
TreeGCN-ED: A Tree-Structured Graph-Based 

Autoencoder Framework for Point Cloud Processing

• We present a tree-structured graph-based

autoencoder framework to generate robust

embeddings of point clouds through hierarchical

information aggregation.

• The learned embeddings are discriminative

enough to distinguish among different object

classes.

• They are robust enough for applications such as

point cloud clustering, interpolation,

completion, and single image-based point cloud

reconstruction.

• The up-branching is responsible for collecting information from the feature embedding of the ancestors and upsampling,

which are then passed to the graph convolution layer for further refinement.

• We use Chamfer loss to train the network over the ShapeNetBenchmarkV0 [4] dataset with 16 object classes. We perform

train-validation-test split as per [3].

(a) Point Cloud Clustering
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Several methods have been proposed for encoding-

decoding of point cloud data such as PointNet,

VoxelNet, PointCNN, and PointRCNN. PointNet

[1] and FoldingNet [2] frameworks encode the point

cloud to lower-dimensional embeddings carrying rich

information about the point clouds and being used for

downstream tasks like clustering and classification

over point clouds. Recently in TreeGAN [3], the

authors have proposed a tree-structured decoder

which uses the idea of graph convolution to generate

a point cloud using a noise vector 𝒛 ∈ ℝ96 sampled

from a normal distribution 𝑁(0, 𝐼). It aggregates the

information from parent nodes at each layer instead of

spatially adjacent nodes to leverage the tree-

structured decoder architecture when applying graph

convolution. Our work develops around restructuring

TreeGAN to an autoencoder for learnig robust point

cloud embeddings.

• Due to the irregular structure of point clouds

compared to images and 3D voxels, it is

challenging to design autoencoders to learn rich

embeddings over point clouds.

• We design a deep encoder-decoder framework to

learn information-rich robust embeddings for

several tasks on point clouds, such as clustering,

classification, interpolation, completion, and

image-based reconstruction.

• We extend Tree-GAN [3] - a GAN-based tree-

structured framework to TreeGCN-

ED, an autoencoder based framework, to

efficiently encode and decode point clouds.

• Specifically, we develop an encoder to generate

robust embedding of point clouds that are

then used by TreeGAN decoder to generate point

clouds.
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(c) Point Cloud Completion and Single Image-Based Point Cloud Reconstruction

(b) Point Cloud Interpolation

Inter-class (top) and intra-class (bottom) point cloud interpolation

exhibiting a smooth transition. Results illustrate the ability of our

model to synthesize novel shapes between two given shapes and

faithfully represent the object class at each interpolation stage.

t-SNE plot to establish how well our encoder model

can generate feature embedding for each class. The

inter-class separation is higher, indicating high

discriminative capacity. Perplexity value = 40)

Figure shows how well TreeGCN-ED can fill the missing structures in the point clouds (left) and  that the 

learned embeddings can also foster image-based reconstruction (right)

• The encoder (left) consists of multiple stages of down-branching and graph convolutions for encoding the input 3D point

cloud 𝑝 ∈ ℝ𝑛×3into a feature embedding 𝜓 ∈ ℝ𝐾.

• The decoder (right) takes 𝜓 as input and reconstructs the 3D point cloud through a set of up-branching and graph

convolutions (similar to [3]).

• The down-branching consists of a fully-connected layer followed by max-pooling to accumulate features from ancestors

for each node. The output of the fully-connected layer is divided into 𝐶 equal components that are passed to the max-

pooling layer.
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