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Abstract

Separating shapes and textures of digital images at different scales is useful in computer graphics. The Rolling Guidance (RG)

filter, which removes structures smaller than a specified scale while preserving salient edges, has attracted considerable atten-

tion. Conventional RG-based filters have some drawbacks, including smoothness/sharpness quality dependence on scale and

non-uniform convergence. This paper proposes a novel RG-based image filter that has more stable filtering quality at varying

scales. Our filtering approach is an adaptive and dynamic regularization for a recursive regression model in the RG framework

to produce more edge saliency and appropriate scale convergence. Our numerical experiments demonstrated filtering results

with uniform convergence and high accuracy for varying scales.

CCS Concepts

• Computing methodologies → Computational photography; Image processing;

1. Introduction

Textures in digital images are composed of various scales (σ ∈
R>0). Thus, the Rolling Guidance (RG) filter [ZSXJ14b], which

removes structures smaller than σ while preserving salient edges,

has various applications in computer graphics. The RG filter re-

cursively applies a nonlinear convolution called a joint filter (e.g.,

the Bilateral Filter (BF) [ED04,PSA∗04], Domain Transform (DT)

[GO11], and Guided Filter (GF) [HST13]) that reflects the previ-

ous filtering result as a guide to the same input image every time.

In contrast to naive iterations of these joint filters (e.g., an iterative

BF where it is difficult to control the iteration number to achieve the

target σ), RG only updates its guidance and stably converges to the

target σ (see Fig. 1 for an example of RG-based filtering results).

The GF-based joint filters are popular and have been widely

used in practice [LZZ∗14, KCWL15, DYT∗19, LYB17, SCG∗21,

GDANW21] because fast and accurate approximation of a joint BF

(and also a RG-BF) are not trivial, and RG-DT has the problem

of non-uniform convergence [YY21] in elongated texture regions.

However, RG-GF does not generate the expected level of smooth-

ness (i.e., does not achieve the target σ as demonstrated in Fig. 2(b))

when σ is large [HST13, ZSXJ14b], and the sharpness of salient

edges is also low compared with RG-BF/DT. In addition, the fast

box-kernel averaging [SKM98] that is often employed in GF and

RG-GF may produce undesirable artifacts [YY14].

In this paper, we propose a novel scale-aware image filter based

on the RG-GF framework that restores salient edges with high con-

Figure 1: The filtering results of our proposed method with varying

σ ∈ {4,8,16,32} (left to right), where ε = 0.01 and t = 20.

vergence for various scales in order to tackle the above-mentioned

problems. The main idea behind our approach is very simple and

inspired by the idea of weighted GFs [LZZ∗14, KCWL15], which

have employed an adaptive regularization parameter (controlling

edge-awareness) via statistical information (local variance of a

guidance image). Instead of using a constant or local variance in

the conventional filters, we directly model our regularization such

that the regions of salient edges (small structures) become closer to

the input (target scale) image. More precisely, our adaptive and dy-

namic regularization function consists of the normalized-difference

between RG-GF filtered and target scale images that resemble σ

to 2σ scale band-pass effects. We also adapt the Domain-Splitting

(DS) technique [YY14] to our filter, which approximates L1 Gaus-

sian convolution quickly and very accurately instead of using con-

ventional box-kernel averaging to avoid undesirable artifacts. Our

numerical experiments show that the filter has high approximation

accuracy and convergence rates, and the sharpness and smoothness

of our filtering results are desirable at various scales (Fig. 2).
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(a) RG-BF (b) RG-GF (c) Our filter

Figure 2: RG-BF [ZSXJ14a] (a), RG-GF [ZSXJ14b] (b), and our

filtering (c) results, where σr = 20 (a) is the edge-awareness of

joint BF, ε = {0.001,0.01} (b,c), t = 20, and σ ∈ {2,8} (top and

bottom, respectively). All terms are defined in the text.

2. Proposed Filter

For a given image pixel x∈R
2, let I≡ {Iv = Iv(x)} and Jt ≡ {Jt

v =
Jt

v(x)} on R
3 be the input and our t-th filtered image colors, respec-

tively. Our filter is then recursively defined by

J
t+1
v (x) = GF(Jt , Iv,ε

t)≡ a
T
v J

t +bv, (1)

where v ∈ {r,g,b} denotes each color channel, t ∈ N∪{0} is an

iteration number, GF(·) is our modified guided filter of the guid-

ance Jt and filtering Iv colors with a regularization function of

εt = εt(x) ∈ R, T represents the transpose operation, and {av =
av(x)} ∈ R

3×3 and {bv = bv(x)} ∈ R
3 are the coefficients of the

t-th GF(·). Here, the initial smoothed image J0 ≡ f (I) is defined

by the normalized L1 Gaussian convolution

f (h) =

∫
Gσ(x−y)h(y)dy∫

Gσ(x−y)dy
, Gσ(·) = exp(−| · |

σ
), (2)

at x where y ∈ R
2, h = h(x) ∈ R is its integrand (each element

for the vector case), | · | denotes an absolute value, and exp(·) is

the exponential function. The L1 Gaussian convolution never in-

creases the number of extrema for the one-dimensional continuous

case according to scale-space theory [Lin97] [§6.2.3]. On the other

hand, box-kernel averaging (often used in conventional GF-based

filters, including RG-GF [ZSXJ14b]) may produce undesired arti-

facts [YY21] because its Fourier domain image oscillates as a sinc

function. In our filter, f (·) is implemented by using the DS [YY14]

technique in order to avoid such artifacts.

For each v ∈ {r,g,b} and t, minimizing the following functional

(also known as a ridge regression model [HK70, HST13])

∑
y

Gσ(x−y)((aT
v (y){Jt

v(x)}+bv(y)− Iv(x))
2 + εt(x)|av(y)|2)

with respect to (av,bv) yields the GF coefficients as

av = (C+ εt
U)−1( f (Iv)J

t − f (Iv) f (Jt)), (3)

bv = f (Iv)−a
T
v f (Jt), (4)

where U and C on R
3×3 are the identity and following covariance

(of Jt with respect to f (·)) matrices, respectively:

C =





f ((Jt
r)

2)−( f (Jt
r))

2 f (Jt
rJt

g)− f (Jt
r) f (Jt

g) f (Jt
rJt

b)− f (Jt
r) f (Jt

b)

f (Jt
rJt

g)− f (Jt
r) f (Jt

g) f ((Jt
g)

2)−( f (Jt
g))

2 f (Jt
gJt

b)− f (Jt
g) f (Jt

b)

f (Jt
rJt

b)− f (Jt
r) f (Jt

b) f (Jt
gJt

b)− f (Jt
g) f (Jt

b) f ((Jt
b)

2)−( f (Jt
b))

2



 .

According to Eqs. (3) and (4), a smaller (greater) εt in Eq. (3)

provides a sharper, i.e., closer to I (smoother, i.e., closer to J0) fil-

tering result. Also, Jt+1 is desirable for our purpose if Jt+1 be-

comes I on the salient edges and if other regions converge to J0.

Because the position and the amount of the regularization magni-

tude can be estimated by the difference between Jt+1 and J0, we

model our adaptive and dynamic regularization function εt(x) by

the following normalized-difference magnitude:

εt+1(x) = ε0 δ+ |Jt+1(x)−J0(x)|
δ+ f (|Jt+1(x)−J0(x)|) , ε0 ≡ εL2, (5)

where δ is a small constant (δ =10e-6 was used in our experiments)

to avoid numerical instability, ε is a user-specified edge-awareness

parameter, and L is the color range of I.

In contrast to the conventional guided filter [HST13] and its

rolling guidance extension (RG-GF) [ZSXJ14b], which both con-

sist of a constant regularization parameter (εt = const. for any x and

t), our filter (Eq. 1) adaptively and dynamically changes the regu-

larization magnitude for each x and t as defined in Eq. (5). In ad-

dition, conventional GF-based filters [HST13, LZZ∗14, ZSXJ14b,

KCWL15, LYB17, DYT∗19] usually apply an averaging filter to

their coefficients (av,bv) such as f (av)
T Jt + f (bv), instead of the

procedure we use in Eq. (1), whereas our formulation reduces the

total number of f (·) from (3+33t) (conventional, e.g., [ZSXJ14b])

to (3+19t) times with respect to t (despite the fact that Eq. (5) in-

creases the number of f (·) by t). Algorithms 1 and 2 describe the

pseudocodes of our filter. Note that J0 is only computed once in Al-

gorithm 1 and then is re-used in Algorithm 2 as Ī = f (I), which is

required to compute the GF coefficients (av,bv) during t iterations.

Algorithm 1: Our Proposed Filter

Input : Pixels {x} and their corresponding input image

colors I = {Iv(x),v ∈ {r,g,b}}, regularization ε

and scale σ parameters, image range

L= |max(I)−min(I)|, and iteration number t.

Output: Filtered colors {Jt+1 = {Jt+1
v (x),v ∈ {r,g,b}}.

1 Initialize f (·); ε0← ε×L2; δ←10e-6;

2 J0← Ī← f (I) for all x and v ∈ {r,g,b};
3 for i← 0 to t do

4 Ji+1← GF-DS(Ji,I, Ī,{εi});
// Eq. (1) via Algorithm 2.

5 if i < t then

6 εi+1(x)← ε0 δ+|Ji+1(x)−J0(x)|
δ+ f (|Ji+1(x)−J0(x)|)

for all x ;

// Eq. (5).

7 end if

8 end for

9 return {Jt+1};
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Algorithm 2: GF-DS: Guided Filter via Domain-Splitting

Input : Pixels {x} and their corresponding guidance

h = {hv(x)}, input I = {Iv(x)}, and smoothed

input Ī = {Īv(x)} colors (v ∈ {r,g,b}), and

regularization {γ(x)} and scale σ parameters,

respectively.

Output: Filtered colors {q = {qv(x),v ∈ {r,g,b}}.
1 Function GF-DS(h,I, Ī,{γ(x)}):
2 forall v ∈ {r,g,b} do

3 {h̄v}← f (hv); {ĥv}← f (hv×hv);
{corrh,Iv

}← { f (hr× Iv), f (hg× Iv), f (hb× Iv)};
4 end forall

5 {h̄rg}← f (hr×hg); {h̄rb}← f (hr×hb);
{h̄gb}← f (hg×hb);

6 forall x do

7 A11← ĥr− h̄2
r ; A12← h̄rg− h̄r× h̄g;

A13← h̄rb− h̄r× h̄b;

8 A22← ĥg− h̄2
g; A23← h̄gb− h̄g× h̄b;

9 A33← ĥb− h̄2
b;

10 C←





A11 A12 A13

A12 A22 A23

A13 A23 A33



;

// The 3×3 covariance matrix C of Jt.

11 forall v ∈ {r,g,b} do

12 covhIv
← corrh,Iv

− Īv× h̄;

13 av← (C+ γ(x)U)−1covhIv
; // Eq. (3)

14 bv← Īv−av× h̄v; // Eq. (4)

15 qv← av×h+bv; // Eq. (1)

16 end forall

17 end forall

18 return {q};

2.1. Analysis of Regularization with εt

For simplicity, consider a grayscale case of an input and t filtered

intensities I(x) and Jt(x) at x, respectively. Substituting Eq. (4) into

Eq. (1) then leads to the following numerator for Eq. (5):

|Jt+1(x)− J
0(x)|= |a(x)(Jt(x)− f (Jt(x)))|, (6)

where a(x) is a scalar GF coefficient corresponding to {av}. If t =
0, then Eq. (6) is equivalent to |a(x)DoG(I(x))| where DoG is the

difference of Gaussian functions of two different scales (σ and 2σ

in our case), and DoG represents a band-pass filter.

Figure 3 illustrates εt+1 for varying t and demonstrates the DoG

band-pass effect, which is close to zero (white) on salient edges and

smoothly attenuates from a high value (black) near the edges. Fur-

thermore, the salient edge region (white lines) becomes thinner as

t increases, which contributes to sharpening the salient edges and

accelerating convergence. Here, the numerator (the top images of

Fig. 3) of Eq. (5) on flat-regions that are far from salient edges is

also close to zero because of DoG characteristics. Thus, a prefer-

able distribution of εt+1 is obtained, as shown in the bottom images

of Fig. 3, via normalizing the difference |Jt+1(x)−J0(x)| by its av-

erage (i.e., f (|Jt+1(x)−J0(x)|)).

t = 2 t = 4 t = 20

Figure 3: Visualization of |Jt+1(x)−J0(x)| (top) and Eq. (5) (bot-

tom) for varying t, where σ = 4 and ε = 0.01.

3. Numerical Experiments

All experiments in this study were performed on a Ryzen 7 3700X

CPU PC (3.6 GHz, 8 core, no parallelization) with 32 GB RAM

and a 64-bit OS with a GNU g++9.3 compiler. The input images of

our experiments are shown in Fig. 4.

We numerically compared the proposed filter with the conven-

tional RG-based methods (RG-BF/GF/WGF/DT) and evaluated

their computational speed, convergence, accuracy, and visual qual-

ity. The RG-BF is based on the permutohedral lattice [ABD10] im-

plementation for fast approximation of its joint BF (C++ code was

provided courtesy of [ZSXJ14a]). The moving average [SKM98]

is employed for the fast box-kernel averaging for RG-GF/WGF,

where RG-WGF consists of WGF [LZZ∗14] as its joint filter. The

RG-DT-DS [YY21] utilizes the DT [GO11] and DS [YY14] tech-

niques for its joint filter.

Because the above filters use different averaging kernels, such

as box (RG-GF/WGF) and Gaussian functions of L1 (ours and RG-

DT-DS) and L2 (RG-BF) norms, the actual scale parameters used in

the filters are transformed from a given σ by the following function

in our experiments, except for RG-BF (σ is directly used in RG-

BF):

RG-GF/WGF/DT and our :
√

2πσ/2,

which is derived by matching the integral over R of the normalized

L2 Gaussian function with other kernels as follows:∫ ∞

−∞
Gϕ(x)dx =

∫ ϕ

−ϕ
boxϕ(x)dx = 2ϕ, ϕ ∈ R>0,

∫ ∞

−∞
exp(− x2

2σ2
)dx =

√
2πσ, x ∈ R,

where boxσ(x) = 1 if x≤ σ otherwise boxσ(x) = 0 and Gσ(·) is the

L1 Gaussian function defined in Eq. (2). Also, our initial regulariza-

tion parameter ε in Eq. (5) is manually chosen such that its filtering

result matches RG-BF visually, where the recommended value is

10 to 100 times ε in RG-GF/WGF. The timings in Sec. 3.1 and ac-

curacy in Sec. 3.2 were measured by using the 24 combinations of

σ ∈ {4,8,16,32} and ε ∈ {0.5,0.01,0.05,0.001,0.005,0.0001}.
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Mandrill Lena Castle Wave Snack

w 512 512 1536 256 1368

h 512 512 2048 256 912

Figure 4: Input images used in this study, where w (width) and h

(height) stand for the numbers of row and column pixels, respec-

tively.

3.1. Timings

Figure 5 shows the averaged timings of our filter and conventional

filters with respect to varying image size (generated by magnify-

ing Mandrill in Fig. 4) for t ∈ {4,20}. In the case of t = 20, RG-BF

was unable to process a pixel number greater than 10242 because of

memory error. Here, four iterations (t = 4) have been recommended

for fast results [ZSXJ14b], and 20 iterations (t = 20) are enough

for high-quality results. The filtering speed performance with re-

spect to t is summarized in Table 1. Although our filter is a little

bit slower than the conventional methods, its linear computational

complexity with respect to the number of pixels is numerically con-

firmed (Fig. 5) and provides practical computational speed.
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Figure 5: Timings (seconds) of our filter and conventional filters

with respect to image size (number of pixels).

Table 1: Speed (megapixels per second) via the iteration number t

for our filter and conventional filters.

RG-BF RG-GF RG-WGF RG-DT-DS Our filter

1.27/t 1.30/t 1.30/t 2.19/t 1.08/t

3.2. Approximation Accuracy

Table 2 shows the peak signal-to-noise ratio (PSNR) and maximum

error (Emax) [YY14] of our filter and the RG-GF filter for 100 ran-

domly generated images, where each was examined by using the

above-mentioned 24 parameter sets with t = 20. The size of the

random input image is equal to 64×64 (i.e., w,h = 64), and the

color values are in the [0,1] range. We also compared our filter

with RG-GF-Deriche which uses the popular recursive approxima-

tion [Der93] for its L2 Gaussian convolution instead of box-kernel

averaging. Finite Impulse Response (FIR) [Get13] with 10e-15 ac-

curacy was employed as the correct filtering results for both the

L1 (ours) and the L2 (RG-GF and RG-GF-Deriche) Gaussian con-

volutions. Our filter achieved very accurate filtering results thanks

to DS approximating f (·) in Eq. (2). Although there is a trade-off

between computational speed and accuracy, as shown in Sec. 3.1,

our accurate filtering avoids some undesired artifacts (Fig. 6(b)),

whereas the box averaging in RG-GF generates phantom edges and

rectangular shapes that do not exist in the input image.

Table 2: Accuracy comparison for our filter and RG-GF filters via

PSNR and Emax.

RG-GF RG-GF-Deriche [Der93] Our filter

PSNR 45.0 55.2 291.3

Emax 5.58e-02 1.19e-01 6.04e-13

(a) RG-BF-naive (b) RG-GF (c) Our filter

Figure 6: Comparison of RG-BF-naive (averaging via the exact

L2 Gaussian kernel) (a), RG-GF (b), and our filtering (c) results,

where σ = 4, σr = 4.7 (a), ε = 0.0001 (b), ε = 0.01 (c), and t = 20.

3.3. Convergence

Figure 7 gives a typical example of the normalized mean absolute

error (MAE) [ZSXJ14b] and maximum error (ME), (i.e., the maxi-

mum value of color differences for all x) for varying t, where MAE

and the difference are measured between Jt+1 and Jt (the corre-

sponding filtering results are shown in Fig. 11). At first glance, all

filters converge nicely according to MAE. However, the MEs of

the conventional filters in Fig. 7 oscillate, especially in RG-DT-

DS (probably because of the DT zigzag process). Also, the ME

of RG-BF is excluded in Fig. 7 because of its high value. Con-

versely, our filtering result nicely and quickly converges in both

MAE and ME because our regularization function (Eq. 5) auto-

matically and dynamically adapts the position and amount of the

recursive filtering process. Figure 8 illustrates an example of con-

vergence processes of our filter and the RG-DT-DS filter, where

RG-DT-DS shows non-uniform convergence behavior in elongated

texture regions, whereas our filter converges uniformly in terms of

its texture structure.
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Figure 7: Convergence comparisons with respect to the iteration

number t via the normalized MAE [ZSXJ14b] (top) and ME (bot-

tom; RG-BF is not shown because of its high error value). The cor-

responding filtering results are shown in Fig. 11.

(a) RG-DT-DS (b) Our filter

Figure 8: Convergence processes of the RG-DT-DS [YY21] filter

(a) and our filter (b), where the images on the right correspond to

the gradient magnitude, t ∈ {4,10,20} (top to bottom), σ = 12, φ =
1.5 is the edge-awareness of RG-DT-DS [YY21] (a), and ε = 0.01

(b).

3.4. Visual Quality

Figures 2, 6, and 8-11 illustrate visual comparisons of our filter and

conventional filters. In Figs. 2 and 11, RG-GF does not attain the

target σ (small texture details remain), whereas the smoothness and

sharpness of our results are much closer to RG-BF and RG-DT-DS.

Similar to the RG-GF case described in Fig. 6 and Sec. 3.2, RG-

BF and RG-WGF also produce some undesired artifacts around the

salient edges, as demonstrated in Figs. 9 and 10, respectively. For

example, some phantom edges are generated at the castle roofs in

Fig. 11(e), the boundary between the hair and background in Fig.

9(a), and the highlight of the hat in Fig. 10(a), whereas our filter

does not produce such artifacts. An example of non-uniform con-

vergence via RG-DT-DS is visualized in Fig. 8 and explained in

Sec. 3.3.

(a) RG-BF (b) Our filter

Figure 9: Quality comparison of the RG-BF filter [ZSXJ14b,

ABD10] (a) and our filtering (b) results, where the right images

correspond to the gradient magnitude, σ = 16, σr = 10 (a), and

ε = 0.01 (b).

(a) RG-WGF (b) Our filter

Figure 10: Quality comparison of the RG-WGF filter [ZSXJ14b,

LZZ∗14] (a) and our filtering (b) results, where the right images

correspond to the gradient magnitude, σ = 8, ε = 0.001 (a), and

ε = 0.01 (b).

4. Conclusion

We have proposed a novel scale-aware image filter with stable qual-

ity for use at varying scales. Our filter is based on an adaptive

and dynamic regularization for a recursive regression model of the

RG framework. We compared our filter numerically in terms of

speed, accuracy, convergence, and visual quality with popular con-

ventional methods. Our filter achieved more edge saliency, fewer

artifacts, and appropriate scale convergence compared with con-

ventional filters.

Future work includes improving the regularization function to

obtain the same degree of edge sharpness as that achieved in RG-

BF and RG-DT-DS and applying our filter to graphics applications

such as feature extraction, detail enhancement, stylization, and im-

age matting.
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(a) Input (b) RG-BF (c) RG-DT-DS (d) RG-GF (e) RG-WGF (f) Our filter

Figure 11: Input (a), RG-BF [ZSXJ14b,ABD10] (b), RG-DT-DS [YY21] (c), RG-GF/WGF [ZSXJ14b,LZZ∗14,SKM98] (d,e), and our filtering

(f) results corresponding to Fig. 7, where σ = 8, σr = 30 (b), ε = 0.002 (d,e), ε = 0.01 (f), φ = 1.0 (c), and t = 20.
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