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PROBLEM

The images of cashmere and wool fibers used for
scientific research 1n the textile field are mostly
acquired manually under an optical microscope.
However, due to the interference of microscope
quality, shooting environment, focal length
selection, acquisition techniques and other factors,
the quality of the obtained photographs tends to
have a low resolution, and 1t 1s difficult to show the
fine fiber texture structure and scale details.
Therefore, super-resolution reconstruction of fiber
1mages 1s of great practical significance.

RELATED WORK

With the rapid development of deep learning, many
hyper-segmentation models based on convolutional
architectures such as DCRNI! and CARNI2] have
been proposed, but their feature extraction can only
be performed locally, ignoring long-range
dependencies, which 1s unacceptable for fibrous
images with large cross-sectional length
comparisons. Attempts to use the Transformer
architecture gradually became the current hotspot,
and SwinIR[B! achieved the best performance at
that time, but the large computational and memory
footprint made 1t difficult to deploy on mobile
terminals. ESRTI* was the first hypersegmentation
model to combine Transformer and CNN and
achieved a trade-off between performance and
parameter footprint, but its focus on small targets
was not sufficient adequately. Therefore, we design
a super-resolution reconstruction model for fiber
dataset to address the above problems.

OVERVIEW

First, a hybrid module 1ntegrating
SwinTransformer and enhanced channel and spatial
attention 1s proposed to extract the global features
and obtain the important localization among them,
in addition, a multi-scale hierarchical screening
filtering module based on the residual model 1s
proposed to amplify the feature information
focusing on high-frequency regions by splitting the
channel to let the model adaptively weight
according to the feature weights. Finally, the global
average pooling attention module integrates and
weights the high-frequency features again to
enhance details such as edges and textures.A large
number of experiments show that compared with
other state-of-the-art algorithms, the proposed
method significantly improves the image quality on
the fiber dataset, and at the same time proves the
effectiveness of the proposed method at all scales
in five public datasets.
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METHODOLOGY
As shown in Figure 1, the FEB module: uses a shift window ¥ DCA’ TEC A

to model long-term dependencies and acquire global features DA

based on the characteristics of SwinT, while the LCF module

»
s

filters and extracts shallow local features, and the ECAM
module extracts high-frequency information using weighted
channel attention, discards low-frequency information and
reduces the parameters, which 1s achieved by multiplying the
input features with the attention weights in order to improve
the model's perception of important features. The ESA module ’
performs dimensionality reduction by 1x1 convolutional SwinT
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kernel and captures a larger range of contextual information
In space using maximum pooling operation, where the

I

convolutional layer and activation function process the
features to capture and emphasize the important features so 4 h

that the model focuses on the important regions in the input Com 33 | [ N
features. Finally the global features extracted by SwinT are TCOHV 3x3]\ z|[g] [2 5 2| [2] (> - 5 5] 4
fused; ] >§+§+§+§+§+DY,§ . 3
the PN module 1s mainly used to extract the edges and K[com,e,x:»,] . - — — y
detailed texture features of the fiber image, and the features . g - " - .

are fused and extracted at different scales, and the DCA

module splits the channel features into A and B, and the A - N

channel's features have a larger sensory field to see more >| Conv |5 Conv [ Relu Conv

pixel information, and the B channel causes more shallow
rough features to propagate to the deeper layers to be
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preserved, fusing AB and using attention to further filter _
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useful features.This compensates for critical information that
may be lost in the stacking process of the FEB module.

RESULTS

Ablation experiments

Figure 1:Lightweight super-resolution reconstruction model for multiscale hierarchical screening

The results in the Table I show that the PN module USiIlg residual Jump Table 1:Impact of different components on model performance in

connections contributes significantly to the performance and parameters, Jiber datases

whereas 1n the absence of the PN module, the number of parameters increases
dramatically and the performance decreases. This suggests that the PN module

PN ESA+ECAM SwinT

Params Wool Cashmere

k] PSNR SSIM PSNR SSIM

not only maximizes the extraction of important features but also reduces the
parameter footprint.Better performance can also be achieved using only the
SwinT model, but its parameters are twice as large as those of our model. /

X

X

X v 868 37.90 0.9506 37.65 0.9510
v v 705  36.97 0.9442 37.86 (.9488
v v 468 37.82 0.9523 37.95 0.9586

Comparison experiments

1able 2 demonstrates the superiority of our algorithm on the fiber dataset, where a small improvement 1n performance is obtained while
maintaining a small parameter footprint, where cashmere gets relatively better results compared to wool due to the regularity of 1ts
texture. Specific comparison 1images are shown 1n Figure 2 and Figure 3, where the skeleton and texture parts of the images obtained by

our algorithm are more obvious, and the small target features are better recovered. Meanwhile, 1n

order to verify the generality of the

model, we use the DIV2K dataset to train the model and test the model 1n five public datasets, as shown 1n Table 3, compared with

other existing models, the proposed model has a strong competitiveness in the x2 x3 x4 scale.

1able 2:Quantitative comparison of different algorithms on fiber image datasets at different scales

Params Wool Cashmere

Scale Method
(k] PSNR SSIM PSNR SSIM
FSRCNN 13 33.10 0.8875 33.16 0.9095

%3 ESRT 770 3473 09122 3479 0.9138
OURS 475 3490 09224 3485 0.9244

FSRCNN 13 30.73  0.8541 30.74 0.8543
x4 ESRT 721 32.74 0.8847 3275 0.8848
OURS 484 32.81 0.8867 32.82 0.8872

1able 3:Quantitative Comparison of Different Algorithms at Different Scales on Five Public Benchmark Datasets

SwinIR

ESRT Ours

Params Set5 Set14 B100 Urban100 Mangal09
Scale Method (K] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Figur‘e 2.°C0mpa7'iS0n OfV'QCOnStVuCtiOH efJFQCtS Ofdiﬁ(erent mOdelS
SRCNN 8 36.66 09542 3245 09067 3136 0.8879 2950 0.8946 35.60 0.9663 at Turkish cashmere x 4 scale
FSRCNN 13 37.00 09558 3263 09088 3153 08920 2988 09020 36.67 0.9710
DCRN 1774 3763 09588 33.04 09118 31.85 08942 3075 09133 3755 0.9732 3 - z
%2 CARN 1592 3776 09590 3352 09166 32.09 0.8978 31.92 09256 3836 0.9765 g :
SwinIR 878 38.14 0.9611 33.86 0.9206 3231 09012 3276 0.9340 39.12 0.9783 2 ‘%3&5 B 2
Ours 468 38.01  0.9611 3375 09206 3222 09010 3229 09299 3890 0.9777 f | o £ e
P; - % 5 ‘f = .-?.:Eh-.
SRCNN 8 3275 09090 2930 0.8215 2841 07863 2624 0.7989 3048 09117 Vi . {if-*&@g f c““%s
FSRCNN 13 33.18 09140 2937 08240 2853 0.7910 2643 0.8080 31.10 0.9210 d - § - :
DCRN 1774 33.82 09226 2976 08311 2880 0.7963 27.15 0.8276 3224 0.9343
X3 CARN 1592 3429 09255 3029 0.8407 29.06 08034 28.06 0.8493 33.50 0.9440 SRCNN | FSRCNN
SwinIR 886 34.62 0.9289 30.54 0.8463 2920 0.8082 28.66 0.8624 3398  0.9478 B
ESRT 770 3442 09268 3043 0.8433 29.15 08063 2846 08574 3395 0.9455 g_h 3
Ours 475 3450 09284 3046 0.8448 29.16 0.8082 2850 0.8590 33.98  0.9466 r;:\ |
SRCNN 8 3048 0.8626 2750 0.7513 2690 07101 2452 07221 2758 0.8555 k\\\
FSRCNN 13 30.72  0.8660 27.61 07550 2698 0.7150 2462 0.7280 2790 0.8610 3\\
DCRN 1774 31.53 0.8854 28.02 0.7670 2723 07233 25.14 0.7510 2893 0.8854 .
x4 CARN 1592 32.13  0.8937 2860 0.7806 2758 0.7349 26.07 0.7837 3047 0.9084 .
SwinIR 897 3244 0.8976 28.77 07858 27.69 0.7406 2647 0.7980 30.92 0.9151 SwinIR ESRT Ours
ESRT 751 32.19  0.8947 2869 0.7833 27.69 0.7379 2639 0.7962 30.75  0.9100 Figure 3:Comparison of reconstruction effects of different models
Ours 484 3228 0.8964 2874 0.7849 27.69 0.7407 2657 0.7995 31.02 0.9152 at small-tailed frigid sheep hair x 4 scale
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