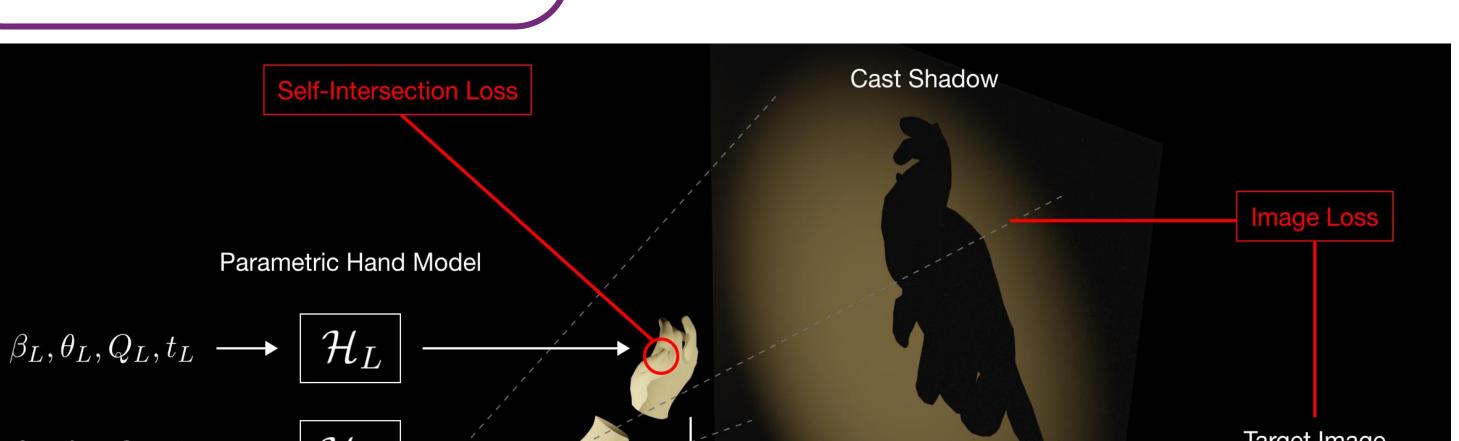
PG23Daejeon, Korea

Hand Shadow Art: A Differentiable Rendering Perspective


Aalok Gangopadhyay, Prajwal Singh, Ashish Tiwari, and Shanmuganathan Raman

Computer Vision, Imaging, and Graphics Lab

Indian Institute of Technology Gandhinagar


PROBLEM

- Shadow art is an exciting form of sculptural art that produces captivating artistic effects through the 2D shadows cast by 3D shapes.
- Hand shadows, also known as shadow puppetry or shadowgraphy, involve creating various shapes and figures using your hands and fingers to cast meaningful shadows on a wall.
- In this work, we propose a differentiable rendering-based approach to deform hand models such that they cast a shadow consistent with a desired target image and the associated lighting configuration.

- $\mathcal{I} = [0,1]^{H \times W}$: space of all grayscale images defined on a grid of size $H \times W$.
- $I \in \mathcal{I}$ be a given target image.
- $\mathcal{M} = (\beta, \theta, Q, t)$ be the parametric hand model [3].
- β : Shape Parameter

• We show the results of shadows cast by a pair of two hands and the interpolation of hand poses between two desired shadow images.

The bunny and the deer as hand shadows (Fun with Hand Shadows, Frank Jacobs)

Target Image $\beta_R, \theta_R, Q_R, t_R \longrightarrow |\mathcal{H}_R|$ θ : Pose Parameter Q: Rotation Matrix Differentiable *t*: translation vector Viewing Renderer Configuration \mathcal{M} : Hand mesh model

- $\mathcal{M}_L = \mathcal{H}_L(\beta_L, \theta_L, Q_L, t_L)$: Left hand model and $\mathcal{M}_R = \mathcal{H}_R(\beta_R, \theta_R, Q_R, t_R)$: Right hand model
- Consider \mathcal{C} be the camera with fixed parameters placed at the origin. The lighting configuration with the camera \mathcal{C} is called viewing configuration (\mathcal{V}) .
- $\mathcal{R}(\mathcal{V}, \mathcal{M}_L, \mathcal{M}_R)$: Silhouette image rendered by arrangement of both hands as seen from the camera.
- Objective: Find the values of parameters θ_L , θ_R , Q_L , Q_R , t_L , and t_R that minimize

 $\left\| \left| I - \mathcal{R}(\mathcal{V}, \mathcal{M}_L, \mathcal{M}_R) \right\|_2^2$

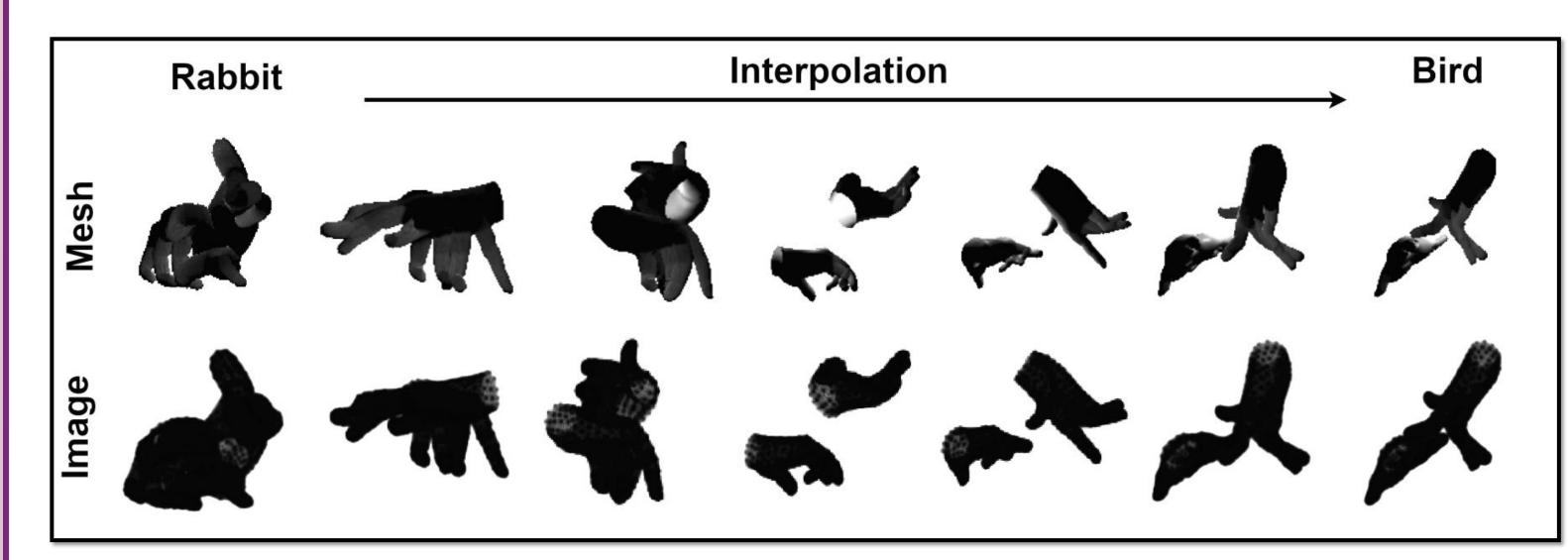
keeping β_L and β_R fixed.

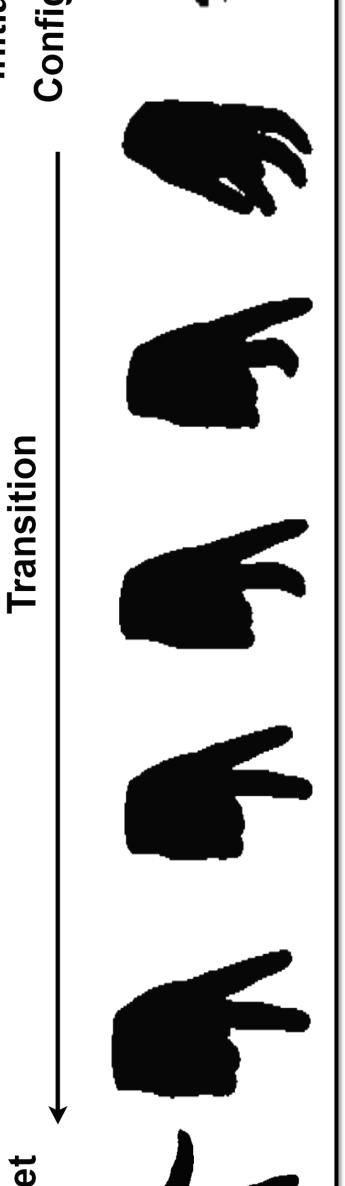
METHODOLOGY

- To avoid self-intersections and cross-intersections among a pair of hand meshes, we penalize such intersections according to pen loss [1, 5].
- We restrict the angular movement across 15 different joints (per hand) in the MANO hand models [4] to simulate realistic and plausible human hand movements.

٦	(RESULT	S						
		Initial Hand		Transition	Target		nd tion		
		Configuration						al Har gurat	

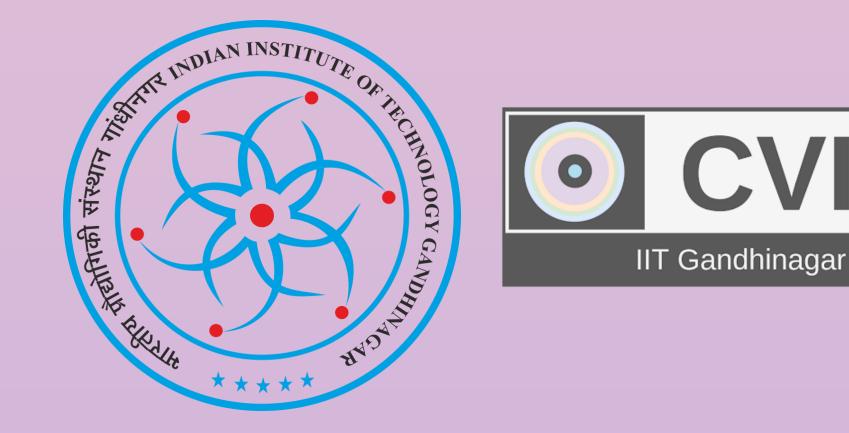
RELATED WORK


- A few recent methods have addressed shadow art using either optimization [2] or differentiable rendering [3]. However, none of them have explicitly addressed hand shadow art. • Mitra et al. [2] described shadow art more formally by introducing a voxel-based optimization framework to recover the 3D shape from arbitrary input (shadow) images by deforming them and handling inherent image inconsistencies.
- Sadekar et al. [3] demonstrated the potential of differentiable rendering (mesh and voxel based) in generating 3D shadow sculptures all from arbitrary shadow images without any explicit input image deformation.


OVERVIEW

- We explicitly focus on developing a differential rendering based optimization framework to create hand shadow art by deforming the hand mesh models [3] and show the dynamics involved in interpolating between two shadow images.
- The hand model parameters are optimized by minimizing the image rendering loss and the mesh intersection loss. A model capture setup is shown below with camera moved from left to

(a) Hand shadow art. We start with a random initial configuration of hand models (using one hand – row 1 and two hands – row 2 & 3) to reach the final pose, creating a shadow similar to the given target image when viewed from a fixed configuration.



VIG

(b) Interpolation. We interpolate between a pair of shadow images cast by a pair of hands. Given a pair of images I_A and I_B , we find a sequence of hand mesh models $(\mathcal{M}_L^t, \mathcal{M}_R^t)$ such that $\mathcal{R}(\mathcal{V}, \mathcal{M}_L^0, \mathcal{M}_R^0) = I_A$ and $\mathcal{R}(\mathcal{V}, \mathcal{M}_L^T, \mathcal{M}_R^T) = I_B$, where $t \in [0, T]$.

(c) Failure case. Inability to handle large and abrupt transitions.

REFERENCES

[1] Karras, Tero. "Maximizing parallelism in the construction of BVHs, octrees, and k-d trees." Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. 2012.

[2] Mitra, Niloy J., and Mark Pauly. "Shadow art." ACM Transactions on Graphics 28.CONF (2009): 156-1.

[3] Sadekar, Kaustubh, Ashish Tiwari, and Shanmuganathan Raman. "Shadow art revisited: a differentiable rendering based approach." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022.

[4] Romero, Javier, Dimitrios Tzionas, and Michael J. Black. "Embodied hands: Modeling and capturing hands and bodies together." arXiv preprint arXiv:2201.02610 (2022).

[5] Tzionas, Dimitrios, et al. "Capturing hands in action using discriminative salient points and physics simulation." International Journal of Computer Vision 118 (2016): 172-193.