
Pacific Graphics (2023) Poster
R. Chaine, Z. Deng, and M. H. Kim (Editors)

TreeGCN-ED: A Tree-Structured Graph-Based Autoencoder
Framework For Point Cloud Processing (Supplementary)

Prajwal Singh, Ashish Tiwari, Kaustubh Sadekar & Shanmuganathan Raman

CVIG Lab, Indian Institute of Technology Gandhinagar

The following is included as a part of an extension to the main
paper.

1. Detailed description of tree-GAN and TreeGCN-ED pipeline
2. Implementation Details
3. Additional qualitative results

1. Detailed description of tree-GAN and TreeGCN-ED
pipeline

Generating an image from noise vector [GPAM∗14] is a well-
known problem in the computer vision community. Recently, in
[SPK19], the authors have proposed a deep generative model for
the 3D point cloud generation. The proposed method is unique
because the authors have used graph convolution in point clouds,
which do not have any edge connection between points. They use a
branching method to gather the information from neighbor points.

1.1. tree-GAN

tree-GAN [SPK19] proposes a deep generative model for 3D point
cloud generation. It uses a branching method to gather information
from neighboring points. The accumulated information is then dis-
tributed to other points using graph convolution. The point cloud
thus generated through this method is implicitly segmented.

In tree-GAN [SPK19], a noise vector z ∈ R96 is sampled from
N (0, I) and is given as input to the generator network. Each gener-
ator layer consists of a branching network and a graph convolution
layer. For the first layer, there is no ancestor for the input vector;
therefore, it is passed on to the graph convolution network, which
then upsamples the input and passes the current and upsampled in-
put to the next layer. The branching network accumulates the fea-
ture vectors from the previous layers, which is again upsampled by
the graph convolution layer to generate a new feature vector for that
layer. This is repeated until the point cloud of the desired dimen-
sion Rn×3 is obtained at the output. Note that the feature vector for
the first layer is the noise vector z itself. The generator and discrim-
inator are trained under WGAN [ACB17].

1.2. TreeGCN Based Point Cloud Encoder-Decoder

This section discusses the proposed method for 3D point cloud
processing. The key idea of this approach is inspired by the tree-
GAN [SPK19], a deep learning-based model for generating a 3D
point cloud from a noise vector. We use the idea of tree-based graph

convolution from [SPK19] to develop an encoder that extracts rich
embeddings to perform well on the unseen point cloud data. Our
model takes a 3D point cloud of size Rn×3 as input, then passes it
through sequences of graph-based operation to generate encoding
for the point cloud. The generated encoding is then passed through
the decoder network where a sequence of graph-based operations
upsample the encoding to obtain a Rn×3 point cloud as the output.
The complete network, called TreeGCN-ED, is trained end-to-end
by minimizing chamfer loss [FSG17].

A Rn×3 point cloud is given as input to the model, which then
passes through a down-branching network for gathering features
from the ancestors of each node. We first each ancestor to a se-
quence of fully connected layers and then apply max pooling to
extract dominant features, passing this further to the graph con-
volution module. The point cloud continuously passes through the
down branching and graph convolution module sequence until the
desired encoding ψ is obtained. The generated encoding is given
as input to the decoder network. The decoder architecture is sim-
ilar to tree-GAN [SPK19] except it takes encoded embedding as
input. The overall model is trained end-to-end using the Chamfer
loss function [FSG17].

The branching network is an essential part of the TreeGCN-ED
network. It helps in accumulating information from ancestors for
each node. Every ancestor feature is passed through a fully con-
nected layer at each stage to help the network learn the relation
between a node and its neighbor. This is also useful because the
point cloud does not have edge connections between points. We
use max pooling for selecting essential features from the encoded
point cloud. Max pooling has been proved to be a permutation in-
variant function [QSMG17]. We experimented with other pooling
functions, such as averaging and adding feature vectors, but max-
pooling works better than other methods. Tree graph convolution
network learns the semantic segmentation of point cloud implic-
itly [SPK19].

2. Implementation Details

2.1. Loss Function

To train the TreeGCN-ED, we have used the Chamfer loss [FSG17]
function as it shows promising results for point cloud-based recon-
struction [SPK19].

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

P. Singh, A. Tiwari, K. Sadekar & S. Raman / TreeGCN-ED: A Tree-Structured Graph-Based Autoencoder Framework For Point Cloud Processing (Supplementary)

Incomplete Complete CompleteIncomplete

Figure 1: Figure illustrates the qualitative result of point cloud shape completion.

Lcham f er(S1,S2) = ∑
x∈S1

miny∈S2 ||x− y||22 + ∑
y∈S2

minx∈S1 ||x− y||22

(1)

In Equation 1, S1 ∈ Rn×3 and S2 ∈ Rn×3 represents two differ-
ent point clouds. There are two specific reasons for using this loss
function. First, it is permutation invariant [FSG17]. Second, it pe-
nalizes the loss function if a point from one set is not matched with
its corresponding nearest neighbor in another set and vice-versa.
This forces the model to learn information-preserving embedding
for the point cloud.

2.2. Data Pre-processing

To train our model, we have used ShapeNetBenchmarkV0 dataset
[CFG∗15] consisting of 16 object classes.WE follow that same
train-val-test split officially available along with the dataset. We
uniformly sample 2048 points from the meshes of the ShapeNet
dataset [CFG∗15]. We use barycentric coordinates for the surface
sampling to ensure uniform sampling of points.

2.3. Point Cloud Clustering

Table 1 shows the Chamfer Distance (CD) [FSG17] and Fréchet
Point Cloud Distance (FPD) [SPK19] for each of the 16 different
object classes in the ShapeNetBenchmarkV0 dataset.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

P. Singh, A. Tiwari, K. Sadekar & S. Raman / TreeGCN-ED: A Tree-Structured Graph-Based Autoencoder Framework For Point Cloud Processing (Supplementary)

Ground TruthImage Prediction Ground TruthImage Prediction

Figure 2: Figure illustrates the qualitative result of 3D point cloud reconstruction from 2D images.

2.4. Ablation Studies details.

We performed ablation studies to determine how feature embed-
ding ψ dimension and data augmentation affect the ability of
TreeGCN-ED to learn a meaningful feature representation. Four
different training regimes are compared on the ShapeNetCore.v2
test-set [SYS∗17], which consists of 55 classes. In Regime 1 and
2, the dimension of feature embedding is fixed to 256 and 512, re-
spectively, without augmentation. Similarly, in Regime 3 and 4, the
dimension of feature embedding is fixed to 256 and 512, respec-
tively, but with augmentation. We use ShapeNetCore.v2 dataset
[SYS∗17] to train TreeGCN-ED for all the four regimes. Fur-
thermore, we also evaluate the efficiency of feature representa-
tion learning of TreeGCN-ED on ModelNet10 and ModelNet40
datasets [WSK∗15] for all four regimes. We follow the same pro-
cedure as mentioned in [YFST18] to train a linear SVM classifier
on features extracted from trained TreeGCN-ED for the ModelNet
datasets [WSK∗15]. Regime 4 gives the best model performance.

It can be easily argued that the tree-GAN [SPK19] decoder it-
self is enough for point cloud processing at hand. However, to
establish the need and examine the strength of the proposed en-
coder, we perform an additional experiment by replacing it with
the PointNet [QSMG17] encoder to train the complete network on
ShapeNetBenchmarkV0 dataset [CFG∗15]. We observed that the
average CD is 8.65 with the PointNet encoder and 1.21 with the

proposed encoder. This establishes the efficacy of the proposed en-
coder.

2.5. Single Image-Based Point Cloud Reconstruction

We first train the TreeGCN-ED model on 16 different classes of the
ShapeNetBenchmarkV0 dataset [CFG∗15] till convergence. Later,
we replace the encoder of TreeGCN-ED with a CNN-based archi-
tecture to extract image features. We freeze the trained weights of
the decoder and train the image encoder network end-to-end for
3D reconstruction again using Chamfer Distance (CD) [FSG17] as
the loss function. We use the synthesized images in the ShapeNet-
BenchmarkV0 dataset [CFG∗15] to train the single image to a 3D
shape reconstruction model.

3. Additional qualitative results

Figure 1, 2, and 3 show the additional qualitative results on point
cloud completion, image-based reconstruction, and interpolation,
respectively.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

P. Singh, A. Tiwari, K. Sadekar & S. Raman / TreeGCN-ED: A Tree-Structured Graph-Based Autoencoder Framework For Point Cloud Processing (Supplementary)

Source Interpolation Target

Figure 3: Figure illustrates the qualitative result of smooth interpolation between point clouds for both inter and intra classes.

Models Metrics
Object Class

Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motorbike Mug Pistol Rocket Skateboard Table Average

FoldingNet [YFST18]
CD
FPD

0.67
11.10

3.12
87.45

2.82
117.36

1.76
28.47

1.47
12.00

3.34
152.04

0.44
19.55

0.55
19.56

2.60
45.19

1.01
11.19

1.48
33.91

2.28
40.17

1.16
30.14

0.88
32.53

1.35
47.17

1.70
24.62

1.48
44.52

TreeGCN-ED
CD
FPD

0.50
5.79

1.88
21.02

1.62
16.14

1.45
9.47

1.32
7.85

1.91
51.79

0.40
13.90

0.41
14.80

1.97
21.82

0.88
2.56

1.14
14.67

1.72
12.70

0.79
9.62

0.61
23.91

0.78
13.90

1.41
13.90

1.21
11.54

Table 1: Comparison of the efficiency for 3D point cloud encoding-decoding between our proposed architecture and the FoldingNet [YFST18]
model on ShapeNetBenchmarkV0 dataset [CFG∗15].

References
[ACB17] ARJOVSKY M., CHINTALA S., BOTTOU L.: Wasserstein

generative adversarial networks. In 34th ICML - Volume 70 (2017),
ICML’17, JMLR.org, p. 214–223. 1

[CFG∗15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., LI Z., SAVARESE S., SAVVA M., SONG S., SU H.,
XIAO J., YI L., YU F.: Shapenet: An information-rich 3d model reposi-
tory, 2015. arXiv:1512.03012. 2, 3, 4

[FSG17] FAN H., SU H., GUIBAS L. J.: A point set generation network
for 3d object reconstruction from a single image. 2017 IEEE (CVPR)
(2017), 2463–2471. 1, 2, 3

[GPAM∗14] GOODFELLOW I. J., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial networks, 2014. arXiv:1406.2661. 1

[QSMG17] QI C., SU H., MO K., GUIBAS L. J.: Pointnet: Deep learning
on point sets for 3d classification and segmentation. 2017 IEEE (CVPR)
(2017), 77–85. 1, 3

[SPK19] SHU D. W., PARK S. W., KWON J.: 3d point cloud generative
adversarial network based on tree structured graph convolutions. 2019
IEEE/CVF (ICCV) (2019), 3858–3867. 1, 2, 3

[SYS∗17] SAVVA M., YU F., SU H., KANEZAKI A., FURUYA T.,
OHBUCHI R., ZHOU Z., YU R., BAI S., BAI X., AONO M., TATSUMA
A., THERMOS S., AXENOPOULOS A., PAPADOPOULOS G. T., DARAS
P., DENG X., LIAN Z., LI B., JOHAN H., LU Y., MK S.: Large-scale 3d
shape retrieval from shapenet core55. In 3DOR@Eurographics (2017).
3

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG
X., XIAO J.: 3d shapenets: A deep representation for volumetric shapes.
2015 IEEE (CVPR) (2015), 1912–1920. 3

[YFST18] YANG Y., FENG C., SHEN Y., TIAN D.: Foldingnet: Point
cloud auto-encoder via deep grid deformation. 2018 IEEE/CVF (CVPR)
(2018), 206–215. 3, 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1406.2661

