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Supplementary Material

7.1. Implementation Details for Cubic Bézier Curves

Our sampler is implemented for piece-wise cubic Bézier curves
as it provides a flexible and computationally efficient representa-
tion. In our experiments, along with manually created curves using
Inkscape and parsed using open source nanosvg [nan], we also used
scanned hand-drawn sketches that are vectorized using [FLB16]
since curve identification is not part of our contribution. Our sam-
pling does not require any tangent continuity between the piece-
wise cubic Bézier curve segments. However, using C1 continuity
will avoid the vanishing of the local feature size at joints, leading
to better results, though, for our applications, we show that we can
handle these artifacts as well.

The sampling process on Bézier curve segments is performed by
inserting foot points as follows. Let p ∈ C correspond to a point
evaluated as B3

k(t) on curve segment k at parameter value t; for
simplicity, we will denote this using the notation B(t). Each foot
point fi ∈ C can be evaluated as fi = B(t). The normal n(t) to C
at a point p = B(t) is orthogonal to the tangent B′(t) at p, thus
n(t) = [B′

y(t),−B′
x(t)]

T . To compute the medial point mi for a foot
point fi ∈C, we determine mi as the center of a disk Di with radius
ri. This disk is tangent to C at fi and constrained by passing through
the subsequent foot point fi+1, thus fixing ri and, later, mi. As mi
may be located on either side of the curve, we first initialize our
radius estimate ri with a circle of radius equal to the bounding box
diagonal of C. For both sides, we then compute the closest point q
of the curve (for all segments) to the current medial point estimate,
and if it is closer, replace it with the center of the circle tangent to
C at fi and passing through q. We iterate until a desired precision
threshold (10−9) is reached and select the point mi from the side
that is closer to fi. Note that this threshold always converged in our
experiments but could be further adjusted proportionally to curve
sampling distances.

The distance of a point m to a cubic Bézier curve B can be ex-
pressed as |B(t)−m|. We translate the coordinates of B such that
m is at the origin. Then, in order to find the point on B closest to
m, B(t), we minimize the squared term |B(t)|2, thus eliminating the
square root, by setting its first derivative (|B(t)|2)′ = 0. This results
in a quintic polynomial that we solve using a specialized quintic
root finder [qui] that employs the real roots isolation method using
both Cauchy’s bound as well as Kojima’s bound, as it is several
times faster than the general Eigen library method (see Sec. 3.4 for
the analysis). Since computing the closest point to a cubic Bézier
curve is still expensive, we first test its bounds using its convex hull
property. Testing whether any point of a convex hull edge is closer
than the current minimum distance, using the same edge projection
procedure as in Sec. 3.2, accelerates it further, resulting in a global
runtime reduced by an order of magnitude, as shown in Table 2.

Uniform meshing
Density 0.1 0.05 0.03 0.02 0.015 0.01
Triangles 1087 1654 3373 6702 11333 24536
Runtime 0.011 0.021 0.069 0.273 0.835 6.784
RMSE 3.526 3.106 2.700 1.933 1.703 -
Uniform meshing
Triangles 249 252 267 301 350 477
Runtime 0.013 0.012 0.014 0.013 0.016 0.074
RMSE 7.631 3.481 2.039 2.354 1.268 -

Table 4: Sampling densities evaluated for the simulation w.r.t. 0.01:
Density is maximum sampling distance/edge length in bounding
box diagonal, runtime in seconds, and RMSE in terms of the uni-
form Dirichlet boundary conditions, for the five sketches’ average.

Figure 10: For varying sampling densities (=maximum edge length
of the meshed triangulation), triangle count, runtime and RMSE
(compared to 0.01 density) of the Laplacian simulation are shown.
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Figure 11: Delaunay conforming property with different ε values. Left to right: ε = 0.4, 0.5, 0.6, 0.7

Figure 12: From left to right: Scanned user sketch, after fitting Bézier curves, sampled with ε = 1 constrained to [0.01, 0.1] distance in terms
of the bounding box diagonal, and the result of feature-aware meshing with max edge length = 0.1.
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Figure 13: Left to right: Varying sampling densities of 0.1, 0.05, 0.03, 0.02, 0.015, and 0.01 of bounding box diagonal for the LION. Top to
bottom: Sampled curve connected by polylines, Meshed triangulation, and Visualization of the Laplacian simulation results with the Dirichlet
conditions as dark blue dots from the vertices of the above polylines as well as the rectangular boundary, above with uniform and then below
with non-uniform meshing.

Figure 14: Vector sketches colored using our improved Delaunay Painting [PMC22] - Images taken and vectorized from [PMC22]
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