
Pacific Graphics (2022) Short Paper
Y. Yang, A. D. Parakkat, B. Deng, and S.T. Noh (Editors)

Reconstructing Bounding Volume Hierarchies from
Memory Traces of Ray Tracers

Max von Buelow1 , Tobias Stensbeck1 , Volker Knauthe1 , Stefan Guthe1 and Dieter W. Fellner1,2

1Technical University of Darmstadt, Germany
2Fraunhofer IGD, Germany & Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

Abstract
The ongoing race to improve computer graphics leads to more complex GPU hardware and ray tracing techniques whose
internal functionality is sometimes hidden to the user. Bounding volume hierarchies and their construction are an important
performance aspect of such ray tracing implementations. We propose a novel approach that utilizes binary instrumentation
to collect memory traces and then uses them to extract the bounding volume hierarchy (BVH) by analyzing access patters.
Our reconstruction allows combining memory traces captured from multiple ray tracing views independently, increasing the
reconstruction result. It reaches accuracies of 30 % to 45 % when comparing against the ground-truth BVH used for ray tracing
a single view on a simple scene with one object. With multiple views it is even possible to reconstruct the whole BVH, while
we already achieve 98 % with just seven views. Because our approach is largely independent of the data structures used in-
ternally, these accurate reconstructions serve as a first step into estimation of unknown construction techniques of ray tracing
implementations.

CCS Concepts
• Software and its engineering → Software reverse engineering; • Computing methodologies → Ray tracing; • Theory of
computation → Program analysis;

1. Introduction

Advanced computer graphics require sophisticated GPU hardware
and increasingly complex ray tracing techniques. These techniques
include the efficient construction of bounding volume hierarchies
(BVH) that are used as a key performance accelerator in ray trac-
ing [AKL13]. Unfortunately, not all of these implementations are
freely available, making debugging and further research difficult.

To obtain the memory addresses such systems reference, we
need to inject instrumentation code into a target ray tracing applica-
tion. This can be achieved conveniently via binary instrumentation
tools, which enables us to collect these desired memory traces for
a specific rendering view. Memory traces are recordings of every
memory access performed by a target application. Analyzing them
allows us to obtain detailed information, e.g., about the memory
subsystem and structures that are used internally. We therefore de-
veloped a process to reconstruct the BVH directly from the trace
data. Our approach first generates an annotated graph with cost
metrics that is later refined into a BVH tree structure. The recon-
structed BVH can then be used for further analysis or profiling pur-
poses.

Our approach is largely independent of the data layout used by
ray-tracers and enables first steps for semi-automatic reverse engi-
neering of BVHs. The pipeline of our process can be seen in fig. 1.

Trace File

3D Model


Configuration
File


Tracing Tool

Ray Tracer

Analysis0101

NVBIT

MergingOther view's
analysis results

Graph

RefinementReconstructed
BVH

Figure 1: Overview of our exemplary ray tracer system architec-
ture and our tracing and visualization processes.

In summary our contributions are:

• A process for reconstructing the BVH from a memory trace.
• The observation that relaxing the constraints on the connections

between nodes from a binary tree to a general directed graph
enables a simpler and more robust reconstruction.

2. Related Work

Although reverse engineering is an actively researched topic in
the security community, the field of computer graphics needs fur-
ther investigation. While basic characteristics of graphics hardware

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/pg.20221243 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0036-319X
https://orcid.org/0000-0003-4045-9353
https://orcid.org/0000-0001-6993-5099
https://orcid.org/0000-0001-5539-9096
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/pg.20221243


M. von Buelow et al. / BVH Reconstruction from Memory Traces

0x0CE0B0

0x0CE130

0x0CE138

0x0CE148

LDG.E

Instr. Addr.

0x0CE0B0

0x0CE130

0x0CE138

0x0CE148

0x0CE0B0

0x0CE130

0x0CE138

0x0CE148

...

Opcode

LDG.E

LDG.E

LDG.E

LDG.E

LDG.E

LDG.E

LDG.E

LDG.E

LDG.E

LDG.E

LDG.E

...

Mem. Addr.

0xE60600

0xE60000

0xE60004

0xE60008

0xE60604

0xE6000C

0xE60010

0xE60014

0xE60608

0xE60024

0xE60028

0xE6002C

...

Region

indices

positions

positions

positions

indices

positions

positions

positions

indices

positions

positions

positions

...

12

24

24

24

12

12

Instr. Addr. Region

0x0CE130

0x0CE138

0x0CE148

positions

positions

positions

... ...

Estimated Object Size (Bytes)

GCD(12, 24, ...) = 12

GCD(12, 24, ...) = 12

GCD(12, 24, ...) = 12

...

Figure 2: Exemplary trace of SASS memory load instructions gen-
erated by executing a kernel that loads a vertex from a indexed tri-
angle list. The relevant address differences are marked in the mem-
ory trace as well.

were explored by MEI and CHU [MC17], the security community
usually aims to understand systems from a higher level perspective
by analyzing malicious software as well as finding potential se-
curity issues in proprietary software [TFSS11]. In particular, XU,
RAY, SUBRAMANYAN, and MALIK [XRSM17] use memory traces
in order to train a neural network for judging if a program is ma-
licious or not. From a software systems perspective, GU, WU, LI,
and CHEN [GWLC20] use memory traces for analyzing memory
patterns if they are regular or not. CLEARY, GORMAN, VERBEEK,
et al. [CGV*13] use memory traces in order to reconstruct memory
contents of target applications efficiently at arbitrary program states
for debugging and security purposes. Von BUELOW, RIEMANN,
GUTHE, and FELLNER [vBRGF22] visualize GPU memory traces
of simulated cache profiling values of ray tracers. The recently pub-
lished NVIDIA binary instrumentation tool (NVBIT) [VSNK19]
enables aforementioned analysis of arbitrary GPU binaries on an
assembly level during run time. In this work, however, we further
focus on the bounding volume hierarchies (BVH) of ray tracers
[App68; Whi80]. Reconstruction of BVHs requires knowledge of
their initial construction methods [MB90; WBKP08; GS87]. Our
overall approach of reconstructing BVH data from multiple views
can be seen as coarsely related to multi-view stereo algorithms
[SCD*06] that similarly take low-dimensional data from multiple
views and reconstruct their common 3D scene.

3. BVH Reconstruction from Memory Traces

We use NVBIT to inject our memory tracing function in order to
extract byte addresses of every load and store instruction.

memory


access order 2 1 4 356

accessed?

linear?


no

no


no

no


yes
 yes
 yes

yes
no
 no


object
 1
 2
 3
 4
 5


Figure 3: Demonstration of the linear access analysis. Each sub-
division in the memory row represents a structure consisting of two
words. Words are accessed in the order shown in circles. The last
two rows describe the results of the linear access analysis. Red
boxes represent accessed structures and linearly accessed struc-
tures have a hatched background.

Due to the embarrassingly parallel nature of GPU ray tracing,
memory accesses of different warps get interleaved, despite be-
ing independent from one another. To make further analysis more
straight forward, we initially group memory accesses according to
their global warp indices.

As analyses operate on structure-wise indices instead of bare
memory addresses, it is important to know the size of the involved
structures. However, internal data structures vary between different
ray tracing implementations, making dynamic estimation of their
size mandatory. We developed two heuristics that in a combination
estimate sizes of internal structures reliably. The first heuristic is
based on the observation that many instructions reference memory
with a constant intra-structure offset. If the same instruction exe-
cutes multiple times on different indices (see fig. 2), addresses of
resulting memory accesses will differ by a multiple of the struc-
ture size. Our analyzer uses this observation by collecting enough
references from the same instruction address and computing the
greatest common divisor in order to derive the final structure size.
However, cases where this heuristic fails are loop unrolling and
when instructions are only executed once per thread. Therefore, our
second heuristic is based on the observation that loading a small
structure (e.g. a vertex) results in multiple consecutive memory ac-
cesses on a chunk of memory. We analyze the extent of memory
accessed by groups of accesses to the same allocation. If the major-
ity of reported groups have the same size, we assume it is the actual
structure size.

Given the resulting list of indices of BVH nodes, bounding
boxes, vertex positions, etc., we proceed with our analyses steps.

3.1. Analyses

The following describes individual analyses that were used. Anal-
yses can be executed independently from one another ensuring a
modular application design. Their main purpose is to provide the
metrics about potential dependencies in memory that are then used
to build the desired graph structure.

Linear Access Analysis The linear access analysis checks for
each accessed structure of an allocation if it was accessed in a lin-
ear fashion. An example for this analysis are leaf nodes that usually
store a list of triangles. Figure 3 shows an example.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

30



M. von Buelow et al. / BVH Reconstruction from Memory Traces

Inter-Allocation Link Analysis The allocation link analysis at-
tempts to capture associations between two different buffers. Some
buffers simply store indices (implicitly or explicitly) to another
buffer, like indexed face lists, making them therefore dependent
on each other. We capture links by storing the set of subsequently
accessed indices in other buffers.

Consecutive Access Analysis The Consecutive Access Analysis
finds dependencies inside a single allocation, by recording succes-
sively accessed indices. This way, we can capture hierarchical de-
pendencies for BVH trees that are recorded in the same buffer. We
use plausibility score counters for further estimation of the proba-
bility of a potential link.

Stack Analysis The Consecutive Access Analysis suffers from
false linkage due to irregular traversal of children nodes originating
from stack-based traversal. The Stack Analysis analysis is special-
ized to stack-based BVH traversals and aims to further refine the
quality of the reconstructed BVH by keeping track of push and pop
operations onto the ray tracing stack. As stack operations are usu-
ally the only source for local memory utilization, our reconstruc-
tion algorithm therefore simply tracks local memory load and store
operations.

3.2. Reconstruction

Our proposed BVH reconstruction pipeline combines the informa-
tion collected by various analyses into a tree of nodes, which are
classified as either inner nodes or leaf nodes. For inner nodes, the
collected information includes the memory location of the bound-
ing box as well as potential child nodes. For leaf nodes, an index
into the face list as well as the number of triangles is stored.

Construction The construction phase creates an annotated di-
rected graph containing score values from previous analyses steps.
This graph will later be refined into a BVH tree. Therefore, our
reconstruction pipeline first creates a node for each accessed ele-
ment in the nodes buffer and identifies them with their index inside
the buffer. Then, in order to find out if nodes are leaves, we ap-
ply the inter-allocation link analysis between nodes and faces, fol-
lowed by a linear access analysis onto the faces for finding the list
of faces that correspond to a leaf node. Most importantly, our re-
construction now creates edges between nodes forming the desired
graph. Therefore, it uses either the consecutive access analysis, or
the stack analysis, if desired. For each edge, we store the scores
for further cycle removal steps. Finally, for completeness reasons,
we also use the inter-allocation link analysis in order to annotate
corresponding bounding box structures for each inner node.

Merging When capturing memory traces for several ray tracing
views, multiple individual graphs will be produced that need to be
merged for further processing. However, as reconstructed annota-
tions for a node in the reconstruction graph may differ, we introduce
a permanent conflict state as visualized in fig. 4 for each property
that will be used if the same node has different properties in both
graphs to be merged. Otherwise, if a property of a node does not
exist, it is marked as empty denoting that it might get filled in the
future.

Property Node B

empty

empty

empty

value b conflict

value b conflict

value a value a conflict

conflict conflict conflict conflict

co
nflict

va
lue


a == b

Pr
op

er
ty

 N
od

e 
A

Figure 4: Result of merging two properties with different states. If
both properties have the same value, the result is that value. If they
have different values, the result is a conflict.

This ensures that merging is commutative and associative. For
example, if instead of a conflict we would set the state back to
empty if the two values did not match, then the following equality
and therefore associativity would break (where a and b are values
and ◦ is the merge operation):

(a◦b)◦b = a◦ (b◦b) (1)

empty◦b = a◦b (2)

b = empty E (3)

Refinement In the final refinement phase, our proposed pipeline
determines the final type of each node and reduces the graph struc-
ture into a tree by removing dependencies. As a first step, it defines
inner nodes and leaves. A node in the graph becomes a leaf if our
algorithm annotated an index to the face buffer. Otherwise, if it has
edges to other nodes, it is marked as a parent node. If both cases
are not true, the type remains unknown.

The pipeline then determines the root by computing the global
access rate onto each BVH node: The root node receives most ac-
cesses, as it needs to be traversed for each ray. The same access rate
metric is used for determining the traversal order of the directed
graph for the analogous reason.

During traversal, our pipeline uses the score value in order to
calculate the probability of an edge between nodes to be a plau-
sible edge in the actual BVH by dividing the score of each edge
by the number by the sum of all outgoing edges. We then use the
two edges with the highest probability in order to create the desired
binary relation of our initial BVH. Due to ambiguities while re-
constructing node relationships using the consecutive access analy-
sis, unconnected sub-trees may occur. Our reconstruction algorithm
can automatically remove such trees that are not connected to the
root.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

31



M. von Buelow et al. / BVH Reconstruction from Memory Traces

4. Results

For our experiments we used the Bunny, Dragon and Happy Bud-
dha models from the Stanford 3D Scanning Repository as well as
the Dabrovic Sponza and Living Room models from the McGuire
Computer Graphics Archive. The Dabrovic Sponza and Living
Room models provide full environments instead of individual ob-
jects.

For evaluating results, we implemented a single hit-point ray
tracer on a GPU that uses basic work distribution optimiza-
tions from AILA and LAINE [AL09] with a BVH layout simi-
lar to the work of WALD, SLUSALLEK, BENTHIN, and WAGNER

[WSBW01]. Implementing an own ray tracer enables us the pos-
sibility to compare against the ground-truth BVH. While our ray
tracer only sends out primary rays, ray tracers with secondary rays
will also work in our approach directly as BVH traversal remains
independent between primary and secondary rays and our approach
handles all trace commands separately.

In the following, we compare our reconstructed BVH against the
original BVH that was used in our reference ray tracer and state
the proportion and location of fully correct reconstructed nodes.
A node is marked as correct if all reconstructed data items (sec-
tion 3.2) match.

4.1. Single-View Reconstruction

Table 1 shows how many correct nodes of the BVH were recon-
structed using our approach by various configurations on one single
rendering view. We also list the number of accessed nodes based on
which parts of the nodes allocation were accessed in the trace due
to implicit culling of BVH-based ray tracing. As there is no infor-
mation about the other nodes in the memory trace, the number of
accessed nodes provides an upper bound of what can possibly be re-
constructed by our method. Additionally, we exemplarily visualize
a reconstructed BVH of the Bunny in fig. 5. A general observation
on our approach is that the more general consecutive access analy-
sis comes very close to the results of the specialized stack analysis.
The succeeding pruning step makes the measured reconstruction
result worse to a small magnitude, which can be explained by our
comparison metric not taking the traversal into account and also
counting unconnected nodes as correct as long as their successors
are equal.

For the Bunny model, we were able to reconstruct 44 % to 49 %
of the BVH, which corresponds to approximately half of the model
being visible with one representative view. The Dragon and Happy
Buddha models have slightly lower reconstruction scores. Here,
the chosen resolution of 256× 256 pixels was arguably too small
given the resolution of the models, which we further discuss later
in this section. The Living Room model has the worst reconstruc-
tion scores despite having less triangles than the Dragon or Happy
Buddha models. We attribute this to the geometry being partially
outside of the camera frame or occluded by itself, leading to large
parts of the BVH never being accessed. The Dabrovic Sponza is
a much simpler model and does not have this particular problem.
Similarly, in the zoomed-in render of the Bunny model, less of the
model is visible in the frame leading to less accessed nodes in the
BVH and therefore to a decrease in the reconstruction rate.

Table 1: Number of fully-correct nodes by type. The first row
(with the model name) shows the statistics from the original BVH.
The second row shows how many nodes were accessed at all in
the trace. Then, we report how many nodes were correctly recon-
structed by using either the stack analysis (SA) or consecutive ac-
cess analysis (CAA) for the reconstruction. Finally, we also show
the results of the consecutive access analysis after pruning the tree.
Results for the stack analysis do not change after pruning.

Parents Leaves Total
Bunny 100.0 % 100.0 % 100.0 %
Accessed 57.5 % 48.0 % 52.7 %
SA 49.3 % 48.0 % 48.6 %
CAA 45.0 % 48.0 % 46.5 %
CAA pruned 43.8 % 43.8 % 43.8 %
Dragon 100.0 % 100.0 % 100.0 %
Accessed 46.4 % 35.7 % 41.0 %
SA 36.8 % 35.7 % 36.2 %
CAA 32.1 % 35.7 % 33.9 %
CAA pruned 31.7 % 31.5 % 31.6 %
Happy Buddha 100.0 % 100.0 % 100.0 %
Accessed 44.6 % 29.2 % 36.9 %
SA 30.4 % 29.2 % 29.8 %
CAA 24.6 % 29.2 % 26.9 %
CAA pruned 24.0 % 24.2 % 24.1 %
Dabrovic Sponza 100.0 % 100.0 % 100.0 %
Accessed 60.2 % 46.3 % 53.3 %
SA 47.2 % 46.3 % 46.8 %
CAA 41.9 % 46.3 % 44.1 %
CAA pruned 39.3 % 39.8 % 39.5 %
Living Room 100.0 % 100.0 % 100.0 %
Accessed 19.1 % 10.8 % 15.0 %
SA 11.4 % 10.8 % 11.1 %
CAA 9.6 % 10.8 % 10.2 %
CAA pruned 8.5 % 8.3 % 8.4 %
Bunny (zoom) 100.0 % 100.0 % 100.0 %
Accessed 32.8 % 26.8 % 29.8 %
SA 27.1 % 26.8 % 26.9 %
CAA 26.0 % 26.8 % 26.4 %
CAA pruned 25.8 % 25.7 % 25.7 %

Figure 6 shows our reconstruction result for the Bunny and
Dragon models at individual resolutions. The Dragon model has
approximate twelve times as many triangles as the Bunny model,
therefore it requires bigger images to reconstruct a significant part
of the BVH, as otherwise not all visible nodes are accessed due to
the fact that the primary rays are spread too far apart. The curves for
the different models seem to be shifted by approximately two mag-
nitudes in resolution corresponding to 16 times the number of pix-
els. After a certain threshold, increasing the resolution does not im-
prove the reconstruction results by much. As discussed above, the
reconstruction is limited by which nodes are accessed, and increas-
ing the resolution does not lead to more nodes being accessed if the
nodes are culled because of visibility. In general, modest resolu-
tions are sufficient for reconstructing even high-resolution models,
however, the sampling frequency of the rays has to be big enough
to match the sampling rate of the mesh [Nyq02].

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

32



M. von Buelow et al. / BVH Reconstruction from Memory Traces

Figure 5: Visualization (front and back) showing the reconstructed
BVH of the Bunny mesh. The bounding box locations are extracted
from the memory contents. Fully-correct nodes are shown in black;
other nodes are shown in red.

Image Size
16 32 64 128 256 512 1024

Re
co

ns
tr

uc
tio

n

0%

10%

20%

30%

40%

50%

60%

Bunny (Accessed)
Bunny (SA)
Bunny (CAA)
Bunny (CAA pruned)
Dragon (Accessed)
Dragon (SA)
Dragon (CAA)
Dragon (CAA pruned)

Figure 6: Percentage of correctly reconstructed nodes depending
on image size.

4.2. Multi-View Reconstruction

As seen in the previous section, the BVH can be reconstructed only
partially from a single view. Because we reached reconstruction
rates of 100 % with few views easily on the Bunny, we focus here
on reconstructing the Dragon model, which turned out to be more
difficult due to the model’s intricate geometry. Table 2 lists the
corresponding reconstruction results. Using the best camera con-
figuration from the Bunny model resulted in the reconstruction of
only 85.5 % of the BVH of the Dragon model. Even using a higher
resolution of 512 × 512 pixels and with four additional cameras
that were manually placed to capture regions missing in the recon-
struction, we were only able increase the reconstruction to approxi-
mately 98 %. Figure 7 shows the location of the incorrect or missing
nodes on the model, which are mostly found in concave regions in
the mouth, the hind leg and the bottom of the model, despite the
additional cameras explicitly targeting the mouth and hind leg. For
this model, the higher triangle count causes the bounding boxes of
leaf nodes to be smaller in relation to the model, exacerbating the
culling effect.

Table 2: Multi-view reconstruction results for the Dragon model
with different numbers of cameras.

Parents Leaves Total
Dragon 100.0 % 100.0 % 100.0 %
2 views Accessed 80.3 % 67.4 % 73.9 %
2562 pixels SA 68.7 % 67.4 % 68.0 %

CAA 60.4 % 67.4 % 63.9 %
CAA pruned 59.4 % 59.6 % 59.5 %

3 views Accessed 86.2 % 76.3 % 81.2 %
2562 pixels SA 77.2 % 76.3 % 76.8 %

CAA 71.8 % 76.3 % 74.1 %
CAA pruned 71.3 % 71.1 % 71.2 %

5 views Accessed 91.3 % 84.0 % 87.7 %
2562 pixels SA 84.7 % 84.0 % 84.4 %

CAA 80.4 % 84.0 % 82.2 %
CAA pruned 80.1 % 80.0 % 80.1 %

5 views Accessed 95.4 % 89.0 % 92.2 %
2562 pixels SA 89.5 % 89.0 % 89.2 %

CAA 85.9 % 89.0 % 87.4 %
CAA pruned 85.6 % 85.5 % 85.5 %

5 views Accessed 96.9 % 94.3 % 95.6 %
5122 pixels SA 94.6 % 94.3 % 94.4 %

CAA 93.1 % 94.3 % 93.7 %
CAA pruned 92.8 % 92.8 % 92.8 %

9 views Accessed 98.6 % 97.8 % 98.2 %
5122 pixels SA 97.9 % 97.8 % 97.8 %

CAA 97.4 % 97.8 % 97.6 %
CAA pruned 97.3 % 97.3 % 97.3 %

Figure 7: Incorrect or missing nodes in in the reconstruction of the
BVH of the Dragon model from 9 views. Nodes are visualized as
their corresponding bounding box.

5. Conclusion

Bounding volume hierarchies are an important technique in ray
tracing acceleration. Reconstruction of bounding volume hierar-
chies from existing ray tracing binaries can be a promising tech-
nique for further analysis of used techniques.

In this paper, we presented an approach that automatically ex-
tracts memory references from a ray tracing program during run-
time. These memory traces are then used to perform a set of inde-
pendent analysis steps that encode their results in a graph structure
with annotated plausibility scores. Our approach uses this graph
in order to reconstruct the original BVH. In order to increase ac-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

33



M. von Buelow et al. / BVH Reconstruction from Memory Traces

curacy, memory traces recorded from multiple ray tracing viewing
perspectives can automatically be combined during reconstruction.

Our results show that we can reach accuracies of 30 % to 45 %
when comparing against the actually rendered bounding volume hi-
erarchy for one view. With multiple views, we reach 98 % and the-
oretically 100 % are possible when positioning cameras carefully
in a way that every triangle can be seen in the combination of all
views.

We conclude, that it is possible to reconstruct the structure of
a BVH just from the list of memory reference without knowing
its actual contents in main memory. It might serve as a first step
into estimation of concealed construction techniques of ray tracing
implementations.

Limitations and Future Work While this short paper already im-
plements an important part of reverse engineering BVH algorithms,
there are still unsolved parts. Our approach relies on memory traces
that are extracted from GPU ray tracers. Unfortunately, it is not triv-
ially possible to extract memory traces of hardware-accelerated ray
traces which use complex assembly instructions that perform the
whole BVH traversal. As these assembly instructions do not have
memory reference operands, memory tracing is not possible this
way and possibly other techniques have to be involved.

In the future, we would like to use the extracted BVH in order to
make estimations about the construction algorithm, specifically the
used heuristic for splitting volumes. Additionally, we would like
to evaluate our approach on further ray tracing implementations.
Last, we think that global optimization methods on our graphs with
annotated plausibility scores can lead to improved results.

Source Code The source code for this paper is available at
https://github.com/GreenLightning/MemTracer.

Acknowledgements

Part of the research in this paper was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –
project number 407714161. We thank the anonymous reviewers
whose comments helped improve this manuscript.

References
[AKL13] AILA, TIMO, KARRAS, TERO, and LAINE, SAMULI. “On qual-

ity metrics of bounding volume hierarchies”. Proceedings of the 5th
High-Performance Graphics Conference - HPG ’13. ACM Press, 2013.
DOI: 10.1145/2492045.2492056 1.

[AL09] AILA, TIMO and LAINE, SAMULI. “Understanding the efficiency
of ray traversal on GPUs”. Proceedings of the 1st ACM conference on
High Performance Graphics - HPG ’09. ACM Press, 2009. DOI: 10.
1145/1572769.1572792 4.

[App68] APPEL, ARTHUR. “Some techniques for shading machine ren-
derings of solids”. Proceedings of the April 30–May 2, 1968, spring
joint computer conference. AFIPS ’68 (Spring). ACM Press, 1968. DOI:
10.1145/1468075.1468082 2.

[CGV*13] CLEARY, BRENDAN, GORMAN, PATRICK, VERBEEK, ERIC,
et al. “Reconstructing program memory state from multi-gigabyte in-
struction traces to support interactive analysis”. 2013 20th Working Con-
ference on Reverse Engineering (WCRE). IEEE, Oct. 2013, 42–51. DOI:
10.1109/wcre.2013.6671279 2.

[GS87] GOLDSMITH, JEFFREY and SALMON, JOHN. “Automatic Creation
of Object Hierarchies for Ray Tracing”. IEEE Computer Graphics and
Applications 7.5 (May 1987), 14–20. DOI: 10.1109/mcg.1987.
276983 2.

[GWLC20] GU, YONGBIN, WU, WENXUAN, LI, YUNFAN, and CHEN,
LIZHONG. “UVMBench: A Comprehensive Benchmark Suite for Re-
searching Unified Virtual Memory in GPUs”. (2020). DOI: 10.48550/
ARXIV.2007.09822. Pre-published 2.

[MB90] MACDONALD, J. DAVID and BOOTH, KELLOGG S. “Heuristics
for ray tracing using space subdivision”. The Visual Computer 6.3 (May
1990), 153–166. DOI: 10.1007/bf01911006 2.

[MC17] MEI, XINXIN and CHU, XIAOWEN. “Dissecting GPU Memory
Hierarchy Through Microbenchmarking”. IEEE Transactions on Paral-
lel and Distributed Systems 28.1 (Jan. 2017), 72–86. DOI: 10.1109/
tpds.2016.2549523 2.

[Nyq02] NYQUIST, H. “Certain topics in telegraph transmission theory”.
Proceedings of the IEEE 90.2 (2002), 280–305. DOI: 10.1109/5.
989875 4.

[SCD*06] SEITZ, S.M., CURLESS, B., DIEBEL, J., et al. “A Compari-
son and Evaluation of Multi-View Stereo Reconstruction Algorithms”.
2006 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition - Volume 1 (CVPR’06). IEEE, 2006, 519–528. DOI:
10.1109/cvpr.2006.19 2.

[TFSS11] TREUDE, CHRISTOPH, FILHO, FERNANDO FIGUEIRA,
STOREY, MARGARET-ANNE, and SALOIS, MARTIN. “An Exploratory
Study of Software Reverse Engineering in a Security Context”.
2011 18th Working Conference on Reverse Engineering. IEEE, Oct.
2011, 184–188. DOI: 10.1109/wcre.2011.30 2.

[vBRGF22] Von BUELOW, MAX, RIEMANN, KAI, GUTHE, STEFAN, and
FELLNER, DIETER W. “Profiling and Visualizing GPU Memory Ac-
cess and Cache Behavior of Ray Tracers”. Eurographics Symposium
on Parallel Graphics and Visualization. The Eurographics Association,
2022, 7–17. DOI: 10.2312/PGV.20221061 2.

[VSNK19] VILLA, ORESTE, STEPHENSON, MARK, NELLANS, DAVID,
and KECKLER, STEPHEN W. “NVBit. A Dynamic Binary Instrumen-
tation Framework for NVIDIA GPUs”. Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO ’52.
ACM, Oct. 2019. DOI: 10.1145/3352460.3358307 2.

[WBKP08] WALTER, BRUCE, BALA, KAVITA, KULKARNI, MILIND, and
PINGALI, KESHAV. “Fast agglomerative clustering for rendering”. 2008
IEEE Symposium on Interactive Ray Tracing. IEEE, Aug. 2008, 81–86.
DOI: 10.1109/rt.2008.4634626 2.

[Whi80] WHITTED, TURNER. “An improved illumination model for
shaded display”. Communications of the ACM 23.6 (June 1980), 343–
349. DOI: 10.1145/358876.358882 2.

[WSBW01] WALD, INGO, SLUSALLEK, PHILIPP, BENTHIN, CARSTEN,
and WAGNER, MARKUS. “Interactive Rendering with Coherent Ray
Tracing”. Computer Graphics Forum 20.3 (Sept. 2001), 153–165. DOI:
10.1111/1467-8659.00508 4.

[XRSM17] XU, ZHIXING, RAY, SAYAK, SUBRAMANYAN, PRAMOD, and
MALIK, SHARAD. “Malware detection using machine learning based
analysis of virtual memory access patterns”. Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. IEEE, Mar.
2017, 169–174. DOI: 10.23919/date.2017.7926977 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

34

https://github.com/GreenLightning/MemTracer
https://doi.org/10.1145/2492045.2492056
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1109/wcre.2013.6671279
https://doi.org/10.1109/mcg.1987.276983
https://doi.org/10.1109/mcg.1987.276983
https://doi.org/10.48550/ARXIV.2007.09822
https://doi.org/10.48550/ARXIV.2007.09822
https://doi.org/10.1007/bf01911006
https://doi.org/10.1109/tpds.2016.2549523
https://doi.org/10.1109/tpds.2016.2549523
https://doi.org/10.1109/5.989875
https://doi.org/10.1109/5.989875
https://doi.org/10.1109/cvpr.2006.19
https://doi.org/10.1109/wcre.2011.30
https://doi.org/10.2312/PGV.20221061
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1109/rt.2008.4634626
https://doi.org/10.1145/358876.358882
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.23919/date.2017.7926977

