with highest eigenvalue), its
variance is high along this component and hence it plays
an important role in matching. The overall contribution or
load, A of a feature i is calculated by the weighted sum of
the " element of each eigenvector with the corresponding
eigenvalue. This ensures that the features loading the impor-
tant principal components (associated with higher eigenval-
ues) are assigned high weights. The process is carried out
for both the trees and the resultant weight for a feature is:

wi = Mi Mo where A1;s and Ay;s are the i'" feature loads
YA XA
i=1 i=1

for the two trees respectively, and n is the number of features.
Thus the weights are proportional to their importance and the
sum of weights equal one when the two trees are identical.

The threshold for selecting good matches is typically
chosen before the first iteration as 10% of the cost of
matching the larger tree to a null tree, and is gradually re-
duced in proportion to the iteration level, thereby ensuring a
lower threshold for matching smaller subtrees. Although the

(© The Eurographics Association 2014.

Uddipan Mukherjee & M. Gopi / Finding Feature Similarities Between Geometric Trees 77

B b5EN

Matches Obtained

M?M Y
e .,7
1893 A.D. -

-present |/ (Pre 1730
1873 A.D.

Rod Dots - Loaf Nodes

Figure 6: Top Row Left: Matching both sides of a hu-
man respiratory tree (picture: 3D Bronch ipad/iphone app).
The matches obtained between the right and left (shown re-
flected) lungs shows symmetry. A slight mismatch is shown
by the red circle. Center Row: Aging process of cortical
neurons ([PMOI1]). A fairly good match between the first
level branches illustrates the growing process. Bottom Row:
Matching the shifting pattern of Kosi river over two time
spans. Matches obtained reveal the similar nature of river
Sflow, which is of high geographical importance.

weights and threshold are automatically calculated, the user
can manually control them as well.

5. Results

Figure 6 shows the results of the matching algorithm when
applied to real world physical systems and a series of syn-
thetically generated geometric tree pairs (Figure 7). In each
of the synthetic examples, the target tree is generated by ar-
bitrarily editing the source tree by means of transforming
and migrating different subtree parts, which conforms to al-
most all physically changing geometric trees. It can observed
that the matching algorithm correctly identifies the similar
tree branches across the two trees even when they undergo
drastic transformations and migrations. Affine transforma-
tions like rotation and translation do not affect the geometric
branch features, and can easily be detected by the algorithm,
whereas scaling and shear will affect a few features and un-
less subtrees transform drastically, can be detected.

6. Summary

A variant of the minimum weight perfect matching, called
the sliding window matching is introduced for finding simi-
larities between geometric trees in terms of their geometric
as well as topological features. The technique is the first al-
gorithm to match geometric trees and has direct application
to actual physical data having tree structure. When the tree
structures representing the physical data undergo metamor-
phosis, the matching algorithm can be used to compare the
trees to provide useful insight about the actual morphology
of the physical system.

(© The Eurographics Association 2014.

< ~® e ~®
59 =3 X
o :‘) 7){& A s :‘) ?/7\{3
> %) NS
Y 4\/\@9 = & Y
LS@ % 2> <3 L‘?’ T) B S
<) < RS S FNK A
TS 25 ﬁg &
B3 <8 - pePTEC
== = =2 =
TS = % = =
e > : N
@%), SES= > >/ SRS =2
X ¢ TS
e):?Qi - ﬂ, @
= B2 R 2
7z PN == [=2
O = S R
\l >>@</>3’< Lo Q s >\®,< Lo
s s > & :
£ - - S R N =
Ty > ® = 1Y
®7><§\® . AR /®
[
e e e
&
’H\\ =3 7 ST ™
o~ & B KD
X AL /;E*\A \\®Jﬁ' €/® - —
= <o
SR SrEE [
\E! =
rde 'E (=} .
= = S
[y =]
Pj‘:u@
B ‘T [sty
LB ©‘(B 1L‘ ®
3 =5 e
=
AR T L S =
=) || i S @, 1)
1 1 =)
D W
e (e B Do
5 R L l?é el I (RN =N
iy = et

Figure 7: Synthetic tree matching. Each example is split in
four rows. Each row of each set shows the source and target
trees. Partial matches are shown in each row for clarity. The
matches in each set is highlighted with the same color and
numbers. A zoom of 4x provides optimum clarity.

References

[AYO*03] AoOKI K. F., YAMAGUCHI A., OKUNO Y., AKUTSU
T., UEDA N., KANEHISA M., MAMITSUKA H.: Efficient tree-
matching methods for accurate carbohydrate database queries.
Genome Informatics 14 (2003), 134-143. 2

[Bha43] BHATTACHARYYA A.: On a measure of divergence be-
tween two statistical populations defined by their probability dis-
tributions. Bul. of Calcutta Math. Society 35 (1943), 99-109. 3

[CCG*98] CANTONI V., CINQUE L., GUERRA C., LEVIALDI
S., LOMBARDI L.: 2-d object recognition by multiscale tree
matching. Pattern Recognition 31, 10 (1998), 1443 — 1454. 2

[Che01] CHEN W.: New algorithm for ordered tree-to-tree cor-
rection problem. Jnl. of Algorithms 40, 2 (2001), 135-158. 1

[GLC*05] GulJ.,LUL., CAIR.,ZHANG H.-J., YANG J.: Dom-

78 Uddipan Mukherjee & M. Gopi / Finding Feature Similarities Between Geometric Trees

inant feature vectors based audio similarity measure. In Adv. in
Multimedia Inf. Proc., vol. 3332. 2005, pp. 890-897.

[HO82] HOFFMANN C. M., O’DONNELL M. J.: Pattern match-
ing in trees. Jornal of the ACM 29, 1 (Jan. 1982), 68-95. 2

[JL10] JINDAL N., L1U B.: A generalized tree matching algo-
rithm considering nested lists for web data extraction. In Proc. of
the SIAM Int. Conf. on Data Mining (2010), pp. 930-941. 2

[JWZ95] JIANG T., WANG L., ZHANG K.: Alignment of trees-an
alternative to tree edit. Th. Comp.Sc. 143, 1 (1995), 137. 2

[KL51] KULLBACK S., LEIBLER R. A.: On information and suf-
ficiency. Ann. Math. Stat. 22 (1951), 79-86. 3

[Kle98] KLEIN P. N.: Computing the edit-distance between un-
rooted ordered trees. In Proc. of the 6th Annual European Symp.
on Algorithms (1998), pp. 91-102. 1

[KM92] KILPELADINEN P., MANNILA H.: Grammatical tree
matching. In Combinatorial Pattern Matching, vol. 644 of Lec-
ture Notes in Computer Science. 1992, pp. 162-174. 2

[Kos89] KOSARAJU S.: Efficient tree pattern matching. In Proc.
on Foundations of Computer Science (1989), pp. 178—183. 1

[KTA*11] KUMAR R., TALTONJ. O., AHMAD S., ROUGHGAR-
DEN T., KLEMMER S. R.: Flexible tree matching. In Proc. Arti-
ficial Intelligence (2011), pp. 2674-2679. 2

[Kuh55] KUHN H. W.: The hungarian method for the assignment
problem. Naval Research Logistics Qtrly 2, 1-2 (1955), 83-97. 3

[LG99] Liu T. L., GEIGER D.: Approximate tree matching and
shape similarity. In Proc. of IEEE Int. Conference on Computer
Vision (1999), vol. 1, pp. 456462 vol.1. 1

[LP91] Luccio F., PAGLI L.: Simple solutions for approximate
tree matching problems. vol. 493 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1991, pp. 193-201. 2

[M89] MAKINEN E.: On the subtree isomorphism problem for
ordered trees. Inf. Proc. Letters 32,5 (1989), 271-273. 1

[Mun57] MUNKRES J.: Algorithms for the assignment and trans-
portation problems. Journal of the Society for Industrial and Ap-
plied Mathematics 5, 1 (1957), pp. 32-38. 3

[NKLO1] NG C.W., KING I., Lyu M. R.: Video comparison us-
ing tree matching algorithm. In Proc. of The Int. Conf. on Imag-
ing Science, Systems, and Technology (2001), pp. 184-190. 2

[Ofl96] OFLAZER K.: Error-tolerant tree matching. In Proc. of
16th Conf. on Comp. Linguistics - Vol 2 (1996), pp. 860-864. 2

[PMO1] PROLLAT. A., MATTSON M. P.: Molecular mechanisms
of brain aging and neurodegenerative disorders:lessons from di-
etary restriction. Trends in Neurosciences 24 (2001), 21-31. 5

[PWMZ96] PISUPATI C., WOLFF L., MITZNER W., ZERHOUNI
E.: Geometric tree matching with applications to 3d lung struc-
tures. In Proc. of ACM Comp. Geom. (1996), pp. 419-420. 2

[RR92] RAMESH R., RAMAKRISHNAN I. V.: Nonlinear pattern
matching in trees. Jornal of the ACM 39, 2 (1992), 295-316. 2

[Tai79] TAI1 K. C.: The tree-to-tree correction problem. Journal
of the ACM 26, 3 (July 1979), 422-433. 1

[WMCO09] WANG K., MING Z., CHUA T.-S.: A syntactic tree
matching approach to finding similar questions in community-
based qa services. In Proc. of the 32nd Int. ACM SIGIR Conf. on
Research and Dev. in Inf. Retrieval (2009), pp. 187-194. 2

[Yan91] YANG W.: Identifying syntactic differences between two
programs. Software Prac. and Exp. 21,7 (1991), 739-755. 2

[ZS89] ZHANG K., SHASHA D.: Simple fast algorithms for the
editing distance between trees and related problems. SIAM Jour-
nal on Computing 18, 6 (Dec. 1989), 1245-1262. 1

Appendix A: Branch Decomposition of a Tree

Let Q be the set of all possible unique paths originating in an
internal node or a leaf node and terminating in a leaf node in
a geometric tree. The most dominant path p in Q forms the
main (first level) branch b. Ideally, this path should have two
leaf nodes as its terminal nodes and at any internal node the
turning angle should be close to 180°, implying path conti-
nuity (Figure 8). In general, this criterion is enough to com-
pute the main branch. In some cases, if the application de-
mands a main branch to be characterized by specific geomet-
ric or topological features, e.g. length, a weighted measure
of the desired features is also taken into account (Figure 8).

The main branch b
has two leaf nodes,
one of which is con-
sidered a root node in
case of an unrooted
tree, and all the paths
having edge overlaps
with b are discarded.
Next, for each inter-
nal node i of b, the
most dominant path
(determined similarly
as the main branch) originating from i is selected as a second
level branch with b as its parent. The process continues for
each of the second level branches to obtain a set of third level
branches, and so on (Figure 2). The selection of branches in
this manner ensures that there is no edge-overlap between
two branches. Note that in case of a rooted tree, there can be
multiple first level branches originating from the root.

Figure 8: Left: Path ACB
having turning angle closer to
180°at C is preferred over ACD
as main branch. Right: If ACD
is the desired main branch,
length is also considered.

Appendix B: Complexity Analysis of Matching Algorithm

Let N be the average number of tree nodes, n be the average
number of branches (hence leaf nodes), and d be the average
number of children of each branch. A minimum weight per-
fect matching P is computed log(n) times which is the num-
ber of levels of branches. Since the Hungarian Algorithm has
a cubic run time, the overall runtime for perfect match cal-
culation is O(n’log(n)). The match cost between a branch
pair is recalculated only when one or more descendants of
either has been matched in the latest iteration. Since there
can be at most n elements in the final match list, each match
cost can be recalculated at most n times. The time required
for calculating each match cost using Hungarian algorithm
is O(a’3). So, the recalculate cost for each pair of branches is
O(nd3), and since there are n’ possible matches, the overall
runtime for this part of the algorithm is O(n>d>) which can
be approximated to O(n3) assuming the average degree of
each node is constant. Thus, the overall runtime of the algo-
rithm is O(n’log(n)) +O(n?), which is O(n*log(n)). Hence,
the overall time complexity including pre-processing branch
decomposition step is O(n’log(n)) + O(N?).

(© The Eurographics Association 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

