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Abstract

In this paper, a two-level parallel spatial hashing method is presented for real-time collision detection of de-
formable objects based on modern GPU architecture. The second-level of spatial hashing is used to improve the
culling efficiency. Moreover, a novel encoding method on GPU is proposed to compensate the inflexibility of the
GPU memory system. It can efficiently determine the colliding pairs of primitives between deformable objects.
The experimental results show that our method can perform high culling efficiency with low memory cost.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and

Techniques—Interaction techniques

1. Introduction

The goal of collision detection is to determine if any col-
lisions occur between geometric models. For most simula-
tion environments, for example, in motion planning, physics
simulation and games, the final results are significantly influ-
enced by the measurement of collision detection. In complex
simulation scenarios, collision detection is always consid-
ered as the major computational bottleneck. Different from
rigid bodies, the deformation of objects causes the change
of the bounding volumes and sometimes leads to the self-
collision problem. Therefore, it is more challenge to deal
with the collision detection for deformable objects.

In this paper, a two-level parallel spatial hashing method
for real-time collision detection between deformable objects
on GPU is presented. Firstly, the geometric primitives in
the possible overlapping region of the deformable objects
are mapped into a coarse spatial grid using a general per-
fect hashing function. Subsequently, for those cells which
include the geometric primitives of different objects, the sub-
division of the cells is made in order to improve the culling
efficiency. To take full advantage of the parallel accessibility
and to reduce the cost of the limited global memory on GPU,
a novel encoding method in the GPU shared memory is pre-
sented to determine the colliding pairs of primitives between
the deformable objects. Compared to the traditional spatial
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algorithms, test results demonstrate that our method perform
high culling efficiency with low memory cost.

The details of our method are presented in section 3. The
experimental results and discussion are presented in section
4. Finally, a conclusion is made in section 5 with the further
work.

2. Related Work

A good survey of collision detection for deformable objects
may be found in [TKH*05]. Here, we focus on the parallel
collision detection methods for deformable objects.

The parallel collision detection methods for deformable
objects can be roughly categorized into three classes: the
Bounding Volume Hierarchies (BVH), the spatial hashing
methods, and the image-based methods.

In [ZKO07], a streaming-based BVH method was proposed
on a GeForce 7800GTX graphics card. Their method per-
formed parallel BVH update and traverse by invoking the
pixel shader. However, the method cannot handle large mod-
els due to the limitation of texture size on GPU. In order to
reduce the cost of renewing AABB structure during the de-
formation, various front-based methods have been presented
on multi-core CPU or GPUs [TMT10, TMLT11,ZK14]. A
front-based decomposition method on a multi-core CPU for
fast parallel BVH traversal can be found in [TMT10]. The
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method highly improved the traversal performance. How-
ever, the memory cost was enormous when handling com-
plex objects. In [TMLT11], a GPU-based front method was
proposed. The collision streams were exploited to avoid the
lock operations. Moreover, the deferred front node was pro-
vided in order to decrease the high memory cost. A recent
published method in [ZK14] provided a great improvement
of the front-based method on many-core processors. The p-
partition front nodes were used instead of the exact BVTT
front nodes in order to reduce the high memory cost. How-
ever, the scalability of their method is sensitive to BVTT and
it is less efficient for unbalanced BVTT. Moreover, the time
spent in finding p-partition is non-trivial for high number of
processor cores.

The image-based and the spatial-based collision detection
methods for deformable objects do not required any pre-
computation. Various image-space collision detection tech-
niques have been discussed in [HTG04]. In [BWO03], for in-
stance, the depth and stencil buffers were used to check the
intersections between deformable objects in image space by
using the rasterization capability of the graphics card. How-
ever, the accuracy of these methods is limited by the viewing
direction and the resolution of viewport. Moreover, transfer-
ring data of depth buffer between CPU and GPU highly in-
fluence the performance.

To exploit the high parallel computation power of mod-
ern GPUs, a hybrid CPU/GPU spatial method was proposed
in [PKS10]. The broad phase culling was implemented by
the parallel spatial hashing with multi-GPUs. However, the
narrow phase of the triangle intersection test was simply
handled by the brute-force method. The computational cost
was affected by the cells which contain a large number of
triangles. Therefore, the overall performance of the paral-
lel processing was slowed down. In [FWZS11], the paral-
lel radix sort and compaction computation were utilized to
implement the parallel spatial hashing with multi-GPUs. Al-
though the method is considered to achieve high parallelism,
the requirement for high resolution of uniform grid causes
the computation quite expensive.

3. Two-level spatial hashing
3.1. First level of parallel spatial division

For spatial hashing methods, the resolution of the grid highly
influences the culling efficiency and the memory cost. The
resolution of the first-level of the spatial grid in our method
is determined as follows [WIK*06]
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where dy, dy and d; are the diagonal of the AABB of the
object in x, y and z dimension, respectively; N represents the
number of primitives of the object in the collision bounding
volume; and A is the density coefficient which determines
the degree of the subdivision. A was decided experimentally

in our method. The grid is represented into a linear array by
a general, perfect hashing function

H(x,y,z) =z*Rx*Ry+y*Rx +x 2)

where (x,y,z) are the coordinates of the cell’s centroid and
Ry, Ry and are the resolution of the uniform grid in x, y di-
mension, respectively. The AABB of each geometric primi-
tive of deformable objects is mapped into the grid in parallel
by a kernel function as follows
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where [ is the overlapped region of the primitive’s bounding
volume in a cell; ¢ is the cell size of the uniform grid; B and
G represent the AABB of each geometric primitive and the
bounding volume of the region covered by the grid, respec-
tively. The atomic operation in CUDA is used to avoid the
access conflict when multiple primitives are mapped into the
same cell.

3.2. Second level of parallel spatial subdivision

For the cells which include the geometric primitives of dif-
ferent objects, the second-level of parallel spatial subdivi-
sion is processed. The hashing table of the subdivided grid
is stored in the shared memory of GPU in order to reduce the
memory cost and high access latency of the global memory.
The shared memory can be simultaneously accessed and ma-
nipulated by multiple threads [NVI11]. The maximum size
of the shared memory on the modern GPUs is 48KB. Ow-
ing to the limited size of the shared memory, the primitives
cannot be directly mapped into the static hashing table. A
novel encoding method in GPU is proposed in our method
to resolve the problem.

The status of the primitive’s AABB in a cell is encoded
by a bit value. A value of 1 indicates the primitive’s AABB
exists in the cell. Otherwise, it does not. For each set of 4 by
4 by 4 uniform grid, the statuses of a primitive are packed
into a 64-bit long integer. For simplicity, the encoding pro-
cess for a 4 by 4 grid in a 2D case is illustrated in Figure 1.
T'1 and T2 are the primitives of body a, and T3 and T4 are
the primitives of body b. The AABBs are displayed in the
shaded rectangles. The encoding result of each primitive is
shown individually for clarity.

Instead of a brute force test to find the possible collid-
ing pairs, a further culling based on the endcoding informa-
tion is applied. The primitives information of each cell is
required from the encoding of each primitive. However, they
are stored in multiple threads. To encoding them directly will
cause the access confliction. Therefore, a transpose opera-
tion is applied to obtain the primitives information per cell
from the primitives encodings. The cells, which are empty or
only have primitives of one object, are culled. Then a logic
AND operation is carried out on the bits of different objects
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Figure 1: An encoding example for 4 by 4 grid in a 2D case.
If the AABB of triangle overlaps the ith cell, the ith bit of the
bit mask is set to 1. Otherwise, the bit is set to O.

to acquire the possible colliding pairs (see Figure 2). Subse-
quently, these possible colliding pairs are further subject to
the intersection test. In comparison to the time complexity of
the brute force test which is O(n?), our method has a lower
time complexity O(1) and a higher parallelism.
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Figure 2: To obtain the possible colliding pairs by the en-
coding information.

3.3. Light weight dispatching scheme

In first level spatial division, there may have cells which in-
clude a large number of primitives.To process these cells
by a single thread is very time consuming. In order to bal-
ance the workload of each thread, a lightweight dispatching
scheme is adopted before starting the second level of spa-
tial subdivision to guarantee the maximum number of the In
order to balance the workload of each thread, a lightweight
dispatching scheme is adopted to guarantee the primitives
processed in each cell is 64. So each thread can deals with a
single primitive.
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For any cell with n primitives, the primitives of each
deformable bodies expressed a set, can be divided into m
groups, where m = [1/Nmax]. Nmax is the maximum num-
ber of primitives processed in each cell of the second level of
spatial subdivision. Ny is 64 in our method. Subsequently,
a Cartesian product operation was applied to these groups to
generate the new groups of the possible colliding primitives.
For two bodies a and b, let the sets of primitives of each
body in any cell be A and B, respectively. The procedure can
be represented as:

S=AxB=1{(8a:8»)|8a € A and g, € B}
a=0,1,....,mg; b=0,1,....my,

“

where g, and g, are the groups of the primitives of body
a and b, respectively; m, and my, are the number of groups
of body a and b, respectively. At last, each new group of
primitives is dispatched into a thread for further processed.
An example in a 2D case is illustrated in Figure 3. Assume
the maximum number of primitives processed in each cell
of the second level of spatial subdivision is 2. T'1 to T4 are
the primitives of body a, and T'5 and 76 are the primitives
of body b in the i cell of the first level of spatial hash-
ing. The lightweight dispatching scheme re-groups the prim-
itives, guaranteeing that the number of primitives processed
in each cell of the second level of spatial subdivision does

not exceed the limitation.
the i"cell a
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Figure 3: An example of our lightweight dispatching scheme
ina 2D case.

4. Experimental Results and Discussion
4.1. Experimental results

Our method was implemented by CUDA 5.0 on a PC with
Intel i7 CPU, 3.2GHz, 16GB RAM and NVIDIA GeForce
GTX680 graphics card. The deformation was generated by
simulating the waving effect on the objects.
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(a) ball (b) bunny

(c) buddha

(d) dragon

Figure 4: The experimental results tested on four benchmarks. The colliding triangles of two objects are indicated in red and

blue, respectively.

Models #Tri #Cells #Sub #CT Time (ms)
ball 15k x2 8,450 422 355 2.77
bunny 69k x2 40,068 1,014 1,202 3.66
buddha 100k x2 189,000 7,284 2,152 5.17
dragon 400k x2 229,900 4,290 3,571 8.31

Table 1: The details of the benchmarks, the spatial subdivision information, and the time performance of the collision detection.
#Tri is the number of triangles of the model. #Cells is the resolution of the first level of spatial grid. #Sub is the number of cells
undergoing the second-level of subdivision. #CT is the average number of colliding triangles, and the last column is the average

time of the collision detection.

The tests of our method were carried out on four model
benchmarks. Table 1 shows the details of the benchmarks,
the spatial subdivision information, and the time perfor-
mance of the collision detection. The colliding results testing
on four benchmarks are shown in Figure 4.

The performance of our method was compared to the par-
allel spatial hashing method proposed in [FWZS11]. The
comparison result is shown in Figure 5. In their method, the
parallel spatial hashing was implemented by using the par-
allel radix sort and compaction computation with A=5 for
their best performance. In our method, A was experimen-
tally chosen to be 1. Therefore, the grid size is bigger in the
first-level of spatial grid compared to their method. How-
ever, our method obtained the higher culling efficiency due
to the use of the second-level spatial subdivision with the en-
coding scheme in the shared memory on GPU. The second-
level of subdivision diminishes the occurence of high num-
ber of possible colliding pairs per cell. Furthermore, the use
of the shared memory avoids the high latency of the global
memory. The average time of our method for testing on four
benchmarks is more than twice as fast.

Our method was also evaluated on the large deforma-
tion simulated by corotated finite element method [MG04]
[ITFO4]. The results are shown in Figure 6. The bunny and
dragon models consist of 19,095 and 14,922 tetrahedrons,
respectively. Table 2 shows the details of the spatial subdivi-
sion information, and the time performance of the collision
detection.

time (ms) mours % parallel spatial hashing

25

20

15

10

o

ball bunny buddha dragon

Figure 5: The performance comparison of our method and
the parallel spatial hashing.

4.2. Discussion

The primitive pairs occupying the same cells may be
checked multiple times. For the four model benchmarks in
our experiments, 62% to 83% primitive pairs undergo mul-
tiple checking. The average checking times are 2.11 to 3.72
as shown in Table 3. Besides the model scales, the checking
times are also related with the cell size of the spatial division.
The smaller the cell size is, the more the duplication check-
ing of the primitive pairs occurs. One solution is to handle
the possible colliding pairs by a hashing function. In our ex-
periments, the DJB2 hashing function was tested. The time
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Models #Time #Time #CT #CT #Missing #MCT #Checking times
(without hash) | (with hash) | (without hash) | (with hash) rate
ball 2.77 243 355 345 0.027 0.83 3.51
bunny 3.66 3.53 1,202 1,158 0.037 0.63 2.11
buddha 5.17 4.42 2,152 2,060 0.043 0.72 3.72
dragon 8.31 8.09 3,571 3,452 0.033 0.62 2.31

Table 3: The comparison with and without the hash function for testing the possible colliding pairs. #Time is the average time
of the collision detection. #CT is the average number of colliding primitives. #Missing rate is the ratio of missing collisions to
colliding primitives. #MCT is the precentage of multiple checking triangles, and #Checking times is the average checking times.

(b) dragon

(a) bunny

Figure 6: The experimental results tested on the large de-
formable simulation by corotated finite element method. The
colliding tetrahedrons of two objects are indicated in red and
blue, respectively.

Models #Tetra #Cells | #Sub | #CT | Time

(ms)
bunny 8,022 x2 | 647 469 | 2,452 | 7.61
bunny | 19,095x2 | 1,741 | 649 | 4,645 | 9.67
dragon | 8,265x2 | 676 277 | 1,063 | 6.31
dragon | 14,922x2 | 1,316 | 337 | 1,793 | 7.27

Table 2: Collision detection on large deformable objects.
#Tetra is the number of tetrahedrons in the model. #Cells is
the resolution of the first level of spatial grid. #Sub is the
number of cells undergoing the second level of subdivision.
#CT is the average number of colliding tetrahedrons, and the
last column is the average time of the collision detection.

performance can be improved by eliminating the unneces-
sary duplication of the colliding test (see Table 3). However,
due to the confliction problem of the hash function, some
of the colliding primitive pairs have not been detected. The
missing rates of the benchmarks are 0.027 to 0.043.

The missing rate can be further reduced by increasing the
size of hash table (see Figure 7). However, a large size of the
hash table results in a high memory cost. Thus, the size of
the hashing table was chosen as the total number of primi-
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tives in our experiments to balance the memory cost and the
collision missing rate.

missing rate
1
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Figure 7: The relationship of the missing rate and the size
of the hashing table of the bunny benchmark.

5. Conclusions and future work

We have presented a two-level spatial hashing method for
real-time collision detection between deformable objects on
GPU in the paper. The application of two-level structures
enhances culling out the non-intersection primitives with-
out sacrificing the overall culling efficiency. Moreover, a
novel encoding method has been proposed to manage the
primitive-cell mapping in the share memory of GPU. We
have tested our method on four benchmarks and compared
the performance with the parallel spatial hashing method
[FWZS11]. Our method can process complex deformable
objects involving a large amount of collisions in a few mil-
liseconds.

Currently, our method handles the collision detection be-
tween two deformable objects. In many scenarios, collisions
would occur to a large amount of objects. Moreover, intra-
object collisions often occur to the objects with large defor-
mation. Methods to handle these cases will be investigated
as future work.
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