
Pacific Graphics (2014) Short Papers
J. Keyser, Y. J. Kim, and P. Wonka (Editors)

Projecting points onto planar parametric curves by local
biarc approximation

Hai-Chuan Song1,2,3,4 and Kan-Le Shi1,3,4 and Jun-Hai Yong1,3,4 and Sen Zhang1,2,3,4

1School of Software, Tsinghua University, Beijing 100084, P. R. China
2Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P. R. China

3Key Laboratory for Information System Security, Ministry of Education of China, Beijing 100084, P. R. China
4Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P. R. China

Abstract
This paper proposes a geometric iteration algorithm for computing point projection and inversion on surfaces
based on local biarc approximation. The iteration begins with initial estimation of the projection of the prescribed
test point. For each iteration, we construct a 3D biarc on the original surface to locally approximate the original
surface starting from the current projection point. Then we compute the projection point for the next iteration,
as well as the parameter corresponding to it, by projecting the test point onto this biarc. The iterative process
terminates when the projection point satisfies the required precision. Examples demonstrate that our algorithm
converges faster and is less dependent on the choice of the initial value compared to the traditional geometric
iteration algorithms based on single-point approximation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Projection of a test point on a surface aims to find the closest
point, as well as the corresponding parameter, on the sur-
face. Specially, when the test point lies on the surface, the
problem of point projection becomes point inversion. This
operation has been extensively used in geometric processing
algorithms such as surface intersection [LT95], interactive
object selection and shape registration [BM92, PLH04, H-
W05]. It is also a fundamental component of the algorithms
of curve and surface projection as well [SYYL11, PW96].

Point projection and inversion can be translated to solving
the minimum distance equation (Q−P)× n = 0, where P
is the test point, Q is the point closest to P on the original
surface and n is the normal vector of the original surface
at Q. In most of the early work, Newton-Raphson method,
which involves the first and second order derivatives, was
used to solve this equation [LT95, Har99]. Piegl and Tiller
[PT97] gave a detailed description on this method for point
projection and inversion.

In order to achieve a good initial value, which is impor-
tant for Newton-Raphson method to converge reliably, sub-

division methods were introduced [PT01,JC98,MH03,JC05,
OKL∗10, CYW∗08, Sel06]. The key point of this kind of al-
gorithms is to eliminate the surface patches which do not
contain the closest points. Ma and Hewitt [MH03] divided
the NURBS surface into several Bézier patches and checked
the relationship between the test point and the control point
nets of these Bézier patches. However their elimination cri-
terion may fail in some cases [CSY∗07]. Johnson and Cohen
utilized the tangent cone to search for the portions of the sur-
face contain the projection points [JC05]. A more practical
exclusion criterion based on Voronoi cell test was proposed
in [Sel06].

Geometric methods, which converge faster and are more
robust than algebraic methods (Newton-Raphson method)
[SXSY14], were also proposed. Hoschek and Lasser [H-
L93], Hartmann [Har99] introduced first order method. Hu
and Wallner [HW05] proposed second order method, in
which they generated an osculating circle (a circle possess-
ing the same curvature with the original surface at the os-
culating point) and projected the test point on it instead of
the original surface. Liu et al. [LYY∗09] improved their

c© The Eurographics Association 2014.

DOI: 10.2312/pgs.20141248

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgs.20141248

H.-C. Song et al. / Projecting points onto planar parametric curves by local biarc approximation

P

Q0

Q4
Q3

Q2

Q1

(a)

Biarc

P

Q0

Circle

Torus

(b)

0

5

10

15

20

25

30

0

0
.0
3

0
.0
6

0
.1

0
.1
3

0
.1
6

0
.2

0
.2
3

0
.2
6

0
.3

Biarc Torus Circle

(c)

Figure 1: A comparison of the approximation precision of Hu and Wallner’s algorithm [HW05], Liu et al.’s algorithm [LYY∗09]
and our algorithm: (a) the projection points obtained by the three algorithms after the first step iteration. The violet test point
P is projected onto the gray 3D surface. The yellow point Q0 is the initial point. The orange point Q3, blue point Q2, and
red point Q1 are projection points obtained by Hu and Wallner’s algorithm [HW05], Liu et al.’s algorithm [LYY∗09] and our
algorithm after the first step iteration, respectively. Q4 is the exact closest point; (b) the three types of approximation geometries
used in the three algorithms; (c) approximation deviation comparison. Abscissa: parametric distance away from Q0. Ordinate:
Hausdorff distance from the three types of approximation geometries to the original surface.

method by replacing the osculating circle with osculating
torus patch.

As shown in the evolution of the geometric methods, high-
er approximation precision generally means higher conver-
gence speed and better stability [SXSY14]. However, in each
iteration, traditional geometric algorithms approximate the
original surface only at a single point. The approximation
precision reduces when moving away from this point on the
original surface.

In order to improve the convergence speed and stability of
point projection and inversion, we provide a geometric itera-
tion algorithm based on local biarc approximation, which ap-
proximates the corresponding region on the original surface
by a biarc (a curve, satisfying given G1 boundary data, com-
posed of two connected arcs having the same tangent at the
common end point. Detailed definition of biarc is in [ŠFJ06])
in each iteration. An example is shown in Figure 1, where
the orange circle and the blue surface are the osculating cir-
cle and torus patch at Q0 used in [HW05] and [LYY∗09],
the red curve is the biarc used in our algorithm. Our biarc
has larger approximation region and higher approximation
precision than single-point approximation (as shown in Fig-
ure 1 (c), when moving away from Q0, the approximation
precisions of osculating circle and torus drop significantly,
while that of biarc changes slowly). So our next projection
point Q1 is much closer to the exact projection point than
other single-point methods as shown in Figure 1. According
to the experimental results in Section 4, our algorithm con-
verges faster and is more robust than traditional geometric
algorithms. This algorithm is an extension of another paper
of ours [SXSY14], in which we deal with point projection
and inversion on planar parametric curves.

Given a test point P, a 3D parametric surface S(u,v) and
the parameter value q0 = (u0,v0) of the roughly estimated
projection point Q0, as illustrated in Figure 1, we need to

compute the parameter of the exact projection point. Our al-
gorithm can be described in summary as follows:

1. According to initial parameter q0 = (u0,v0), compute the
initial interval width (∆u0,∆v0) and corresponding tan-
gent T0 of S(u,v) at Q0, and set q1 = (u1,v1) = (u0 +
∆u0,v0 +∆v0), Q1 = S(q1).

2. Compute parameter increment (∆u1,∆v1) and corre-
sponding tangent T1 of S(u,v) at Q1.

3. Interpolate boundary conditions Q0, T0 and Q1, T1 with a
biarc BA(s) (the red curve in Figure 1 (b)), which is used
to approximate S(u,v) from Q0 to Q1.

4. Project P onto BA(s) and compute a new estimated pa-
rameter q2 = (u2,v2) (Q1 in Figure 1).

5. Set q0 = q1, Q0 = Q1, T0 = T1, and q1 = q2.
6. Repeat steps 2-5 until corresponding projection point

S(u1,v1) satisfies the precision requirement.

We will introduce our algorithm in detail in the following
sections.

2. Local biarc approximation

With the initial projection point Q0 = S(u0,v0), we use first
order algorithm [HL93, Har99] to compute interval width
(∆u0,∆v0) as follows:

Q−Q0 = Su0 ·∆u0 +Sv0 ·∆v0, (1)

where Q is the projection point of P onto the tangent plane
at Q0. Then we have:

∆u0 =
(Sv0

2 ·Su0− (Su0 ·Sv0) ·Sv0) · (Q−Q0)

Su0
2 ·Sv0

2− (Su0 ·Sv0)
2 , (2)

∆v0 =
(Su0

2 ·Sv0− (Su0 ·Sv0) ·Su0) · (Q−Q0)

Su0
2 ·Sv0

2− (Su0 ·Sv0)
2 . (3)

More details can be found in [HL93, Har99]. For the first
iteration, we set q1 = (u1,v1) = (u0 + ∆u0,v0 + ∆v0) and

c© The Eurographics Association 2014.

32

H.-C. Song et al. / Projecting points onto planar parametric curves by local biarc approximation

P

Q0

Q1

Q2
T0

T1

T ′1

Su0
Sv0

Su1

Sv1

(a)

q0

q1
q2

t0

t1 t′1

u

v

(b)

Figure 2: Local biarc approximation:(a) the 3D biarc on S(u,v), where P is the test point, Q0 and Q1 are the start point and
end point of the biarc, Su0 and Sv0 are the partial derivatives of S(u,v) at Q0 and Q1, T0 and T1 are the tangents, determined
by P, at Q0 and Q1, T ′1 is the inverse of T1, Q2 is the next projection point estimated by our method in the first iteration; (b) the
2D biarc in the parametric domain of S(u,v), where the start point q0 and the end point q1 are pre-image points of Q0 and Q1
in the parametric domain, t0 and t1 are the pre-image vectors of T0 and T1, t′1 is the inverse of t1, q2 is the pre-image point of
Q2 in the parametric domain estimated by our method in the first iteration.

U0

U1P0

P2
P3

J

P1

ARC0 ARC1

Figure 3: A 3D biarc (red) and its tangents (black).

Q1 = S(q1). For other iterations, q1 and Q1 can be derived
by last iteration, which will be introduced in the following
part. We set T0 equals to the unit vector of (Q−Q0), and t0
equals to the unit vector of (∆u0,∆v0) in the parametric do-
main of S(u,v). Analogously, T1 and t1 can also be computed
for Q1 and q1 using first order algorithm introduced above
(See Figure 2).

Given 2D boundary data P0 = q0, U0 = t0 and P1 =
q1, U1 = t1, with the method in [SXSY14], we gen-
erate 2D biarc ba(s), where s ∈ [0,1]. It follows that
ba(s) = arc0 when s ∈ [0,sJ], and ba(s) = arc1 when s ∈
[sJ ,1], where sJ = ArcLength(arc0)/(ArcLength(arc0) +
ArcLength(arc1)), arc0 and arc1 are the two arcs of ba(s).
More details can be found in [SXSY14].

Given 3D boundary data P0 = Q0, U0 = T0 and P1 = Q1,
U1 = T1, Chui et al. [CCY08] proposed a 3D biarc interpola-
tion method as follows. As shown in Figure 3, P0P2 and P2J
are tangent to ARC0, JP3 and P3P1 are tangent to ARC1. Set
P2 = P0 + x ·U0, P3 = P1− y ·U1 it follows that:

x =
(P1−P0)

2−2 · y · ((P1−P0) ·U1))

(2 · y · (1−U0 ·U1)+2 · ((P1−P0) ·U0))
. (4)

More details can be found in [CCY08]. Once y is deter-
mined, x can be computed by Equation 4. Then P2 and P3
are both determined. As a result, ARC0 and ARC1 are also

determined. Therefore, we call y the shape parameter of 3D
biarc. Generally, the shape of 2D biarc interpolation is bet-
ter defined (because of low degree of freedom). In order to
make BA(s) and ba(s) in similar shapes, in this paper, shape
parameter y is determined by:

y =
‖Q0Q1‖ · r1 · tan

l1
2 · r1

‖q0q1‖
, (5)

where r1 and l1 are the radius and arc length of the second
arc arc1 of ba(s), respectively. BA(s) is parameterized in the
same way as ba(s) (based on arc length), so BA(s) and ba(s)
share the same parameter s. Moreover, in order to obtain
a well-shaped biarc interpolation, before interpolation, we
preprocess the boundary data as follows:

1. if (q1−q0) · t0 < 0, we reverse t0 and T0.
2. if (q1−q0) · t1 < 0, we reverse t1 and T1.

An example for 3D and 2D biarc interpolation is shown
in Figure 2. Note that, t1 and T1 are reversed to t′1 and T ′1
because (q1−q0) · t1 < 0.

3. Point projection on biarc and parameter inversion

We project P onto BA(s) by simply projecting onto ARC0
and ARC1, respectively. Then record the parameter of the
valid projection point by param_biarc. Recall that BA(s)
and ba(s) share the same parameter s. So a new parame-
ter is estimated by evaluating ba(param_biarc), and we set
q2 = (u2,v2) = ba(param_biarc) (q2 in Figure 2 (b)). Then
we set q0 = q1, Q0 = Q1, T0 = T1, q1 = q2, and continue to
the next iteration.

We apply the convergence criteria provided by Piegl and
Tiller [PT97]:

c© The Eurographics Association 2014.

33

H.-C. Song et al. / Projecting points onto planar parametric curves by local biarc approximation

1. ‖(u1−u0)Su(u1,v1)+(v1− v0)Sv(u1,v1)‖ ≤ ε1.
2. ‖S(u1,v1)−P‖ ≤ ε1.

3.
|Su(u1,v1)·(S(u1,v1)−P)|
‖Su(u1,v1)‖ · ‖S(u1,v1)−P‖ ≤ ε2,

|Sv(u1,v1)·(S(u1,v1)−P)|
‖Sv(u1,v1)‖ · ‖S(u1,v1)−P‖ ≤ ε2.

Su(u,v) and Sv(u,v) are the partial derivatives of S(u,v), ε1
and ε2 are two zero tolerances of Euclidean distance and co-
sine. The iteration is halted if any of the three conditions
above is satisfied.

4. Examples and comparisons

We make comparisons with Hu and Wallner’s algorithm [H-
W05] and Liu et al.’s algorithm [LYY∗09] with four exam-
ples. All experiments are implemented with Intel Core i5
CPU 3.0 GHz, 8G Memory. In all experiments ε1 = ε2 =
10−10, which is the same as [LYY∗09].

There are three main criteria to evaluate point projection
iteration methods.

1. Correctness. If the distance between the computed pro-
jection point and the exact projection point satisfies a giv-
en precision, it is treated as a correct solution.

2. Speed of convergence. We measure the convergence
speed by number of iterations and CPU time.

3. Independence on the initial value. If a method is less de-
pendent on initial value, this method is more robust.

Example 1. We first test Example 1 of [LYY∗09], where
two test points P1 = (120,10,100) (Case 1) and P2 =
(−120,10,100) (Case 2) are projected onto a bi-cubic B-
spline surface with initial parameter (0.9,0.6) and (0.1,0.6),
respectively.

As shown in Table 1, in Case 1 [HW05] uses 6 iterations
to converge, [LYY∗09] uses 4 iterations, while our algorithm
only uses 3 iterations. The processing time of our algorithm
is 21.8% of [HW05] and 43.5% of [LYY∗09]. In Case 2 [H-
W05] cannot converge after 10 iterations, [LYY∗09] con-
verges after 4 iterations, while our algorithm converges only
after 3 iterations. The processing time of our algorithm is
29.2% of [HW05] and 50.7% of [LYY∗09].

Example 2. We project point P = (150,200,252) onto
a bi-cubic B-spline surface with sharp features, and q0 =
(0.2,0.6) (see Figure 4). Table 2 shows the iteration steps of
these algorithms.

[HW05] converges after 552634 iterations. This is be-
cause the initial projection point lies in the sharp featured
region, leading to a very small osculating circle used by [H-
W05]. The iteration oscillates, and can hardly move beyond
this region. This case always occurs at the special point
whose curvature is relatively much bigger than its neighbor-
ing region.

[LYY∗09] fails to converge. In the second iteration the

Q0

P Q

Figure 4: Illustration of Example 2. The blue point P, the
yellow point Q0 and the green point Q are the test point, the
initial projection point and the exact projection point. The
control points, u knot vector and the v knot vector of the bi-
cubic B-spline surface are {(0,0,0), (0,90,0), (0,110,0),
(0,200,0), (90,0,0), (110,110,600), (110,90,600),
(90,200,0), (110,0,0), (90,110,600), (90,90,600),
(110,200,0), (200,0,0), (200,90,0), (200,110,0),
(200,200,0), (290,0,0), (310,110,0), (310,90,0),
(290,200,0), (310,0,0), (290,110,0), (290,90,0),
(310,200,0), (350,0,0), (350,90,0), (350,110,0),
(350,200,0)}, (0,0,0,0,0.25,0.5,0.75,1,1,1,1) and
(0,0,0,0,1,1,1,1).

Table 3: Statistic data for Example 3.

Methods Correct Worst Average CPU time (ms)
solutions iterations iterations

H&W 173217 77 27.93 40986.53
Liu et al. 214931 12 4.17 10426.70

Ours 235670 7 3.13 2984.03

parametric increment is (1.2,−3.0). This makes the param-
eter run out of the parametric domain of the surface ((0 ∼
1)× (0∼ 1)). As suggested in [LYY∗09], we draw it back
to the nearest parametric domain boundary (1,0). Howev-
er, after a few iterations, it runs out again. [LYY∗09] can-
not converge after 1000000 iterations. The reason is similar
to [HW05], where the sharp featured region leads to a very
small torus used by [LYY∗09], resulting in unstable estima-
tions of the next projection point.

With the help of our local biarc approximation, approxi-
mation region is enlarged, and iterations can “jump” away
from the special point and converge to the correct projection
point only in 7 iterations though with “bad” initial value.

Example 3. We project 235670 points sampled from the
logo of “Pacific Graphic 2014” onto a smooth surface (see
Figure 5). The average initial value error is 7.26× 10−02.
Table 3 shows that, our algorithm finds all correct solution-
s, while the successful ratios of [HW05] and [LYY∗09] are

c© The Eurographics Association 2014.

34

H.-C. Song et al. / Projecting points onto planar parametric curves by local biarc approximation

Table 1: Convergence comparisons for Example 1.

Method Step 1 2 3 4 5 6 CPU time (ms)

Case 1
H&W ∆u −3.4×10−02 −4.3×10−03 3.8×10−05 −5.1×10−06 9.0×10−08 −1.2×10−08 0.17

∆v −4.8×10−02 6.5×10−03 2.3×10−04 7.3×10−08 5.4×10−07 2.0×10−10

Liu et al. ∆u −4.3×10−02 3.9×10−03 1.9×10−05 5.1×10−10 0.085
∆v −4.5×10−02 3.8×10−03 4.9×10−06 1.6×10−10

Ours ∆u −3.7×10−02 −9.6×10−04 −1.7×10−05 0.037
∆v −4.7×10−02 5.2×10−03 1.2×10−05

Case 2
H&W ∆u 3.1×10−02 −9.4×10−03 7.0×10−03 −4.9×10−04 7.8×10−04 −1.5×10−07 0.13

∆v 2.9×10−02 3.8×10−02 1.4×10−03 5.5×10−03 5.1×10−06 2.3×10−06

Liu et al. ∆u 2.4×10−02 5.1×10−03 2.0×10−04 3.0×10−7 0.075
∆v 7.2×10−02 1.6×10−03 5.7×10−05 8.0×10−8

Ours ∆u 3.1×10−02 −1.1×10−03 −1.9×10−05 0.038
∆v 5.0×10−02 2.4×10−02 −3.6×10−04

Table 2: Convergence comparisons for Example 2.

Method Step 1 2 3 4 5 6 7 CPU time (ms)

H&W ∆u 0.074 0.086 −0.11 0.04 −0.13 0.23 −0.14 Fail
∆v 0.36 −0.16 0.029 −0.053 0.11 −0.047 −0.054

Liu et al. ∆u −0.050 1.2 −0.25 −0.35 0.29 −0.54 −0.26 Fail
∆v 0.20 -3.0 0.74 0.27 0.13 0.86 −0.15

Ours ∆u 0.058 −0.0091 −0.00078 0.0026 0.0020 0.00028 0.00013 0.051
∆v 0.16 0.030 0.019 −0.0056 −0.00092 −0.0018 −0.000093

(a) (b)

Figure 5: Illustration of Example 3: point projections on a smooth surface. (a) the input surface and points sampled from the
logo of “Pacific Graphic 2014”; (b) the projection result.

(a) (b) (c)

Figure 6: Illustration of Example 4: point projections on scanned human face surface.(a) the input points sampled from a
Chinese Peking Opera mask; (b) the input scanned human face surface; (c) the projection result.

c© The Eurographics Association 2014.

35

H.-C. Song et al. / Projecting points onto planar parametric curves by local biarc approximation

Table 4: Statistic data for Example 4.

Methods Correct Worst Average CPU time (ms)
solutions iterations iterations

H&W 21776 989 19.65 6959.66
Liu et al. 28293 76 4.32 3215.63

Ours 35520 36 3.18 1004.21

73.5% and 91.2%, even if there is no special points men-
tioned in Example 2 (all initial values are not too far from
the exact projection points and there is no sharp features).
The average number of iterations of our algorithm is also
less than the other two algorithms. The processing time of
our algorithm is 7.3% of [HW05] and 28.6% of [LYY∗09].

Example 4. We project 35520 points sampled from a Chi-
nese Peking Opera mask onto a complicated scanned human
face surface (see Figure 6). In this example, the average ini-
tial value error is 1.95×10−02. Table 4 shows that, our algo-
rithm finds all correct solutions, while the successful ratios
of [HW05] and [LYY∗09] are 61.3% and 79.7%. The aver-
age number of iterations of our algorithm is also less than the
other two algorithms. The processing time of our algorithm
is 14.4% of [HW05] and 31.2% of [LYY∗09].

5. Conclusion

We present a geometric iteration algorithm to compute pro-
jection and inversion of points onto 3D parametric surfaces.
Our algorithm uses biarcs to approximate the surface lo-
cally, which achieves both higher precision and larger fit-
ting region as compared to single-point approximation [H-
W05, LYY∗09]. Given the same initial value, the next pro-
jection point estimated by our algorithm is remarkably closer
to the exact projection point than traditional geometric algo-
rithms. As a result, our algorithm converges faster and is less
dependent on the initial value than them.

Acknowledgements

The research was supported by Chinese 973 Program
(2010CB328001) and International Science & Technolo-
gy Cooperation Program of China(2013DFE13120). The
second author was supported by the NSFC (61035002,
61272235). The last author was supported by the NSFC
(91315302, 61173077).

References
[BM92] BESL P. J., MCKAY N. D.: Method for registration of 3-

d shapes. In Robotics-DL tentative (1992), International Society
for Optics and Photonics, pp. 586–606. 1

[CCY08] CHUI K., CHIU W., YU K.: Direct 5-axis tool-path
generation from point cloud input using 3d biarc fitting. Robotics
and Computer-Integrated Manufacturing 24, 2 (2008), 270–286.
3

[CSY∗07] CHEN X.-D., SU H., YONG J.-H., PAUL J.-C., SUN
J.-G.: A counterexample on point inversion and projection for
NURBS curve. Computer Aided Geometric Design 24, 5 (2007),
302. 1

[CYW∗08] CHEN X.-D., YONG J.-H., WANG G., PAUL J.-C.,
XU G.: Computing the minimum distance between a point and
a NURBS curve. Computer-Aided Design 40, 10 (2008), 1051–
1054. 1

[Har99] HARTMANN E.: On the curvature of curves and surfaces
defined by normalforms. Computer Aided Geometric Design 16,
5 (1999), 355–376. 1, 2

[HL93] HOSCHEK J., LASSER D.: Fundamentals of Computer
Aided Geometric Design. A.K. Peters, 1993. 1, 2

[HW05] HU S.-M., WALLNER J.: A second order algorithm for
orthogonal projection onto curves and surfaces. Computer Aided
Geometric Design 22, 3 (2005), 251–260. 1, 2, 4, 6

[JC98] JOHNSON D. E., COHEN E.: A framework for efficient
minimum distance computation. In Proceedings - IEEE Inter-
national Conference on Robotics and Automatio (1998), vol. 4,
pp. 3678–3684. 1

[JC05] JOHNSON D. E., COHEN E.: Distance extrema for spline
models using tangent cones. In Proceedings of Graphics Inter-
face 2005 (2005), pp. 169–175. 1

[LT95] LIMAIEM A., TROCHU F.: Geometric algorithms for the
intersection of curves and surfaces. Computers & graphics 19, 3
(1995), 391–403. 1

[LYY∗09] LIU X.-M., YANG L., YONG J.-H., GU H.-J., SUN
J.-G.: A torus patch approximation approach for point projection
on surfaces. Computer Aided Geometric Design 26, 5 (2009),
593–598. 1, 2, 4, 6

[MH03] MA Y. L., HEWITT W.: Point inversion and projection
for NURBS curve and surface: Control polygon approach. Com-
puter Aided Geometric Design 20, 2 (2003), 79–99. 1

[OKL∗10] OH Y.-T., KIM Y.-J., LEE J., KIM M.-S., ELBER
G.: Efficient point projection to freeform curves and surfaces.
In Advances in Geometric Modeling and Processing. Springer,
2010, pp. 192–205. 1

[PLH04] POTTMANN H., LEOPOLDSEDER S., HOFER M.: Reg-
istration without ICP. Computer Vision and Image Understand-
ing 95, 1 (2004), 54–71. 1

[PT97] PIEGL L. A., TILLER W.: The NURBS Book, second ed.
Springer-Verlag, Berlin, Heidelberg, New York, 1997. 1, 3

[PT01] PIEGL L. A., TILLER W.: Parameterization for surface
fitting in reverse engineering. Computer Aided Design 33, 8
(2001), 593–603. 1

[PW96] PEGNA J., WOLTER F.-E.: Surface curve design by
orthogonal projection of space curves onto free-form surfaces.
Journal of Mechanical Design 118, 1 (1996), 45–52. 1

[Sel06] SELIMOVIC I.: Improved algorithms for the projection of
points on NURBS curves and surfaces. Computer Aided Geomet-
ric Design 23, 5 (2006), 439–445. 1

[ŠFJ06] ŠÍR Z., FEICHTINGER R., JÜTTLER B.: Approximating
curves and their offsets using biarcs and pythagorean hodograph
quintics. Computer-Aided Design 38, 6 (2006), 608–618. 2

[SXSY14] SONG H.-C., XU X., SHI K.-L., YONG J.-H.: Pro-
jecting points onto planar parametric curves by local biarc ap-
proximation. Computers & Graphics 38 (2014), 183–190. 1, 2,
3

[SYYL11] SONG H.-C., YONG J.-H., YANG Y.-J., LIU X.-M.:
Algorithm for orthogonal projection of parametric curves onto B-
spline surfaces. Computer-Aided Design 43, 4 (2011), 381–393.
1

c© The Eurographics Association 2014.

36

