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Figure 1: Complex 3D models rendered by our approach. (a)-(c) are the rendered images of Boeing 777 model (332M trian-
gles); (d) and (e) are the rendered images of Power Plant model (12M triangles).

Abstract

Real-time rendering of complex 3D models is still a very challenging task. Recently, GPU-based level-of-detail
(LOD) approaches have been proposed to fast decrease the complexity of a 3D model, but applying only LOD
approaches is usually not sufficient to achieve highly interactive rendering rate for the complex model that con-
tains hundreds of millions of triangles. Visibility culling, especially occlusion culling, needs to be introduced to
further reduce the amount of triangles being rendered at each frame. In this paper, we present a novel rendering
approach that seamlessly integrates occlusion culling with the LOD approach in a unified scheme towards the
GPU architecture. The result shows that the integration significantly reduces the complexity of the 3D model and
satisfies the demands of both memory efficiency and performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Geometric algorithms

1. Introduction

As data complexity continues to increase due to the funda-
mental advances in modeling and simulation technologies, a
complex 3D model may need several gigabytes in storage,
and contains millions, even hundreds of millions of polygon
primitives (see Figure 1). Rendering such complex models
is computationally intensive. Recently, massive parallelism
on GPU has become a major trend for high-performance
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applications. However, the requirement to interactively ren-
der gigabyte-scale models usually overburdens the compu-
tational power and memory capacity of the GPU. The size
of GPU memory is limited. A model consuming several gi-
gabytes can not fit into it. The common solution is to se-
lect a portion of the data and generate a simplified version.
Towards this idea, parallel mesh simplification algorithms,
such as [HSH09,DMG10,PC12]), have been proposed. But,
without considering view-parameters, the occluded objects
are undesirably rendered in high levels of details and con-
sumes GPU resources. The wasted computing power and
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Figure 2: The overview of our approach.

memory on rendering those occluded objects will definitely
hurt overall performance and visual quality.

In this paper, we integrates occlusion culling into LOD
processing towards GPU architectures. The hidden objects
are removed by a conservative occlusion culling algorithm
with a novel metric of dynamic occluder selection. GPU
memory will not wasted on those hidden objects. Simplified
versions will be generated only for visible objects.

2. Related Works

In this section, we discuss some previous works focusing on
mesh simplification, occlusion culling and their integration.

Traditional simplification algorithms were based on a se-
quence of topological modifications, such as edge collaps-
ing [Hop97, GH97]. However, collapsing edges one-by-one
could be very time-consuming on complex models. To speed
up the performance, GPU-based parallel implementations
have been proposed. [HSH09] introduced a GPU-based ap-
proach for view-dependent Progressive Meshes, where ver-
tex dependencies were not fully considered during a cas-
cade of vertex splitting events. [DMG10] encoded the de-
pendency information of Progressive Meshes into a GPU-
friendly compact data structure. [PC12] eliminated the de-
pendencies by simply using an array structure and supported
triangle-level parallelism.

Occlusion culling aims to remove the hidden objects. Hi-
erarchical Z-buffer (HZB) introduced in [GKM93] is an
algorithm that uses an image-space Z-pyramid to quickly
reject the rendering of hidden objects. [GSYM03] used a
dual-GPU occlusion-switch approach to overcome the per-
formance issues. But an additional latency was introduced
when exchanging data between GPUs. [BWPP04] proposed
an optimized version of hardware occlusion queries to im-
prove the culling efficiency and performance.

To integrate them, [LT99] pre-computed occlusion infor-
mation to guide the refinement process in the LOD algo-
rithm. The authors replaced occlusive polygon set with a
simplified virtual occluder. But the simplified occluders do
not have correct silhouettes, and they may not be able to pro-
duce accurate depth information for the culling. [ASVNB00]

used Visibility Octree to estimate the degree of visibility of
each object, which was also contributed to the LOD selec-
tion in the integration. [YSM03] decomposed the 3D scene
into a cluster hierarchy, where the simplification algorithm
was applied to the set of visible clusters. [GM05] repre-
sented the data with a volume hierarchy, by which their ap-
proach tightly integrated the algorithms of LOD, culling and
out-of-core for massive model rendering. [DG12] proposed
the integration on GPU with a bounding volume hierarchy.
The authors successfully removed the data-dependency to
support the GPU parallel implementation, but the bound-
ing volume hierarchy required a significant amount of mem-
ory. [SKK∗14] used the integration for city generation and
rendering. Since cities usually do not have spacial irregular
shapes, occlusion culling and LOD approaches performed
well on city models than other type of models.

3. Overview

We propose two geometric processing stages, data prepro-
cessing and runtime processing, as illustrated in Figure 2.
In preprocessing, we perform a sequence of edge-collapsing
operations to simplify the input model. The order of these
operations is used to re-arrange the storage of vertices and
triangles. Also, to better prepare for occlusion culling, we
examine the qualification of each object as an occluder by
evaluating its spatial occupancy. We also generate Axis-
Aligned Bounding Boxes (AABBs) of the objects.

During the runtime, occlusion culling and LOD process-
ing components are performed based upon a series of par-
allel processing steps. we select a set of adaptive occluders,
transfer them to GPU, and rasterize them into a Z-depth im-
age. The objects hidden behind the occluders are then elim-
inated by testing against the depth image. After that, the re-
maining objects are passed through the component of LOD
processing, where each object’s geometric complexity is de-
termined to be used for reforming the object into a new
shape. At the end, the reformed objects are rendered with
OpenGL Vertex Buffer Objects (VBO).
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4. LOD Selection

Determining the desired level of detail (or the desired geo-
metric complexity) of the objects is a very important step in
LOD algorithms, which is knownn as LOD Selection. Con-
ceptually, an object can be rendered at any level of detail.
But because GPU memory is limited, the total number of
polygon primitives must be budgeted based on the memory
capability. [PC12] solved the LOD selection problem with a
discrete optimization solution. In that paper, the detail level
of an object is determined by the size of the screen region
occupied by an object. The larger size of the region, the
higher level the object’s detail should be. However, objects
may have dramatically different shapes with widely varying
spatial ratios. It is possible that a far-away object, which de-
serves a lower level of detail, has a much larger projected
area than a closer object. In addition, objects usually come
with different number of triangles due to the nature of orig-
inal design. An object that has more triangles should ratio-
nally be approximated with a higher detail level than those
with fewer triangles, though the former one may be farther
away from the viewpoint. By considering all these aspects,
We re-evaluate the LOD selection problem and provide a
closed-form expression.

LOD Selection Metric. The desired level of detail of the
ith object is represented with a pair of vertex count and tri-
angle count. We denote them as vci and tci, respectively. We
compute vci using Equation 1.

vci = N
w

1
α

i

∑
m
i=1 w

1
α

i

,where wi = β
Ai

Di
Pβ

i , β = α−1 (1)

N is the user-defined maximal count. vci is computed out
of total m objects. Ai denotes the projected area of the ob-
ject on image plane. To compute Ai efficiently, we estimate
it using the area of the screen bounding rectangle of the pro-
jected axis-aligned bounding box (AABB) of the object. The
exponent, 1

α
, is a factor aiming to estimate the object’s con-

tributions for model perception. Di is the shortest Z-depth
distance from the corner points of the AABB. Pi is the num-
ber of available vertices of the object. Then, tci can be eas-
ily retrieved from the information recorded during the edge-
collapsing operation in preprocessing.

Pixel Error Threshold. No matter how large or complex
an object is, the object’s shape is scan-converted into pixels.
At a position long-distance to the viewpoint, a very large ob-
ject may be projected to a very small region of the screen
(e.g. less than one pixel), so that the object might not be cap-
tured by people’s visual perception. Based on this nature, we
introduce a Pixel Error Threshold (PET) as a complementary
criteria for our metric of LOD selection. If Ai in Equation 1
is below a given PET, vci is set to zero.

5. Parallel Occlusion Culling

In Equation 1, N is an important factor that impacts on over-
all performance and visual quality. N tells how many vertices
and triangles will be processed by the GPU. We can decrease
the value of N to ensure a desired performance, but a small N
will result in the loss of visual quality. One of the reasons is
that the hidden objects obtain cuts from N. It would be more
reasonable that those cuts are assigned to the visible objects
to increase their detail levels.

In this section, we introduce a novel parallel approach for
occlusion culling that rejects the hidden objects before the
step of LOD budget allocation.

5.1. Preprocessing

In a model, not all objects are suitable to be occluders. Most
existing systems use simple criteria to examine an object’s
qualification, such as the size of the object’s AABB and/or
the number of triangles it has. But, in a complex model, some
objects may be irregularly shaped (e.g., casually curved long
wires in the Boeing 777 airplane model), which should not
be qualified as occluders at any viewpoints. We use a spa-
tial occupancy criteria to determine the qualification of an
object by measuring its compactness in local space. A tight
Object-Orientated Bounding Box(OOBB) is calculated for
each object. Equation 2 returns the value of compactness that
indicates how well the object fills the OOBB’s space.

compactness =
Ax

Px
Rx

+Ay
Py
Ry

+Az
Pz
Rz

Ax +Ay +Az
. (2)

A is the orthogonally projected area of OOBB along its
local axises; P is the number of pixels occupied by the object
on the corresponding projection; R is the total number of
pixels occupied by the OOBB on the projection.

Objects are then sorted based on their compactness val-
ues. Storage of the objects are re-arranged by moving those
with higher compactness to the front. The higher a value is,
the better the object is deserved to be an occluder. We use a
Compactness Threshold (CT) to find out the objects suitable
to be occluders. The CT defines the lower bound compact-
ness. The objects whose compactness values are above the
CT will be added into the Candidate Occluder Set (COS).

5.2. Occluder Selection

At the time a frame being rendered, a group of occluders
from the COS is view-dependently selected. We denote it as
Active Occluder Set (AOS). We perform three steps to decide
AOS: (1) view-frustum culling: we test each object’s AABB
against the view frustum, so that the object is invisible if
its AABB outside the frustum; (2) weighting candidate oc-
cluders: we weight the objects in COS to determine any one
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Figure 3: Occluder selection example. 8 out of 18 objects
are classified into COS. The size of AOS is set to 3.

suitable to be in AOS. (3) identifying AOS: We identify the
objects with higher weights and select them into the AOS.
An example of these three steps is illustrated in Figure 3.

View-frustum culling. We ask one GPU thread to handle
one object. By testing its AABB against the view frustum,
the objects outside the frustum will not be passed into the
rendering pipe. The reason that we use AABBs instead of
OOBBs is because an AABB allows a faster execution and
has less memory requirements.

Weighting candidate occluders. We certainly do not
want to select all remaining objects of COS to AOS, because
the number of them most-likely is large and many of them
may actually be occluded. To select less but optimal candi-
dates, We develop a weighting metric to ensure that the se-
lected objects are spatially large and close to the viewpoint.
we assign a direction vector to each object. The vector is per-
pendicular to the largest face of the object’s OOBB. Then the
object’s weight is computed based on its viewing direction,
its distance to the viewpoint and the size of its bounding vol-
ume, as shown in Equation 3.

weight =
V ||−→N ·−→E ||

D3 (3)

V is the volume size of the object’s AABB;
−→
N is the di-

rection vector of the object; E is the direction vector of the
viewpoint; D is the closest distance between the AABB and
the viewpoint position. Weighting the objects, as shown in
Figure 3, can be executed with a object-level parallelism.

Identifying the AOS. We sort the COS based on the de-
scending order of the weights. We fix the size of AOS so that
the number of occluders will not be changed during runtime.
We consider that the objects in AOS are significantly visible
and should be represented with full details.

5.3. Conservative Culling with Hierarchical Z-Map

Conservative culling is to determine a set of objects that are
potentially visible, which is commonly known as Potentially

(b) HZM

(a) Viewpoint

(c) Tested Object

(d) Selected Level from HZM

Figure 4: The concept of culling with HZM. (a) is the view-
point of the rendered frame; (b) is HZM constructed from oc-
cluders; (c) shows visibility testing with HZM; (d) is image
representation of the selected level of HZM. The red square
represents the projected size of the object on the screen. It
overlaps with four green blocks representing four depth pix-
els.

Table 1: Parameter Configurations.

Model α N PET CT
Size of
AOS

Boeing 777 3.0 12.2M 1 pixel 0.55 20
Power Plant 3.0 3.5M 1 pixel 0.88 15

Visible Set (PVS). To identify the PVS, we build the Hierar-
chical Z-Map (HZM) with the depth image of active occlud-
ers.

Similar to [GKM93], the HZM is constructed by recur-
sively down-sampling the depth image in an octree manner.
Each level of HZM is an intermediate depth image, which is
down-sampled from the one-level higher image by merging
its 2×2 blocks of pixels.

we use the bounding square of an object’s projected area
as the approximation to test against an appropriate level of
HZM. This appropriate level can be determined by Equa-
tion 4, where R represents the dimension of the bounding
square in pixels; L represents the total levels of HZM; W is
the dimension of the rendered frame.

level = L− log2
W
R
,(R≥ 1) (4)

The area covered by the square is guaranteed in a range
of pixel size of (1,4) at the chosen level, see Figure 4. If the
depth value of the tested object is larger than all of the four
overlapped pixels, this object is surely occluded; otherwise,
it will be labeled as a potentially visible object into PVS.

6. Experimental Results

We implemented our approach on a workstation with 8 GB
RAM and a Nvidia Quadro 5000 card with 2.5 GB memory.
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Table 2: The results of preprocessing.

Model
Data File Collapsing Occupancy

Tris /Vers Memory Memory
Time

Memory
Time

Numbers Occupied Occupied Occupied
Boeing

332M/223M 6.7GB 582.5MB 952min 2.9MB 38min
777

Power
12M / 6M 0.5GB 14.2 MB 40min 0.6MB 5min

Plant

We used Nvidia CUDA Toolkit v4.2 on a 64-bit Windows
system. The parameters are listed in Table 1.

6.1. Preprocessing Performance

The preprocessing stage includes two parts: the simplifi-
cation to record the collapsing information and the com-
putation of the objects’ spatial occupancy. We performed
them on a single CPU core for both test models. The per-
formance results are shown in Table 2. The simplifica-
tion costs more time than the computation of spatial oc-
cupancy. The average throughput performance of our pre-
processing method is 5K triangles/sec. Comparing to other
approaches, [YSGM04] computed the CHPM structure at
3K triangles/sec; [CGG∗04] constructed the multiresolution
of the static LODs at 30k triangles/sec on a network of 16
CPUs; [GM05] built their volumetric structure at 1K trian-
gles/sec on a single CPU. Our method is at least 66.7% faster
in single CPU execution. In terms of memory complexity,
we generated the addition data that is 8.7% and 3.0% of the
original data size for the Boeing model and the Power Plant
model, respectively.

6.2. Runtime Performance

We created a navigation path to evaluate runtime perfor-
mance. Table 3 shows the breakdown of runtime perfor-
mance. For rendering the Boeing model, transferring frame-
different data from CPU to GPU leads to a high cost on
the PCIe bus on the LOD processing component. Occlusion
culling component is efficient, since the size of AOS is fixed
and small, transferring the occluders is not expensive.

Comparison with previous approaches. Our runtime
method can reach an average throughput of 110M trian-
gles/sec. In contrast, [CGG∗04] performed an average of
70M triangles/sec using their TetraPuzzle method. [GM05]
sustained an average of 45M voxels/sec with their Fast Voxel
method. Thus, we gain the advantages of using GPUs in
terms of the performance of processing triangles. We also
compare the runtime performance to the performance of
[PC12]’s approach. We set the same value of N in both ap-
proaches, so that their GPU workloads are identical. Figure 6
plots the frame rates over 350 frames.

Effectiveness of occlusion culling. We evaluate the ef-
fectiveness of our occlusion culling method by comparing it

Table 3: Runtime Performance. We show the average
breakdown of frame time. The results are averaged over the
total number of frames on the camera navigation paths. The
models are rendered to a 512×512 image.

Model FPS
Occlusion LOD

Rendering
Culling Processing

Boeing 777 14.5
7.9 ms 34.6 ms 26.5 ms

(11.4%) (50.1%) (38.4%)

Power Plant 78.3
4.8 ms 2.9 ms 5.1 ms

(37.5%) (22.7%) (39.8%)

Table 4: Occlusion culling effectiveness on Boeing model.

Object Objects culled by OC OC Accuracy Memory
Number Our Approach Exact (Our Approach) Released
718K 63K 108K 58.3% 348.6MB

to the exact culling. In terms of the implementation of the
exact culling, we first render the original model into a depth
buffer, and then AABBs of the objects are tested against the
depth buffer to identify the occluded objects. For the pur-
pose of accuracy, the LOD algorithm is not applied to either
of the phrases. This implementation renders one frame in 3-
4 seconds. Table 4 shows that our heuristic method achieves
58.3% of the result of the exact culling. “Memory Released"
indicates the memory was occupied by the hidden objects,
and now is released to add more details to the simplified ver-
sions of visible objects. Figure 5 demonstrates the results of
occlusion culling for the Boeing model.

7. Conclusions and Future Work

We have presented a GPU-based approach to integrate oc-
clusion culling into the LOD algorithm on GPU. The GPU
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Figure 6: Runtime performance. Our approach performs
better than [PC12]. Theoretically, our performance should
be worse than [PC12] because of the extra cost on occlu-
sion culling. But the removed hidden objects decrease the
amounts of vertices and triangles transferred to the GPU, so
that our approach spends less time on the CPU-to-GPU data
transfer, which more significantly impacts the performance.
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(a) (b) (c) (d)

Figure 5: The occlusion culling result with Boeing 777 model. (a) is the rendered frame. (b) is the reference view, where the
dark green line indicates the view frustum. (c) shows the active occluders, marked in purple. (d) shows the occluded objects,
where each red box represents one object blocked by the occluders.

memory occupied by hidden objects are released and used
by the visible objects to increase geometric details.

There are several aspects to strengthen our work in the
future. Rendering quality is sensitive to the metrics of LOD
selection and occluder selection. We would like to explore
other metrics that can deliver better performance and render-
ing qualities. We also want to further improve our occluder
selection method to cull more hidden objects.
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