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Abstract

We present a data-driven synthesis approach to design and animate fires in desired shapes and motions. At the
preprocessing stage, our system simulates a set of basis fires under specific simulation configurations and stores
these basis fires as pathlines in a database. At the design stage, a user sketches a sequence of curves to design the
desired shapes of target fires. Then, we compute a subset of basis fires to fit the curves. After that the target fires
are synthesized by combining the basis fires. As our method generates target fires along the user sketched curves,
our approach enables users to design the fire shapes in an intuitive manner. Experimental results show that our
approach can synthesize fires in desired shapes and motions.

Categories and Subject Descriptors (according to ACM CCS):

Graphics and Realism—Animation

1.3.7 [Computer Graphics]: Three-Dimensional

1. Introduction

In computer games and movies, it may be desirable to sim-
ulate fluid that meets the artistic requirements, e.g., animat-
ing fluid in a desired shape. One kind of the methods is to
tune the parameter values of the physics based simulators to
achieve the desired results. But it would be time consuming
and too tedious to do so as the parameter space is large. Thus,
there have been techniques which aim for animating fluid
in a controllable manner. For example, force fields are de-
signed to guide fluid to move in the simulation space. How-
ever, these methods still need users to tune the parameters so
as to match the user’s desired results. Due to the non-linear
property of physics based simulation, a small change of pa-
rameter values may lead to a large change in the resulting
simulation, leading to difficulty in using these methods.

In this paper, we present a data-driven synthesis ap-
proach to synthesize fires whose shapes match with the user
sketched curves. At the preprocessing stage, our system sim-
ulates a set of basis fires by using a physics based fire simu-
lator. Each basis fire is simulated under a specific simulation
condition and the pathlines of the particles are collected in a
database. For examples, the basis fires include fires moving
to the left or right as well as fires with vortices. In the de-
sign stage, a user sketches a set of curves for designing the
desired shapes of target fires. Then, our system computes a
subset of basis fires to fit the curves. After that the target fires
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are synthesized by combining the basis fires with appropriate
weights.

Our contributions include: 1) A data-driven synthesis
method is proposed to synthesize fires that fit the user
sketched curves with velocity information; and 2) we adopt
a flow graph [ZCM11] to animate the synthesized fires with
changing motion in a long lasting manner. The major dif-
ference between our method and the method proposed in
[ZCM11] is that our method enables a user to use curves
to design the shapes of target fires.

2. Related Work

We review the previous works on fluid simulation, fluid con-
trol, and fluid synthesis techniques that are closely related to
our method.

Fluid simulation. Stam [Sta99] utilized Eulerian grids to
solve the Navier Stokes equations. Nguyen et al. [NFJ02] in-
tegrated the fire combustion rules to simulate fire. Instead of
using grids, Miiller et al. [MCGO03] adopted the smoothed
particle hydrodynamics (SPH) to solve the Navier Stokes
equations. The major advantage of the SPH based techniques
is that the computation is carried out for the particles but not
for the entire simulation space. Goswami et al. [GSSP10]
adopted a Z-indexing scheme to handle the particle neigh-
borhood search.
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Fluid control. Fluid control is important in computer
games, movies and animation. Designers can simulate fluid
with control in an artistic way to enhance the attractive-
ness of fluid motion. Treuille et al. [TMPS03] proposed a
gradient-based control method to match the fluid state with
the state of target keyframes. McNamara et al. [MTPS04]
accelerated the method proposed in [TMPS03] by using an
adjoint method so that the cost of optimization computation
is reduced.

Dobashi et al. [DKNYO08] proposed a feedback control
method to control the vapor and heat for cloud simulation.
Thurey et al. [TKPRO9] used control particles to attract
the fluid to flow along with them. Hong et al. [HZQW10]
adopted a closest-point method to compute the blue core of
fire so that the fire is controlled to burn on a model surface.
Lever et al. [LK12] mapped force textures onto model sur-
faces to control the fire appearance.

Fluid Synthesis. Kim et al. [KTJGO8] proposed a
wavelet method which enables a user to add details to
existing fluid simulations as a post-process. Huang et
al. [HMK11] proposed to preview fluid simulation on lower
resolution grids and then the results are re-targeted to higher
resolution grids. Sato et al. [SMDY12] proposed a data-
driven synthesis method to make the fire simulation with low
resolution but details were preserved. The precomputed sim-
ulation data are collected in high resolution.

Kovar et al. [KGP02] proposed motion graphs for anima-
tion synthesis to animate characters. Zhang et al. [ZCM11]
proposed a modified motion graph called flow graph to ani-
mate fires. The method samples and stores the physical data
along pathlines of particles. Each node of the flow graph
represents the entire pathlines which start at the same time
step. The edges of the flow graph connect two nodes which
have similar physics properties so that transition is possible
between these two nodes. The flow graph is constructed at
the preprocessing stage. By traversing the flow graph via the
edges, a fire animation can be synthesized.

3. Method Overview

We call a fire that will be synthesized as target fire. A tar-
get fire is synthesized within a time interval which is uni-
formly sampled as a sequence of time instances. Thus, we
use a set of curves to design the shape of a target fire at each
time instance. Our framework has four stages: 1) construc-
tion of the database of basis fires, 2) fire design, 3) curve
fitting and 4) fire synthesis and animation. To compute the
database of basis fires, we sample data from the volume data
of grid-based fire simulations under specific configurations.
A basis fire is constructed according to the simulation data
(e.g., velocities and temperatures) for each configuration. In
the fire design stage, a user inputs a sequence of curves. The
curves describe the desired shapes of a target fire at different
time instances. The temperature distribution of the target fire

is also specified. In the fitting process, a least square fitting
scheme is employed to compute a subset of the basis fires to
fit the curves. We also construct a flow graph so that a long
lasting animation of fire can be produced.

4. Database Construction

To construct the database of basis fires, we employ a grid-
based technique to simulate fire due to its accuracy and sim-
plicity. We use particles to trace the volume data and store
the simulation data such as pathlines and velocities of the
particles.

4.1. Fire Simulation

We simulate fire based on the Navier-Stokes Equations and
combustion rules. The Navier-Stokes Equations are defined
by Eq.1 and Eq.2 as follows:
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where ¢, u, p, p and f are time, velocity, pressure, den-
sity and external force, respectively. The combustion rules
in [ZCM11] are simplified into two rules which update fuel
and temperature. If the fuel is turned into soot, it will not
take part in the reaction of combustion. Thus, we do not take
soot into simulation for simplicity. The simplified combus-
tion rules are given as follows:
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where F is fuel, K is temperature, Kyqy 1S maximum temper-
ature, K is ambient temperature, r is reaction rate, c is cool-
ing rate and kg is transfer rate of temperature. The terms on
the right hand side of Eq. 3 are the convection of fuel and the
consumption of fuel due to combustion reaction. The terms
on the right hand side of Eq. 4 are the convection of tempera-
ture, the cooling of temperature, and the gain of temperature
due to combustion reaction.

The right most term f in Eq.1 is the net force of all the
external forces, including buoyant force, wind force, and
paddle wheel force [FSJO1]. We can configure the external
forces to generate fires with different features. For example,
to generate a fire under wind blowing in a direction, we can
tune the wind force to blow the fire in that direction. The
paddle wheel force adds vorticity to fluid and it is computed
by Eq. 5 as follows:

fv:sh( Vo] xa)),s>0, 5)
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where ® = <7 X u, A is the grid size and € is a scaling factor
for controlling the magnitude of the paddle wheel force. As
f, depends on the spatial discretization, the fluid vorticity
is preserved. By assigning € with different values, we can
simulate fires with different scales of vortices. We adopted a
grid-based approach to implement the technique on a GPU
platform using NVIDIA’s CUDA framework.

4.2. Basis Fires

In the following, we decide the set of basis fires. In the nor-
mal condition, fires burn upwards (i.e., +Y direction) nat-
urally due to the convection of air and buoyancy. Thus, an
important criterion for the set of basis fires is that the com-
bination of them spans the x-z plane. Furthermore, vortices
also appear in fires that make the shapes of fires changing in
a rich pattern. In general, fires would have small-scale vor-
tices under the normal condition. Sometimes, we would also
like to generate fires with large-scale vortices. Therefore, the
basis fires are collected under the following three configu-
rations: 1) wind blowing along the +X direction, 2) wind
blowing along the +Z direction, and 3) fire with large-scale
vortices. Examples are shown in Fig. 1. To generate fire with
large-scale vortices, we can set € in Eq. 5 to achieve the goal.
By combing the first and second basis fires, we can synthe-
size fires that span the x-z plane. The third basis fire enables
us to produce large-scale vortices in the synthesized fires.

Figure 1: The basis fires in our database. Left: fire with a
large-scale vortex; Middle: wind blowing in +Z direction;
Right: wind blowing in +X direction. The coordinate system
is shown at the top of each image.

4.3. Data Sampling Using Particle Tracing

We use particles to sample the volume data while the grid
based simulation is executed. The data, such as the velocities
and temperatures of the particles, are stored in the database.
In this way, we do not need to store the entire volume data
and thus save memory space.

We seed a group of particles in the emitting region Qp
of the fire at each time step. Qp is regularly divided into a
grid. The particles move according to the velocity field in the
grid during their lifetimes. For each particle, the simulation
data are recorded along the trajectory of the particle at each
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time step. When the lifetime of a particle is over, we obtain a
collection of velocities and temperatures along the pathline
of the particle.

Let’s consider the i-th basis fire. Denote that 7y is the emit-
ting time, X is the emitting location and 7 is the elapsed time
for a particle. For simplicity, y and T are measured in the
number of simulation time steps. Let p(Y,x,7) be the sim-
ulation data collected for the particle at the elapsed time <.
Pia(Y,%,7) is defined as follows:

Pe1x,7) = { up(y.x,7) , KB(v.x,7) }, (6)

where uj(Y,x,7) and K5(7,x,7) are the velocity and tem-
perature, respectively. In the local time space, the pathline
Pg(v,x,1) of the particle is given by

. t .
Phrx.n) =x+ [ uh(rx0dr, ™
0

where ¢ € [0, Tiax] and Timax is the maximum life time of the
particle.

4.4. Database

To reconstruct the volume data of the i-th basis fire at a par-
ticular time instance, we need a bunch of pathlines and they
are emitted at the same time. Let b;(,#) be a bunch of path-
lines of a set of particles such that the particles are emitted
at the same time y from region Qgp. b;(Yy,t) is defined as

bi(y,t) = { P(v,x,1) | ¥x € Qp }, ®)

In order to capture the volume data of a basis fire for the
entire simulation, we need to store a bunch sequence which
contains all the bunches of the basis fire at each simulation
time step. Let B; be a bunch sequence and it is defined as
follows:

Bi={bi(v,1) | 0 <Y< tmar }, ©)

where fiqx 1s the maximum number of the simulation steps
in the entire simulation of the basis fire. Thus, we can use
B; to reconstruct the volume data of a basis fire at a specific
time within [0, fnax].

The database Xp contains a collection of bunch sequences
for all basis fires. Thus, we have

Z"B:{Bi | i:1>23"'7MB }7 (10)

where Mp is the number of basis fires.

5. Target Fire Design

A target fire is synthesized over a time interval and time in-
stances are sampled uniformly within the time interval. The
goal of fire design is to create a set of curves at the time in-
stances for defining the shapes, velocities and temperature
distributions of target fires. The set of curves at each time
instance will be mapped to a subset of bunch sequences in
the fitting process.
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5.1. Fire Shape Design

We use a curve to represent a part of the desired shape of a
target fire, as shown in Fig. 2. A curve consists of a sequence
of nodes {n(0),n(1),...,n(Tmax) }- Thus, we can treat a curve
as a pathline of a particle as the particle moves along the
curve continuously. To do so, we associate each node with a
velocity to produce a target pathline. The velocity ur(t) at
node n(7) is computed as follows:

_n(t+1)—n(7)
N At '
where At is the time step size used in animation. In our case,
we set Ar = 1. Thus, if a particle moves along the curve based
on the velocities associated with the nodes, the particle traces
along the curve. By setting the nodes to different locations
on the curve, we can obtain a different sequence of velocities
along the curve.
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Figure 2: Target fire design. Left: a curve used for defining
the desired shape of a target fire. The red arrows indicate the
velocities associated with the nodes. Right: the synthesized
target fire is generated according to the curve.

As the shape of a target fire occupies a volume, we use
a bunch of curves to model its shape. However, it would be
tedious to edit all such curves. Instead, once we have cre-
ated a curve, the curve is duplicated for multiple times to
obtain a set of curves. A noise (e.g., guassian) is added to
the curves so that they have variant shapes. These curves are
placed close to each other. Each curve is then converted into
a target pathline. In the fitting process, the target pathlines of
the target fire are fitted by the pathlines of the basis fires.

5.2. Temperature Design

The fire temperature changes dynamically from time to time.
The temperature distribution within a fire volume is too com-
plex to create by hands. Therefore, we propose to assign tem-
perature templates to produce the temperature distribution of
a target fire. A temperature template contains the tempera-
ture distribution for a group of particles that are emitted at
the same time step. A set of temperature templates can be ob-
tained while we construct the database of basis fires. While

the pathlines of the particles are being collected (see Sec-
tion 4.3), the temperature data along the pathlines are also
recorded. Thus, a temperature template contains the path-
lines and the temperature data along the pathlines. We can
collect a set of templates at consecutive emitting time in-
stances and use them to animate a target fire with dynami-
cally changing temperatures.

Now, we have a set of temperature templates. A user can
select a temperature template and our system maps the target
pathlines of the target fire to the temperature template. We
build adjacency graphs for the emitting locations of path-
lines and then apply an adjacency graph mapping to achieve
spatial coherence.

An adjacency graph G = (V,E) consists of a set of nodes
V and a set of edges E. Each node represents the emitting
location of a pathline. An edge connects two nodes if the
distance of their emitting locations is smaller than a user
defined threshold €;. We construct two adjacency graphs
Gremperaire and G'*'8¢! for the pathlines of the temperature
template and the target pathlines, respectively.

The adjacency graph mapping scheme maps each path-
line of the temperature template to a target pathline. First,
we align both graphs G'¥#¢ and G'“"P¢™'"" by superim-
posing them. Then, we map a node of G'“3 to a node of
G'emperatire These two nodes are selected as the centroids
of the two graphs. After that we start from these two nodes
and apply a breadth-first search to map the remaining nodes
of G'*"8¢! to those of G'*"P¢"™ ! | After performing the map-
ping scheme, each node n(t) of a target pathline is associ-
ated with a temperature k(7). Thus, the data at each node
n(7t) can be denoted as pr(x,1) = {ur(x,1),kr(x,7)}.

6. Fire Synthesis Using Fitting

Our approach synthesizes a fire by combining the basis
fires with suitable weights. Similar to the mapping between
G'78¢! and G'eMPeTMTe we also consider the spatial coher-
ence between the basis pathlines and the target pathlines in
the fitting process. We construct an adjacency graph G"*%.
A node in G?™ represents the emitting location of a basis
pathline of a basis fire. Our task is to compute a surjective
map which maps each node of G'**' to a node of G**. To
construct the surjective map, we superimpose the two graphs
and align them at their centroids. Then, the two nodes at the
centroids are mapped. After that a breadth-first search ap-
proach is adopted to map the remaining nodes of G'“"8¢ to
the nodes of G"%%.

6.1. Velocity Fitting

The velocity fitting method is to fit the target pathlines by
using a linear combination of basis pathlines of one or more
than one basis fire. If we fit a target pathline as a whole, the
fitting error could be too large due to the variation in the
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Figure 3: The segments of basis fires in the same color are
combined to obtain the corresponding target segments on the
right hand side.

pathline’s shape. Thus, we divide each target pathline into
segments. A pathline p%(x,1) at the k-th time instance is
divided into m segments p(x,1;), ...,pl}(x,lj)),ka (x,1m)),
where [; are intervals, the interval length is s = Tpax /m.
Therefore, we formulate the fitting problem for the piece-
wise segments. We have the following approximation for the

Jj-th segment:

Mg
uh(x,7) & Y @) ub(v,x,17), VT € I (12)

i=1

where ul; (x,7) is the velocity associated with the segment of
Ph(x,7), ul(Y,x,7) is the velocity associated with the seg-
ment of the i-th basis pathline, and mlj,k are the weights. An
example is illustrated in Fig. 3.

On the one hand, we want to synthesize fires in similar
shape to the curves. On the other hand, the synthesized fires
should be animated vividly. Thus, we adopt a velocity fit-
ting scheme for the piecewise segments and formulate the
scheme as a least square fitting problem. Our goal is to min-
imize the total velocity change between the target pathlines
and pathlines of basis fires. The result of the least square
fitting problem is a set of weights associated with the basis
fires. Thus, we solve the following least square fitting prob-
lem

Mg
. k i i 2
argmin Z o7 (x,7) — Z(x)_l,-,kuig("{,x,‘c) = 13)
Dk TEL; i=1
We used the armadillo C++ linear algebra library to solve
the least square problem.

7. Fire Animation

If we simply use the fitting results to animate the target fire,
the animation can be played at most for Tax time steps. We
are inspired by the flow graph [ZCM11] and develop a sim-
ilar technique to produce a long lasting animation of syn-
thesized fire. Also, we employ linear interpolation for the
synthesized target fire to transit from one time instance to
the next time instance. To achieve fast rendering, we use a
simple ray casting technique to render the fire according to

(© The Eurographics Association 2014.

the temperature data of grids. We render the slices of grid
data from back to front. The transfer function for the colors
and opacities is precomputed and stored in a color texture,
as shown in Fig. 4.

Figure 4: The color table.

8. Results

We conducted experiments on a PC with an Intel E3-1230
V2 3.3GHz CPU (8 cores) and an NVIDIA GTX 770 GPU.
A single thread of CPU performed the fitting process and
multi-threads CPU performed the flow graph traversal. The
simulation grid dimension was 128° in all our examples.
The runtime cost for traversing the flow graph depends on
the total number of emitted particles. For higher number of
emitted particles, the performance would decrease. Table 1
shows the performance statistics.

Pathlines| Piecewise Synthesis| #Emitted |Runtime

/Bunch | Segment iitsit"a]:ces time | particles [Cost (ms)

Length (sec) (k)
x 2016 10 9 8.00 118.9 16.5
‘8 2104 B] 9 11.2 126.2] 16.9
Heart 648 10 24 1.2 38.9] 13.6
PG 3400 32 9 19.00 200.6] 19.5
2014 1868 5 9 8.00 110.2] 15.9
Antlers | 3312 6 9 14.00 195.4 19.6

Table 1: Performance statistics.

The synthesized fires are shown in Fig. 5 and Fig. 6.
Fig. 5(a) shows two symbols X’ and ’8’. In these two ex-
amples, two symmetric curves were combined together to
design the fire shapes. There are 10 curves in the word
"PG2014", as shown in Fig. 5(b). The ’Heart’ symbol
(Fig. 5(c)) was modeled by two symmetric curves. As our
method synthesizes the fires which move along the curves,
it is easy to produce the desired shapes of fires. Fig. 6 shows
the "antlers’ of a deer animated as fires. There are 3312 path-
lines per bunch in this example. The average runtime cost is
19.6 msec per frame. but the synthesis time is 14.0 sec.

9. Conclusion and Future Work

We have proposed a method for designing and synthesizing
fire animation. Our synthesis method fits a set of basis fires
to the user defined curves. As our method does not employ
physical control rules, our method is free from any physi-
cal parameter tunings. A user can simply draw curves which
represent the shapes of the synthesized fires. Our system can
animate the fires in the desired shapes and motions accord-
ingly. Our method has limitations. The synthesized fires look
like tube shapes because the particles move along the curves.
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Figure 5: Results for synthesized fires in simple shapes. a) symbols "X’ and ’8’. b) There are ten curves used to produce the

word 'PG2014°. ¢) A changing heart shape.

Figure 6: The antlers of a deer.

Our method may not be easy to create fires emitting from a
large region. There would be a lot of curves to be edited. The
computational cost for solving the least square fitting prob-
lem is costly. If the basis fires are changed often, the cost of
the total process is quite high. In the future work, we would
like to tackle these limitations. A scheme should be devel-
oped to enhance the details of synthesized fires.
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